
Drosophila Importin-a2 Is Involved in Synapse, Axon and
Muscle Development
Timothy J. Mosca1,2¤, Thomas L. Schwarz1,2*

1 F. M. Kirby Neurobiology Center, Children’s Hospital Boston, Boston, Massachusetts, United States of America, 2 Department of Neurobiology, Harvard Medical School,

Boston, Massachusetts, United States of America

Abstract

Nuclear import is required for communication between the cytoplasm and the nucleus and to enact lasting changes in gene
transcription following stimuli. Binding to an Importin-a molecule in the cytoplasm is often required to mediate nuclear
entry of a signaling protein. As multiple isoforms of Importin-a exist, some may be responsible for the entry of distinct
cargoes rather than general nuclear import. Indeed, in neuronal systems, Importin-a isoforms can mediate very specific
processes such as axonal tiling and communication of an injury signal. To study nuclear import during development, we
examined the expression and function of Importin-a2 in Drosophila melanogaster. We found that Importin-a2 was expressed
in the nervous system where it was required for normal active zone density at the NMJ and axonal commissure formation in
the central nervous system. Other aspects of synaptic morphology at the NMJ and the localization of other synaptic markers
appeared normal in importin-a2 mutants. Importin-a2 also functioned in development of the body wall musculature.
Mutants in importin-a2 exhibited errors in muscle patterning and organization that could be alleviated by restoring muscle
expression of Importin-a2. Thus, Importin-a2 is needed for some processes in the development of both the nervous system
and the larval musculature.
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Introduction

To ensure a proper long-term response to stimuli, cells must

have communication between the cytoplasm and the nucleus.

Signals arising from diverse pathways must be imported into the

nucleus where they can affect gene transcription. This process is

largely accomplished through the function of importin proteins

[1], which mediate the active import of protein cargoes through

the nuclear pore complex [2].

The importin family comprises two major classes of protein:

Importin-a and Importin-b [3]. In many cases, these proteins form

a ternary complex with a cargo molecule [4]: Importin-a mediates

cargo binding through a nuclear localization signal (NLS) while

Importin-b binds Importin-a and mediates translocation through

the nuclear pore [5]. In this model, Importin-a confers cargo

specificity to the import machinery [6] and is the necessary

intermediary between the cargo and Importin-b. Neurons have

adapted this mechanism to connect the synapse to the nucleus of

the cell. The cellular underpinning of learning and long-term

memory is thought to depend on proper synapse-to-nucleus

communication through the importins [7,8]. Indeed, the involve-

ment of Importin-a in a diverse array of specific neuronal

processes has been shown [9,10,11,12,13]. Therefore, elucidating

the roles of different Importin-a homologues can illuminate both

the general mechanisms of nuclear import and the specific

contributions of individual importins to neuronal function.

There are three evolutionary clades of Importin-a homologues

and each is singly represented in the Drosophila genome [4,14]. All

three homologues are required for proper development of male

and female germline tissue [15,16,17,18,19,20]. In addition, they

function outside of the germline: importin-a1 is involved in wing

patterning [18], importin-a2 may be involved in cell proliferation

and cell cycle progression [21,22] and importin-a3 is involved in cell

fate decisions [23], heat stress response [24] and antagonism of

Wnt signaling [25]. Importin-a3 function has also been examined

in the nervous system: mutations in importin-a3 fail to import a

synaptic dSmad2 signal into the nucleus and show defects in

proper axonal tiling of photoreceptors [11]. Further, only

Importin-a3 is absolutely required for viability: germline clones

fail to develop embryos and mutations die at the first- to second-

instar transition while importin-a1 and importin-a2 mutants survive

through to adulthood [15,16,25]. Their survival suggests specific

but not essential roles for importin-a1 and importin-a2.

We recently identified a role for Importin-a2 outside the

germline. Importin-a2 contributes to postsynaptic development of

the neuromuscular junction (NMJ) by permitting the import of a

Fz2-derived signal, the C-terminal peptide of the Fz2 receptor,

into muscle nuclei [26]. As Importin-a2 is expressed during larval

development and in developing neuroblasts [21,22], it is likely to

be involved in additional aspects of neuronal development. Here,

we show that Importin-a2 is expressed throughout the larval

nervous system and is involved in determining both the density of
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active zones at the larval neuromuscular junction and axon

connectivity in the central nervous system (CNS). We also find that

importin-a2 is required in the muscle for normal patterning and

organization of the larval body-wall musculature.

Materials and Methods

Drosophila Stocks
Drosophila strains were raised at 25uC on cornmeal-molasses

food. The isogenic stock y, w; FRT42D was used as the wild-type

control. The following alleles and transgenic strains were used:

imp-a2D3, imp-a2D14 [II, 20]; Df(3L) a1S1, referred to here as Imp-

a1Df [III, 18], 24B-GAL4 [III, 27]; Elav-GAL4 [III, 28]; UASt-

Importin-a2 [III, 15].

Immunohistochemistry
Larvae were grown on standard grape juice agar plates at low

density at 25uC. Wandering third-instar larvae were dissected and

processed for immunohistochemistry as described [26] with the

following primary antibodies: mouse anti-Brp (NC-82) 1:250 [29],

mouse anti-CSP (6D6) 1:100 [30], mouse anti-Fasciclin II (1D4)

1:20 [31], mouse anti-Fasciclin III (7G10) 1:100 [32], rabbit anti-

GluRIIC 1:2500 [33], rabbit anti-Importin-a2 1:100 [19], mouse

anti-Repo (8D12) 1:100 [34], rabbit anti-Synaptotagmin I 1:4000

[35]. FITC-, Cy3- or Cy5-conjugated secondary antibodies were

used at 1:200 (Jackson ImmunoResearch, West Grove, PA).

Nerves were stained with antibodies to HRP at 1:100 (Jackson

ImmunoResearch, West Grove, PA) and muscles with Texas Red-

conjugated phalloidin at 1:300 (Invitrogen, Carlsbad, CA). Larvae

Figure 1. Importin-a2 is Expressed in the Larval Nervous System. (A) Diagram of the Importin-a2 protein reflecting the Importin-b binding
domain (grey), eight Armadillo (ARM) repeats (green) and C-terminal SAR domain (blue). The extent of the D14 deletion [20] and the region against
which polyclonal antibodies were raised [19] are indicated. (B,C) Representative confocal z-stacks of the ventral nerve cord (VNC) from wild-type (y,w;
FRT42D; +; +) and importin-a2 mutant (y,w; imp-a2D14; +; +) third-instar larvae stained with antibodies to Importin-a2 (magenta). The antibody labels a
population of wild-type cell bodies within the brain lobes and at the midline of the VNC. (D–F) High magnification images of the midline of the VNC
in wild-type larvae stained with antibodies to Importin-a2 (magenta) and the glial marker Repo (green). Repo does not overlap with Importin-a2
staining. (G–H) In high magnification images of the brain lobes of wild-type larvae, Importin-a2 (magenta) and Repo (green) immunoreactivities do
not overlap. (I) A larval imaginal disc in a wild-type larva stained with antibodies to Importin-a2 (magenta). In all panels, scale bar = 10 mm.
doi:10.1371/journal.pone.0015223.g001
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were mounted in Vectashield (Vector Laboratories, Burlingame,

CA) stored at 220uC until imaging.

Imaging and Analysis Parameters
Larvae were imaged using an LSM 510 Meta laser scanning

confocal microscope (Carl Zeiss, Oberkochen, Germany) and

either a 636 1.4 NA or 406 1.0 NA objective. Images were

processed in separate channels using the LSM software or Adobe

Photoshop CS2 (Adobe Systems, San Jose, CA).

Scoring for bouton counts, commissural defects and muscle

patterning errors were performed using a Nikon (Tokyo, Japan)

E800 fluorescent microscope. For boutons, NMJs on muscles 6

and 7 of segments A2 and A3 on both the right and left sides were

analyzed; bouton number was normalized to muscle surface area.

Commissures were scored as defective if they had discontinuous

axons at the midline of the ventral nerve cord. Muscle patterning

was analyzed in segments A2 through A7. Genotypes were

processed in the same tube and imaged with identical settings.

Bruchpilot (Brp) and GluRIIC puncta were manually counted at

MN4b synapses on muscle 4 from confocal z-stacks and terminal

area was calculated using the threshold function in Metamorph for

the HRP channel as previously [36].

Fluorescent intensity was measured in ImageJ as previously

[26]: confocal z-stacks of the entire NMJ at muscle 4 were

converted to multi-channel composite images. An ROI was drawn

based on the anti-HRP channel and the mean fluorescence

intensity measured in the other channels. Because the average

anti-HRP fluorescence did not differ significantly between

genotypes, direct comparison of the experimental labeling was

possible.

Statistical analysis was conducted using Prism 5 software

(Graphpad Software, La Jolla, CA) and significance (relative to

wild-type unless otherwise noted) was calculated using a one-way

analysis of variance (ANOVA) with a Dunnett post-hoc test to a

control sample. When only two samples were tested, an unpaired

student’s t-test was used. Values are given as mean 6 SEM;

sample size (n) is described either in the figure legend or in the

Results section.

Results

Importin-a2 is Expressed in the Larval Nervous System
Drosophila Importin-a2 is a 522 amino acid protein encoded by

the gene pendulin [21] and comprises an N-terminal Importin-b
binding domain and a series of ARM repeats followed by a SAR

domain (Figure 1A) [37,38]. To examine the function and

expression of Importin-a2 in Drosophila, we used the deletion

imp-a2D14 [20], which removes the first half of the coding sequence

(Figure 1A) and an antibody raised against the C-terminus of

Importin-a2 [19].

Importin-a2 expression has previously been demonstrated

during embryonic development [15,19,20], including in neuro-

blasts [21,22], and in larval muscle nuclei [26]. In third-instar

ventral nerve cords (VNC), we observed that anti-Importin-a2

recognized cells in the brain lobes and at the midline of the VNC

(Figure 1B). This staining was absent in the imp-a2D14 deletion

mutant (Figure 1C). The Importin-a2-immunoreactive cells of the

nerve cord midline (Figure 1D–F) and brain lobes (Figure 1G–H)

were not labeled by antibodies to the glial marker Repo. Importin-

a2 is therefore likely to be abundant in a subset of neurons.

Figure 2. Normal Bouton Number in importin-a2 Mutants. (A–B) Representative confocal images of third-instar larval NMJs from wild-type (y,w;
FRT42D; +; +) and importin-a2 mutants (y,w; imp-a2D14; +; +) stained with antibodies to HRP. Scale bar = 10 mm. (C–E) Quantification of bouton number
(C), bouton number normalized to muscle surface area (D) and muscle surface area (E) in wild-type and importin-a2 larvae. No significant differences
were detected. In all cases, p.0.2 and error bars represent S.E.M. For wild-type: n = 29 NMJs, 15 larvae and for importin-a2: n = 22 NMJs, 12 larvae.
doi:10.1371/journal.pone.0015223.g002

Importin-a2 in Nerve and Muscle Development

PLoS ONE | www.plosone.org 3 December 2010 | Volume 5 | Issue 12 | e15223



Additional neuronal populations may contain Importin-a2 at

levels below the threshold for detection. Further, and consistent

with previous in situ data [22], we observed robust expression of

Importin-a2 in larval imaginal discs (Figure 1I).

Active Zone Density at the NMJ Is Controlled by
Neuronal Importin-a2

As we observed expression of Importin-a2 in the nervous system

and muscle [26], we examined the NMJ for anatomical

phenotypes. importin-a2 mutant NMJs appeared grossly similar to

wild-type controls (Figure 2A–B) and possessed similar numbers of

boutons (Figure 2C). The surface area of the muscle was also

unchanged (Figure 2E) and thus the matching of bouton count to

muscle size was unaltered (Figure 2D).

We also examined the localization and expression of synaptic

markers in wild-type and importin-a2 mutant larvae. We labeled

NMJs with the monoclonal antibody NC-82, which recognizes the

active zone component Bruchpilot [29,39] and with antibodies

against GluRIIC, an essential subunit of the glutamate receptor

complex [33]. In wild-type, each presynaptic Brp punctum is

apposed by a postsynaptic GluRIIC punctum (Figure 3A–C). This

alignment is essential for reliable synaptic transmission [33] and

can be regulated by diverse signaling pathways [40,41,42]. In

importin-a2 mutants, we observed proper localization of both Brp

and GluRIIC to the NMJ (Figure 3D–F) and no change in the

total area of the NMJ as determined by anti-HRP immunoreac-

tivity (Figure 3I). However, the number of puncta was increased by

39% for Brp and by 35% for GluRIIC compared to wild-type

(Figure 3G–J). The number of active zone and glutamate receptor

puncta thus increased in tandem and no examples were seen of

active zones that lacked apposite receptor clusters. In contrast,

importin-a1 null larvae showed normal active zone densities (Figure

S1). importin-a3 mutants were not examined because they die at the

first larval instar [16].

Figure 3. Loss of Neuronal Importin-a2 Increases Active Zone Density. (A–C) Representative confocal images of wild-type (y,w; FRT42D; +; +)
larval NMJs from muscle 4 stained with antibodies against Bruchpilot (magenta), GluRIIC (green) and HRP (blue). Insets show high magnification
images of individual boutons. Each Brp punctum is apposed by a corresponding GluRIIC punctum. (D–F) Representative confocal images stained as
above in importin-a2 mutants (y,w; imp-a2D14; +; +). No defects in apposition are observed, but the density of both Brp and GluRIIC puncta is
increased. Scale bar = 10 mm for full NMJ, 4 mm for high magnification images. (G–H) Quantification of Brp and GluRIIC puncta in wild-type larvae,
importin-a2 mutants, and importin-a2 mutants with restored neuronal expression of Importin-a2 (y,w; imp-a2D14; elav-GAL4/UASt-Importin-a2; +). In
importin-a2 mutants, the density of Brp and GluRIIC puncta per mm2 is increased by 40% and restored to wild-type levels by neuronal restoration of
Importin-a2 expression. *** p,0.0001. (I–J) The synaptic area (as determined by anti-HRP staining of terminals) and the ratio of Brp to GluRIIC puncta
are unchanged in the mutants. Error bars represent S.E.M. For all cases, n$2 NMJs from 6 larvae.
doi:10.1371/journal.pone.0015223.g003
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The phenotype indicated a requirement for nuclear import in

controlling the density of active zones at the NMJ. To determine the

origin of this phenotype, we expressed a UAS-Importin-a2

transgene [15] in all postmitotic neurons using the elav-GAL4

driver [28] in an importin-a2 mutant background. In these animals,

the densities of Brp and GluRIIC puncta (Figure 3G–I) were

restored to wild-type levels Therefore, a neuronal pool of Importin-

a2 is required for normal active zone density at the NMJ.

Many Presynaptic Markers are Normal in importin-a2
Mutants

As the loss of importin-a2 resulted in an increase of Brp and

GluRIIC puncta, we examined whether other synaptic proteins

were altered. CSP and Syt I immunoreactivities, which mark

synaptic vesicle populations [30,43], were properly localized at

importin-a2 NMJs (Figure 4A–C, F–H) and the fluorescence

intensity of each antibody signal was equivalent at wild-type and

mutant NMJs (Figure 4K–L). We also examined Fasciclin II, a cell

adhesion molecule necessary for proper synaptic structure and

stabilization at the NMJ [44,45]. Fasciclin II was correctly

localized at the importin-a2 NMJ (Figure 4D–E, I–J) and the

fluorescence intensity of the synaptic Fas II signal showed no

significant difference between wild-type and importin-a2 larvae

(Figure 4M). Therefore, while Brp and GluRIIC are altered at

importin-a2 mutant synapses, the localization and concentration of

other synaptic markers are unaffected at these synapses.

Aberrant Axonal Commissures in Importin-a2 Larvae
To examine the organization of the VNC, we stained wild-type

and importin-a2 mutants for Fasciclin III, a cell adhesion molecule

[32] that recognizes crossing RP motor neuron axons [46]. In

wild-type larvae, antibodies to Fas III stain one of the lateral axon

Figure 4. Common Synaptic Markers are Normal in importin-a2 Mutants. (A–E) Representative confocal projections of the larval NMJ at
muscle 4 stained with antibodies to Synaptotagmin I, Cysteine String Protein (CSP), Fasciclin II, and HRP, as indicated, in wild-type (y,w; FRT42D; +; +)
larvae. (F–J) Representative confocal projections of importin-a2 mutant larvae (y,w; imp-a2D14; +; +) stained as in (A–E). As in wild-type larvae, synaptic
vesicle proteins and Fas II properly localize at the NMJ in importin-a2 mutants. Scale bar = 10 mm. (K–M) Quantification of the intensity of
immunoreactivity for Syt I (K), CSP (L) and Fas II (M) in wild-type and importin-a2 mutant larvae. No statistically significant differences were observed.
In all cases, p.0.4, n = 6 animals, 12 NMJs and the error bars indicate S.E.M.
doi:10.1371/journal.pone.0015223.g004
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tracts that run lengthwise through the nerve cord as well as a band

of axons that cross the midline in each segment (Figure 5A). In

importin-a2 mutants, Fas III immunoreactivity was present on both

the lateral axon tracts and crossing axons. However, the midline

crossings were frequently discontinuous (Figure 5B, asterisks),

appearing broken at the center. Whereas 75% of wild-type larvae

had no apparent discontinuities of these commissural tracts and

the remaining 25% had only a single discontinuity (Figure 5C), all

importin-a2 larvae had at least one such defect and 89% had 2 or

more (Figure 5C). A maximum of 5 discontinuities were observed

in a single mutant animal. The phenotype could be rescued by

restoring expression of Importin-a2 in neurons using the elav-

GAL4 driver: 67% of these animals had no axon tract errors while

33% had one defect. Thus, development of proper axon

commissures in the CNS requires a neuronal function of

Importin-a2.

importin-a2 Mutant Larvae Display Defects in Muscle
Patterning

Importin-a2 is present in muscle nuclei and is required for

normal postsynaptic development by mediating a synapse-to-

nucleus Fz2 signal [26]. Larvae mutant for importin-a2, however,

also have defects in the patterning of the larval body-wall muscles.

Wild-type larvae possess a nearly invariant muscle pattern with the

ventral longitudinal muscles 7, 6, 12 and 13 lying closest to and

running parallel with the midline [47] while muscle 5 lies obliquely

to these (Figure 6A). In importin-a2 mutants, several types of errors

were evident in the organization of the muscle fibers (Table 1).

Most frequently, we observed a defect in muscles 6 and 7 whereby

instead of running parallel, the two crossed, each appearing to

insert improperly at the insertion site of the other (Figure 6B).

Additionally, we observed two types of defect in muscle 5: either

the muscle was abnormally thin (Figure 6B, arrow) or absent

altogether (Figure 6C). We also observed instances of branched

muscle fibers (Figure 6D). Unlike the other defects that were

characteristic of a particular muscle or pair of muscles, the

branching of fibers was observed at several positions. Although the

muscle defects were quantified in the homozygous imp-a2D14

larvae, they were also observed in other allelic combinations of

importin-a2 mutants (data not shown). In aggregate, although no

deviations from the normal pattern were observed in 96 wild-type

segments examined, a quarter of the 228 mutant hemisegments

contained defects and every importin-a2 mutant larva had at least 1

defective hemisegment (Table 1). Expressing Importin-a2 in

muscles with the 24B-GAL4 driver largely reversed the patterning

defects, but neuronal expression via elav-GAL4 did not (Table 1).

The propensity to error in muscle patterning thus implies a

function of Importin-a2 in muscle cells prior to the previously

described requirement for this importin in the growth of the

subsynaptic membranes [26].

Discussion

We have identified an array of consequences of the loss of

importin-a2 in Drosophila nerve and muscle. Rather than preventing

all nuclear import and causing cell lethality, importin-a2 mutants

display specific defects in active zone development, central axon

projections, and muscle patterning. These defects arise in the

context of larvae whose overall patterning and development

appear to be normal.

Previous work suggested roles for Drosophila Importin-a2 in the

nervous system based on transcript expression [21]. In this study,

we observe abundant expression of Importin-a2 protein in a subset

of larval neurons (Figure 1). Lower levels of expression of

Figure 5. Axon Commissure Defects at the Midline of importin-
a2 Mutants. (A–B) Representative confocal projections of the ventral
nerve cord midline in both wild-type (y,w; FRT42D; +; +) and importin-a2
mutant (y,w; imp-a2D14; +; +) third-instar larvae stained with antibodies
to Fasciclin III. In wild-type larvae, Fas III antibodies stained the central-
most longitudinal tracts and commissural axons crossing the midline.
While both the longitudinal tracts and commissures were visible in
importin-a2 mutants, there were frequent discontinuities in the staining
of the commissures (red asterisks). Scale bar = 50 mm. (C) Quantification
of larvae possessing no errors, single abnormal commissures or multiple
abnormalities in wild-type controls, importin-a2 mutant larvae, and
importin-a2 mutant larvae where neuronal expression has been
restored (y,w; imp-a2D14; elav-GAL4/UASt-Importin-a2; +). For each
genotype, n$20 animals.
doi:10.1371/journal.pone.0015223.g005
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Importin-a2 are likely to be present elsewhere in the nervous

system; the location of the intensely labeled neurons of the ventral

nerve cord do not correspond to the motoneurons innervating

muscles 6 and 7 where altered active zone density was observed in

the mutants. Although this phenotype might have arisen from a

neurohumoral influence on synapse development, low levels of

Importin-a2 in the motoneurons may be responsible for it in a cell

autonomous fashion.

Neuronal functions of the Importin-a family have been reported

recently in several systems [9,10,11,13], and like the importin-a2

phenotypes described here, can entail regulation of the synapse. In

particular, studies of Aplysia and hippocampal neurons indicated

an essential role of an Importin-a in long-term synaptic plasticity

[9,10,48]. The phenotype at the Drosophila NMJ indicated a role in

controlling the density of release sites and their accompanying

postsynaptic receptor clusters. While there were no obvious

phenotypes involving synaptic morphology and bouton number

at the neuromuscular junction (Figure 2), active zone number

increased by approximately 40% over wild-type (Figure 3). The

additional active zones were accompanied by synaptic vesicle

markers and arose in boutons with normal size and morphology. A

number of molecules have been shown to decrease active zone

density and disrupt receptor apposition [40,41,42], but they have

not yet indicated a pathway involving nuclear import. Therefore,

it remains unclear how active zone density is controlled by

Importin-a2. Because the phenotype could be rescued by neuronal

Figure 6. Muscle Patterning Defects in importin-a2 Mutants. (A) Representative confocal image of a wild-type (y,w; FRT42D; +; +) larval muscle
field stained with Texas Red-conjugated phalloidin. Muscles are labeled according to Crossley [47]. This represents a single hemisegment between
the midline (at left of image) and muscle 4. Muscle 8 from the next anterior hemisegment is also visible. (B) An importin-a2 mutant (y,w; imp-a2D14; +;
+) with incorrect positioning of muscles 6 and 7 (arrowheads). In wild-type larvae (A), these muscles are parallel but they cross in some importin-a2
mutants. Also, an abnormally thin muscle 5 is evident in this example (arrow). (C) Representative example of an importin-a2 mutant where muscle 5 is
absent but other muscles are normal. (D) Representative example of an importin-a2 mutant in which an abnormally branched fiber has formed
(arrowhead). In this case, the branch derives from muscle 6. These four categories of defect were observed in importin-a2 mutants. Scale bar = 50 mm.
doi:10.1371/journal.pone.0015223.g006
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expression of Importin-a2, a reasonable hypothesis is that some

unknown cargo must be imported to limit active zone density at

the synaptic terminal. The density of glutamate receptor clusters in

the muscle was also restored by neuronal expression of Importin-

a2; the distribution of the receptors is therefore an indirect

consequence of the change in presynaptic active zones.

In addition to these peripheral defects, mutants in importin-a2

also showed defects in the organization of the central nervous

system. Specifically, the axon tracts that cross the midline of the

CNS and express the cell adhesion molecule Fasciclin III [49]

were frequently interrupted (Figure 5). Our analysis detected only

major changes in the formation of these projections; if individual

axons failed to cross the midline, they would not have been

counted and thus the phenotype may be more severe than our

analysis revealed. The exact identity of these axons is unknown,

but they may be the motoneurons RP1, 3, 4, and 5, as these are

known to express Fas III [32,49]. Defects in crossing motor axons

can arise from a number of sources including axon guidance

receptors [50,51,52], receptor tyrosine phosphatase activity [53]

and cytoskeletal modulation [54,55]. These pathways may require

communication between the crossing axon and the cell nucleus to

regulate gene transcription in a manner that favors axon

outgrowth and enables the cell to properly respond to repulsive

and attractive guidance cues. In addition, proper guidance

through the commissure requires interactions with signals at the

midline [56]. In this context, it is interesting that a subset of

midline neurons were highly immunoreactive for Importin-a2.

Thus the defect may not arise autonomously in the crossing axons

but rather in signaling pathways in the midline neurons.

The stereotypical patterning and unique identification of each

muscle in Drosophila larval body walls [47] further allowed us to

recognize multiple cases of incorrect patterning in the importin-a2

mutants. The importance of signaling pathways in establishing the

normal pattern has been demonstrated previously by mutations in

the toll/dorsal pathway and in dystroglycan and POMT1. The

phenotypes of these mutants and others entail muscle duplications,

absent muscles, branched muscles and errors in muscle insertion

[57,58,59,60,61,62]. All of these defects were observed in importin-

a2 mutants and arose from the loss of Importin-a2 expression in

the muscle (Figure 6 and Table 1). While the mechanisms behind

these patterning errors are unclear, Toll signaling at the plasma

membrane is known to bring about changes in nuclear

transcription [63]. It is also possible that Importin-a2 is involved

in maintaining muscle integrity; mutations in dystroglycan and

POMT1 that affect larval muscle integrity also display patterning

defects akin to and at similar frequencies to those of the importin-

a2 mutants [62].

In current models of nuclear import, Importin-a binds cargo

molecules destined for nuclear entry [64]. Our findings that

Drosophila Importin-a2 is required in multiple cell types for distinct

aspects of development but is not required for general develop-

ment or cell viability may reflect a high degree of cargo specificity

for this Importin-a [65,66]. In addition, the cell-type specific

expression of Importin-a isoforms may contribute to the specificity

of the phenotype [53,54]. Limited redundancy among Importin-a
isoforms has been reported [15], further supporting a model in

which they are specialized for particular cargos. As such, loss-of

function phenotypes for each Importin-a will be limited and

distinct, as we have observed for importin-a2. The identification of

those phenotypes is a critical step towards identifying the

mechanisms and cargo molecules through which the importins

contribute to cellular processes.

Supporting Information

Figure S1 Active Zone Density is Normal in importin-a1
Mutants. (A – C) Representative confocal images of larval NMJs

from muscle 4 stained with antibodies against Bruchpilot

(magenta), GluRIIC (green) and HRP (blue) in wild-type control

animals (y,w; FRT42D; +; +). Each Brp punctum is closely apposed

by a corresponding GluRIIC punctum. (D – F) Representative

confocal images of importin-a1 mutants (w; +; Df(3L) a1S1; +)

stained as above. No changes in active zone apposition are

apparent. Scale bar = 10 mm. (G – J) Histograms of NMJ area

(G), Brp density (H), GluRIIC density (I) and the ratio of Brp to

GluRIIC (J) at wild-type and importin-a1 mutants NMJs at muscle

4. No significant changes in these parameters are evident. n = 12

NMJs for each genotype; error bars represent SEM.

(TIF)
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Table 1. Frequency of Muscle Patterning Errors in importin-a2 Mutant Larvae.

Genotype Wild-Type imp-a2D14
imp-a2D14; elav-GAL4/UAS-Imp-a2
(Neuron Restore)

imp-a2D14; 24B-GAL4/UAS-Imp-a2
(Muscle Restore)

Attachment Errors 0 (0%) 29 (13%) 8 (8%) 2 (2%)

Missing Muscles 0 (0%) 18 (8%) 6 (6%) 0 (0%)

Branched Muscle 0 (0%) 8 (4%) 20 (19%) 2 (2%)

Thin Muscles 0 (0%) 5 (2%) 6 (6%) 0 (0%)

Total Errors 0 (0%) 60 (26%) 40 (38%) 4 (4%)

Total Hemisegments 96 228 105 112

Quantification of muscle patterning errors from third-instar larvae stained with TxRed-conjugated phalloidin. Percents are the number of errors observed/total
hemisegments scored
n.8 animals for all genotypes.
doi:10.1371/journal.pone.0015223.t001
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