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Abstract

Background: In Africa, infant susceptibility to Plasmodium falciparum malaria increases substantially as fetal hemoglobin
(HbF) and maternal immune IgG disappear from circulation. During the first few months of life, however, resistance to
malaria is evidenced by extremely low parasitemias, the absence of fever, and the almost complete lack of severe disease.
This resistance has previously been attributed in part to poor parasite growth in HbF-containing red blood cells (RBCs). A
specific role for maternal immune IgG in infant resistance to malaria has been hypothesized but not yet identified.

Methods and Findings: We found that P. falciparum parasites invade and develop normally in fetal (cord blood, CB) RBCs,
which contain up to 95% HbF. However, these parasitized CB RBCs are impaired in their binding to human microvascular
endothelial cells (MVECs), monocytes, and nonparasitized RBCs – cytoadherence interactions that have been implicated in
the development of high parasite densities and the symptoms of malaria. Abnormal display of the parasite’s cytoadherence
antigen P. falciparum erythrocyte membrane protein-1 (PfEMP-1) on CB RBCs accounts for these findings and is reminiscent
of that on HbC and HbS RBCs. IgG purified from the plasma of immune Malian adults almost completely abolishes the
adherence of parasitized CB RBCs to MVECs.

Conclusions: Our data suggest a model of malaria protection in which HbF and maternal IgG act cooperatively to impair the
cytoadherence of parasitized RBCs in the first few months of life. In highly malarious areas of Africa, an infant’s
contemporaneous expression of HbC or HbS and development of an immune IgG repertoire may effectively reconstitute
the waning protective effects of HbF and maternal immune IgG, thereby extending the malaria resistance of infancy into
early childhood.
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Introduction

In Africa, resistance to Plasmodium falciparum malaria in the first

few months of life is evidenced by extremely low parasitemias, the

absence of fever, and the almost complete lack of severe disease

[1]. Infant susceptibility to malaria then increases substantially as

fetal hemoglobin (HbF) and maternal immune IgG disappear from

circulation. Fetal red blood cells (RBCs), which contain HbF

(a2c2), have higher affinity for oxygen than adult RBCs, which

contain hemoglobin A (HbA; a2b2), and this facilitates transfer of

oxygen from the maternal to the fetal circulation. The switch from

production of c to b globin begins in utero and results in the linear

decline of HbF in the fetal RBC population, such that HbF levels

of 50–95% at birth decline to ,5% by three months [2]. Levels of

maternal IgG, which protect the mother from high-density

parasitemia and malaria symptoms, are similar in maternal and

cord blood at birth [3], and can be expected to also decline

markedly in infants during this time period.

Infant resistance to malaria has previously been attributed to poor

parasite growth in HbF-containing RBCs. While several studies

have established that P. falciparum parasites readily invade cord

blood (CB) RBCs [4,5,6], the presence of HbF in three RBC types

(CB, infant, and adult hereditary persistence of fetal hemoglobin,

HPFH) was believed to restrict parasite growth [4,5,6,7]. Biochem-

ical explanations for these findings were provided by studies that

concluded that the ability of HbF-containing RBCs to handle the

oxidative stress imposed by developing parasites is impaired [7], or

that HbF is inefficiently digested by P. falciparum hemoglobinases [8].

While malaria resistance in infants has also been attributed to IgG

acquired from immune mothers, support for this hypothesis is

lacking. For example, most studies have failed to detect positive

correlations between levels of parasite-specific maternal antibodies

and measures of disease susceptibility in infants, including time to

first parasite infection, density of parasites in the blood, and

incidence of febrile episodes [9].
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To improve our understanding of malaria pathogenesis and

immunity, we sought to identify the mechanisms that confer such

high levels of malaria resistance to infants. Our findings that P.

falciparum parasites invade and develop normally in HbF-

containing RBCs suggested an alternative mechanism of malaria

resistance by HbF. We found that HbF impairs the binding of

parasitized RBCs to human microvascular endothelial cells

(MVECs), monocytes, and nonparasitized erythrocytes – cytoad-

herence interactions that contribute to the development of high

parasite densities and the symptoms of malaria. Abnormal display

of the parasite’s cytoadherence antigen P. falciparum erythrocyte

membrane protein-1 (PfEMP-1) on HbF RBCs correlates with

these findings and is similar to that on HbC and HbS RBCs

[10,11]. We also found that IgG purified from the plasma of

immune Malian adults markedly reduces the adherence of

parasitized CB RBCs to MVECs. Taken together, these data

suggest a model of malaria protection in which HbF and maternal

PfEMP-1-specific IgG act cooperatively to impair the cytoadher-

ence of parasitized RBCs in the first few months of life. HbS and

HbC may thus have been naturally selected for their ability to

reconstitute the waning protective effects of HbF in highly

malarious areas of Africa, where IgG repertoires specific for

PfEMP-1 variants are rapidly acquired.

Methods

Ethics Statement
Blood collections were approved by the Institutional Review

Boards of the National Institute of Allergy and Infectious Diseases,

the National Heart, Lung and Blood Institute, the Johns Hopkins

School of Medicine, and the Ethics Committee of the Faculty of

Medicine, Pharmacy, and Odontostomatology at the University of

Bamako. All volunteers gave written informed consent.

Erythrocytes
Adult HbA-containing (AA) and CB RBC samples were drawn

into VacutainersH containing acid-citrate-dextrose anticoagulant.

CB samples were obtained from term deliveries and CB

hemolysates contained 79%–100% HbF. After removing buffy

coat leukocytes, RBCs were washed three times with RPMI-1640

(Invitrogen, Carlsbad, CA) and stored at 50% hematocrit at 4uC
prior to use (within 4–36 h of blood draw). Hemoglobin types were

determined by HPLC (D-10 Instrument, Bio-Rad, Hercules, CA).

In all experiments, AA and CB (or HPFH) RBCs were

simultaneously obtained and processed in parallel. The HPFH

RBCs (containing 100% HbF) were obtained from a single adult

donor.

Parasite culture
P. falciparum lines (3D7, 7G8, FVO, GB4, MC/R+, TM284,

FCR-3, A4tres) were cultured in O+ RBCs at 5% hematocrit in

complete medium (CM; RPMI-1640 supplemented with 25 mg/

mL HEPES, 2 mg/mL sodium bicarbonate, 50 mg/mL gentami-

cin, and either 10% heat-inactivated human AB+ serum or 0.5%

Albumax II (Gibco-BRL, Grand Island, NY)). Knobby parasite

lines were maintained by periodic gelatin flotation. Cultures were

maintained at 37uC in a humidified atmosphere of 5% CO2 in air

and media were changed every 8–24 h. Trophozoite-infected

RBCs containing paramagnetic hemozoin were enriched to

.95% purity by magnetic separation (Miltenyi Biotec, Auburn,

CA), inoculated into AA and CB (or HPFH) RBC samples, and

cultured at 1–2% hematocrit as above. In all experiments,

parasitized RBCs were assayed after a single cycle of invasion to

the ring stage (,18 h) or development to the trophozoite stage

(,40 h). To avoid the confounding effects of in vitro RBC

senescence on parasite invasion and development, we did not

monitor parasite growth in subsequent cycles.

Invasion and development assays
Mature parasitized RBCs were inoculated into 5 mL CM

containing 56108 AA or CB erythrocytes. The numbers of ring

parasitized RBCs per 1000 RBCs were counted at 18 h. Five P.

falciparum lines (7G8, FVO, GB4, MC/R+, TM284) were tested in

4 AA and 6 CB RBC samples. At ,40 h, mature parasitized

RBCs were stained with ethidium bromide (2 mg/mL) at room

temperature for 30 min and quantified by flow cytometry.

Endothelial cell adherence assay
Adult dermal human microvascular endothelial cells (MVECs;

Cambrex Biosciences, Walkersville, MD) were maintained in the

manufacturer’s EGM2-MV medium and grown on LabTek CC-2

coated 8-well chamber slides (Nalge Nunc International, Roches-

ter, NY) to ,50% confluency at 37uC in a humidified atmosphere

of 5% CO2. Mature parasitized RBCs were adjusted to 5–20%

parasitemia and 0.5–1% hematocrit by the addition of nonpar-

asitized RBCs in binding media (BM; RPMI-1640, 0.5% BSA,

pH 6.7). Adherent endothelial cells were washed with BM and

then incubated with 150 mL of the parasitized RBC suspension for

1 h at ambient temperature with constant orbital agitation

(100 rpm). In some experiments, these incubations were carried

out in the presence of various concentrations of purified non-

immune and immune IgG. After parasite suspensions were

removed from each well, slides were washed by dipping 4 times

in BM at 37uC, fixed in 2% glutaraldehyde at ambient

temperature for 2 h, and stained in 10% Giemsa for 60 min. In

each experiment, the number of parasitized RBCs bound to ,700

endothelial cells was counted from duplicate wells. These counts

were then expressed as the number of parasitized RBCs bound to

100 MVECs.

Purification of IgG from human plasma
Serum was obtained from non-immune or immune individuals

(i.e., Malian adults with ‘disease-controlling immunity’). IgG was

purified from pooled serum samples by Protein G PLUS gel

(Pierce, Rockford, IL) according to the manufacturer’s directions.

Eluted IgG was dialyzed in RPMI-1640, concentrated to

approximately 80 mg/mL, and sterilized with a 0.22 mm filter

(Millipore, Billerica, MA). Purified IgG was pre-adsorbed with

human A positive and B positive RBCs (25 mL of packed

erythrocytes per 1 mL of sample) and then stored at 4uC for

immediate use or at 280uC. IgG was used in cytoadherence assays

at final concentrations of 0.5–10 mg/mL.

Monocyte adherence assay
CD14+ monocytes (Cambrex Biosciences) were plated onto

CC2 Lab-Tek chamber slides (Nalge Nunc International) at

46105 cells per well and cultured for 48 h in RPMI 1640

containing 25 mM HEPES, 50 mg/mL gentamicin, and 10% fetal

bovine serum at 37uC in an atmosphere of 5% CO2. AA and CB

RBCs infected with P. falciparum trophozoites (3D7, A4tres, FCR-

3) were purified by magnetic separation, adjusted to 10–15%

parasitemia and 1% hematocrit as previously described. Adherent

monocytes were washed with binding media and incubated with

150 mL of the parasitized RBC suspension for 1 h at ambient

temperature with gentle orbital agitation. The parasite suspension

was removed from each well and the slides were gently washed by

dipping four times in binding media. Slides were dried and stained
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using Hema 3 (Fischer Scientific). Adherence was measured by

counting the number of parasitized RBCs bound to a minimum of

700 monocytes from duplicate wells. These counts were then

expressed as the number of parasitized RBCs bound to 100

monocytes.

Rosetting
MC/R+ and TM284 parasites were cultured in AA and CB

RBCs as above to 5% to 10% parasitemia. RBCs containing

mature parasites were identified by their refractive hemozoin

pigment. Rosettes were identified as parasitized RBCs to which

three or more nonparasitized RBCs closely adhered. The rosette

frequency was determined by dividing the total number of rosettes

by .200 parasitized RBCs examined.

Flow cytometry
Rat or rabbit polyclonal antisera raised against PfEMP-1

variants expressed by the P. falciparum lines FVO, MC/R+, and

A4tres were kindly provided by Morris Makobongo and Dror

Baruch (Malaria Vaccine Development Branch, NIAID). Samples

of RBCs containing synchronized trophozoites (1.56106 cells; 1%

parasitemia) were stained with various dilutions of antiserum in

FACS staining buffer (FSB; PBS, 2% FBS, 0.1% sodium azide) for

45 min at room temperature and washed twice with FSB. Samples

were then incubated with Alexa 488-conjugated anti-rat or anti-

rabbit IgG (Molecular Probes, Inc., Eugene, OR) and ethidium

bromide (2 mg/mL) at room temperature for 30 min and washed

twice with FSB. A FACSort instrument (Becton-Dickinson, San

Jose, CA) and FlowJo software (Tree Star, Inc., Ashland, OR)

were used to acquire and analyze 250,000 to 500,000 events from

each sample.

Surface immunofluorescence/confocal microscopy
Parasitized RBCs (5 ml packed cell volume) were added to 50 ml

rat polyclonal antiserum (1:10 dilution, MC/R+; 1:500 dilution,

FVO) for 1 h at ambient temperature and washed. Bound

antibody was detected with Alexa 488-conjugated anti-rat IgG

(Molecular Probes, Inc.). Images were collected using a TCS-SP2

AOBS confocal microscope (Leica Microsystems, Wetzlar, Ger-

many) using a 63X oil immersion objective NA 1.4, zoom 6. The

confocal pinhole was set to 0.9 Airy units to ensure maximum

resolution. Alexa 488 fluorescence was excited using an argon laser

at 488 nm. 3-dimensional reconstructions were made using

sequential sections through the sample with a z increment of

0.12 mm. Images were deconvoluted and processed using Leica

TCS (version 2.1374), Imaris 4.1 (3-D reconstructions) (Bitplane

AG), Huygens Essentials (deconvolution) (SVI) and Adobe Photo-

shop CS (Adobe Systems).

Atomic force microscopy
Samples of parasitized RBCs for atomic force microscopy

(AFM) imaging were prepared as described [11,12]. A Bioscope

AFM (Veeco Instruments, Santa Barbara, CA) on a wide-field

Axiovert 200 fluorescence microscope (Carl Zeiss, Inc., Thorn-

wood, NY) was optimized to image the surface topography of

RBCs and to identify the parasite stage within an individual AFM-

imaged RBC. The X and Y piezoelectric scanners of the Bioscope

AFM were disconnected. A custom built closed-loop XY scanner

stage (nPoint, Inc., Madison, WI) was used to minimize scanning

artifacts and thermal drift of the scanner for improved image

accuracy. AFM was performed in tapping mode in air using

Nanosensors pointprobe tips (Nanosensors, Switzerland) with a

cantilever resonance frequency of 327–397 kHz. Topographic and

error signal (amplitude) images were collected simultaneously.

Parasites were stained with YOYO-1 fluorescent nucleic acid

staining reagent (Molecular Probes, Inc.). Bright field and

fluorescent images were collected with a chilled CCD video

camera (Model C5985, Hamamatsu Photonic Systems, Bridge-

water, NJ). Image-Pro Plus version 5.0 (Media Cybernetics, Silver

Spring, MD) was used to merge these images to allow the

unambiguous identification of the parasite stage.

Transmission electron microscopy
Parasitized RBCs were processed as described [13]. Briefly,

samples were fixed with 2.5% glutaraldehyde in 0.05 M phosphate

buffer, pH 7.4 containing 4% sucrose for 2 h and then postfixed in

1% osmium tetroxide for 1 h. After a 30-min en bloc stain with 1%

aqueous uranyl acetate, the cells were dehydrated in ascending

concentrations of ethanol and embedded in Epon 812. Ultrathin

sections were stained with 2% uranyl acetate in 50% methanol

and lead citrate and then examined in a Zeiss CEM902 electron

microscope (Oberkochen, Germany).

Statistical analysis
In assays of invasion, development, cytoadherence, and

rosetting, results from parasitized AA and CB (or HPFH) RBCs

were compared using the non-parametric Mann-Whitney test

(GraphPad Software, San Diego, CA). PfEMP-1 levels on the

surface of parasitized AA and CB erythrocytes were compared

using the paired t test. In all comparisons, 2-tailed P values were

calculated.

Results

P. falciparum parasites invade and develop normally in
HbF-containing RBCs

To investigate how HbF might impair parasite multiplication,

we examined the invasion and development of five P. falciparum

lines in AA and CB RBCs. Approximately 18 hours after

infection, the number of ring-infected RBCs per 1000 RBCs

(counted by light microscopy) did not differ significantly between

AA and CB RBCs (median (range); 20 (7–86) for AA samples vs. 22

(4–61) for CB samples, P = 0.68, N = 30) (Fig. 1a, Table S1).

Approximately 24 hours later, the number of trophozoite-infected

RBCs per 1000 RBCs (quantified by flow cytometry) did not differ

significantly between CB and AA RBCs (median (range); 16 (5–77)

for AA samples vs. 18 (5–46) for CB samples; P = 0.69, N = 23)

(Fig. 1b, Table S1). We observed neither morphological

abnormalities nor growth restriction as ring forms matured into

trophozoites and schizonts, even in RBCs containing 100% HbF

from an adult with HPFH (Figs. 1c, d). Using transmission

electron microscopy, we found that .99% of 480 trophozoite-

infected CB RBCs appeared viable (i.e., there was neither nuclear

condensation nor loss of membranous organelle integrity) (not

shown). These data indicate that HbF-containing RBCs support

robust invasion and development of P. falciparum.

HbF impairs the cytoadherence of P. falciparum-infected
RBCs

P. falciparum expresses PfEMP-1 cytoadherence proteins and

concentrates them in knob-like protrusions on the RBC surface,

where they mediate binding to a variety of host cells. The

sequestration of parasitized RBCs in microvessels (i.e., ‘sequestra-

tion’) is associated with life-threatening manifestations of malaria,

including the clinical syndrome of cerebral malaria [14,15,16,17].

Sequestration is believed to contribute to high parasite densities by

Fetal Hemoglobin and Malaria
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enabling large numbers of mature parasitized RBCs to avoid

clearance from the blood stream by the spleen [18]. The importance

of sequestration to parasite survival is suggested by animal studies in

which the spleen modulates the in vivo sequestration and in vitro

cytoadherence properties of P. falciparum-infected RBCs [19,20],

and by studies showing that mature parasitized RBCs are efficiently

removed by ex vivo-perfused human spleens [21]. Sequestration not

only contributes to the development of high parasite densities but

also leads to microvascular inflammation and endothelial dysfunc-

tion [22,23,24].

Because sequestration is linked to parasite multiplication and

microvascular inflammation, we tested P. falciparum-infected RBCs

for their adherence to MVECs, which express the major host

adherence receptor CD36. Relative to parasitized AA RBCs,

parasitized CB RBCs showed an 82% reduction in adherence to

MVECs (median (range) number of parasitized RBCs per 100

MVECs; 205 (21–1657) for AA samples vs. 37 (0.1–614) for CB

samples, P = 0.0013, N = 24) (Figs. 2a, b, Table S1). Parasitized

HPFH RBCs (containing 100% HbF) showed a 88% reduction in

adherence to MVECs (median (range); 100 (19–1228) for AA

samples vs. 12 (0.4–13) for HPFH samples, P = 0.10, N = 3)

(Fig. 2a). These data suggest that HbF may reduce parasite

multiplication rates and dampen microvascular inflammation in

vivo by weakening the adherence of parasitized RBCs to MVECs.

The interaction between PfEMP-1 on parasitized RBCs and

CD36 on monocytes leads to monocyte activation and monokine

production in vitro [25,26,27]. Monocyte activation during P.

falciparum infection is believed to produce elevated levels of TNF

and other monokines implicated in the pathogenesis of malaria

[28]. To explore whether HbF might impair monocyte activation,

we tested the effect of HbF on the adherence of parasitized RBCs

to monocytes. We found that parasitized CB RBCs showed a 28%

reduction in adherence to monocytes relative to parasitized AA

RBCs (median (range) number of parasitized RBCs per 100

monocytes; 180 (78–188) for AA samples vs. 129 (17–148) for CB

samples, P = 0.200, N = 7) (Fig. 2c, Table S1). The level of

reduced adhesion of parasitized CB RBCs to monocytes is less

than that to MVECs. This is probably due to the higher levels of

CD36 on monocytes compared to MVECs (unpublished data).

These data suggest that HbF may weaken the interaction between

parasite RBCs and blood monocytes in vivo.

Rosette formation, the attachment of nonparasitized RBCs to

parasitized RBCs, is also PfEMP-1-mediated and is associated with

malaria severity in Africa [29,30]. Rosettes are proposed to

impede microvascular blood flow and to contribute to local

hypoxia-induced inflammation. In Saimiri monkeys, rosettes have

also been associated with elevated parasite multiplication rates in

vivo [31]. In this setting, rosette formation may enable short-lived

merozoites to efficiently recognize and invade suitable host RBCs

upon schizont rupture. To test how HbF affects this pathogenetic

interaction, we infected RBCs with rosetting P. falciparum lines and

cultured them for ,40 hours to allow for maturation to the

trophozoite stage, which expresses PfEMP-1. We then determined

the proportion of 200 parasitized RBCs that bound three or more

nonparasitized RBCs (i.e., rosette frequency) and found that

rosette frequencies were 25% lower in parasitized CB RBCs than

Figure 1. Invasion and development of P. falciparum in RBCs containing HbF. a, P. falciparum invasion of RBCs. The numbers of ring-infected
RBCs per 1000 AA or CB RBCs are shown. Median values are indicated by horizontal bars. b, P. falciparum development in RBCs. The numbers of
trophozoite-infected RBCs per 1000 AA or CB RBCs are shown. Median values are indicated by horizontal bars. Results in a and b were obtained from
5 parasite lines (7G8, GB4, MC/R+, FVO, TM284) and multiple blood donors (4AA, 6CB) (not all combinations tested). c, d, The photomicrographs show
mature parasites in AA (c) and HPFH (d) RBCs (containing 100% HbF) that are morphologically normal and synchronously developed.
doi:10.1371/journal.pone.0014798.g001
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in parasitized AA RBCs (median (range) rosette frequency; 52%

(45%–60%) for AA samples vs. 39% (4%–47%) for CB samples,

P = 0.0003, N = 12) (Fig. 2d, Table S1). These data suggest that

HbF impairs rosetting, which may reduce parasite multiplication

rate and the degree of microvascular obstruction in vivo.

Abnormal PfEMP-1 and knob display on the surface of
P. falciparum-infected RBCs

Reduced expression of PfEMP-1 on the surface of parasitized

RBCs containing the malaria-protective HbC or HbS mutations is

associated with impaired cytoadherence [10,11]. Using specific

antisera in a flow cytometry assay, we found that parasitized CB

RBCs had a 40% reduction in surface PfEMP-1 levels relative to

parasitized AA RBCs (mean 6 SEM; 1111693 for AA samples vs.

674656 for CB samples, P,0.0001, N = 48) (Fig. 2e, Table S1).

We were unable to detect PfEMP-1 on the surface of parasitized

HPFH RBCs containing 100% HbF (Fig. 2f). We also used an

immunofluorescence assay (IFA) to detect PfEMP-1 on the surface

of parasitized CB RBCs. By confocal microscopy, we found that

parasitized AA RBCs had a relatively homogeneous distribution of

PfEMP-1 (Fig. 3a). Signals from parasitized CB RBCs, however,

were heterogeneous, with some cells showing AA-like patterns

(Fig. 3b) and others showing dim and uneven patterns (Fig. 3c)

reminiscent of HbC and HbS RBCs [10,11].

PfEMP-1 molecules are concentrated on knob-like protrusions

that mediate contact between parasitized RBCs and MVECs or

Figure 2. Cytoadherence and surface PfEMP-1 levels of parasitized RBCs containing HbF. a, Adherence of parasitized RBCs to MVECs. The
numbers of parasitized AA, CB, and HPFH RBCs adhering to 100 MVECs are shown. Median values are indicated by horizontal bars. Results were
obtained from 4 parasite lines (3D7, 7G8, A4tres, FCR-3), multiple blood donors (7AA, 10CB, 1HPFH), and 5 endothelial cell lots (not all combinations
tested). b, The photomicrograph shows the adherence of parasitized AA RBCs to MVECs. c, Adherence of parasitized RBCs to blood monocytes. The
numbers of parasitized AA and CB RBCs adhering to 100 monocytes are shown. Median values are indicated by horizontal bars. Results were obtained
from 3 parasite lines (3D7, A4tres, FCR-3), multiple blood donors (4AA, 7CB), and 4 monocyte donors (not all combinations tested). d, Rosette
frequencies of parasitized RBCs. Median values are indicated by horizontal bars. Results were obtained from 2 parasite lines (MC/R+, TM284) and
multiple blood donors (4AA, 7CB) (not all combinations tested). e, PfEMP-1 expression levels (median fluorescence intensities, MFI) on the surface of
parasitized RBCs. Mean values are indicated by horizontal bars. Results were obtained from 2 parasite lines (MC/R+, FVO), multiple blood donors (4AA,
7CB), and various concentrations of 2 antisera. f, Flow cytometry analysis of PfEMP-1 expression on AA (left panel) and HPFH (right panel) RBCs
infected with the FVO P. falciparum line. Parasitized RBCs reactive to PfEMP-1-specific antiserum appear as a clustered population in the upper right
quadrant (left panel).
doi:10.1371/journal.pone.0014798.g002
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monocytes [14,27]. Since PfEMP-1 proteins are anchored in

knobs, alterations in knob assembly can affect the amount and

distribution of PfEMP-1 [10,11,32]. To determine whether HbF is

associated with aberrant knob morphology and distribution, we

examined the surface of parasitized CB RBCs. Atomic force

micrographs showed populations of parasitized CB RBCs

expressing fine, regularly distributed knobs (Fig. 3d) characteristic

of parasitized AA RBCs, and populations expressing large, widely

separated knobs (Fig. 3e) reminiscent of HbC and HbS RBCs

[11,12]. The concordant appearance of these knob distributions

with the patterns of IFA signals (Figs. 3b, c) is consistent with

widely dispersed anchoring and irregular concentrations of

PfEMP-1 at the surface of parasitized CB RBCs. Transmission

electron micrographs of parasitized CB RBCs confirmed the

presence of normal (Fig. 3f) and abnormal (Fig. 3g) knob

morphologies. Knobs were found to be abnormal or entirely

absent on the surface of parasitized HPFH RBCs (Figure S1).

Immune IgG impairs the cytoadherence of
P. falciparum-infected RBCs

‘Disease-controlling immunity,’ which eventually develops in

adults residing permanently in malaria-endemic areas of Africa,

enables individuals to tolerate P. falciparum parasitemias without

developing the symptoms of malaria. Since disease-controlling

immunity to malaria is associated with the development of

PfEMP-1-specific antibodies [33], we hypothesized that PfEMP-

1-specific IgG works cooperatively with HbF to impair cytoad-

herence in vivo. To explore this possibility, we purified IgG from

pooled plasma obtained from adult residents of a malaria-endemic

area of Mali. The preparations of immune IgG agglutinated

parasitized RBCs (not shown), indicating that they recognized

PfEMP-1 (and perhaps other proteins) expressed on the surface of

these cells. Relative to non-immune IgG, immune IgG (at

physiologically-relevant levels of 10 mg/mL) essentially abrogated

the binding of parasitized AA and CB RBCs to MVECs (median

(range) number of parasitized RBCs per 100 MVECs; 472.5 (334–

712) vs. 13 (9–23) for AA samples, P = 0.029, N = 4; 242 (129–378)

vs. 9.5 (6–19) for CB samples, P = 0.029, N = 4) (Fig. 4a, Table
S2). To mimic the waning concentrations of maternal IgG in the

infant circulation, we also performed cytoadherence assays in the

presence of 0.5–6 mg/mL immune IgG. Relative to non-immune

IgG, immune IgG (at 0.5–6 mg/mL) reduced the binding of

parasitized AA and CB RBCs to MVECs (median (range) number

of parasitized RBCs per 100 MVECs; 169.5 (105–448) vs. 106 (59–

189) for AA samples, P = 0.18, N = 6; 79.5 (43–218) vs. 31.5 (8–65)

for CB samples, P = 0.04, N = 6) (Fig. 4a, Table S2). These data

indicate that lower concentrations (,10 mg/mL) of immune IgG

are able to effect greater reductions in the cytoadherence of

parasitized CB RBCs than parasitized AA RBCs, suggesting that

PfEMP-1-specific IgG works cooperatively with HbF to reduce

cytoadherence in vivo.

Discussion

Infant resistance to malaria has been associated temporally with

the presence of HbF-containing RBCs and transplacentally-

acquired, maternal immune IgG in the circulation. To date, the

mechanisms by which these two host factors might produce such

dramatic reductions in parasite density and malaria incidence have

not been established. In considering candidate mechanisms of

malaria resistance by HbF and immune IgG, we reasoned that

they should be consistent with two well-documented in vivo

observations. First, infant RBCs are inherently able to support the

invasion and development of P. falciparum, as evidenced by patent

parasitemias (up to 10,000/mL) in the first few months of life [9].

Second, passive transfer studies conducted 50 years ago showed

that immune IgG – but not nonimmune IgG – could rapidly drive

down parasitemias in African children with malaria [34]. While

invasion-inhibitory antibodies may contribute to this phenome-

non, the large and rapid decreases in parasitemias suggest a

Figure 3. Distributions of PfEMP-1 signals and knobs on the surface of parasitized AA and CB RBCs. a–c, Confocal cross-sections
through the mid-plane (left column) or maximum intensity projections of z stacks through the upper cell surface (right column) of trophozoite-
infected RBCs probed with a polyclonal antiserum against PfEMP-1 (FVO line). a, PfEMP-1 fluorescence patterns typical of a parasitized AA RBC. b,
Fluorescence patterns from a parasitized CB RBC, similar to those of parasitized AA RBCs. c, Irregular, patchy PfEMP-1 distribution on a parasitized CB
RBC. d,e, Atomic force micrographs of CB RBCs infected with the FVO P. falciparum line, showing normal AA-like (d) or abnormal (e) knob
appearances. The mean (6 SEM) width of 15 randomly selected knobs in panels d and e were 50.3 nm (63.4 nm) and 96.4 nm (66.7 nm),
respectively. Scale bar = 1 mm. Transmission electron micrographs of CB RBCs infected with the FVO P. falciparum line also showed populations with
normal (f) or abnormal (g) knob appearances. Comparison atomic force and transmission electron micrographs of parasitized HbC and HbS RBCs can
be found in references 9, 10, and 11. Arrows indicate examples of normal (f) and abnormal (g) knobs.
doi:10.1371/journal.pone.0014798.g003
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particularly important role for PfEMP-1-specific IgGs. By binding

PfEMP-1, such IgGs may prevent ring-parasitized RBCs from

sequestering and promote their efficient removal from the

circulation by the spleen. Accordingly, we hypothesized that

HbF and PfEMP-1-specific IgG work cooperatively in infants to

impair the cytoadherence of parasitized RBCs and prevent

sequestration, thus limiting the ability of P. falciparum to multiply

and cause inflammation.

In testing this hypothesis, we found that P. falciparum parasites

invade and develop normally in CB and HPFH RBCs, which

contain up to 100% HbF. This suggested that the presence of HbF

does not restrict parasite multiplication in vivo by killing

intraerythrocytic parasites. To explain how infants maintain

extremely low parasitemias (often detectable only by PCR

methods) and remain asymptomatic with relatively higher

parasitemias (up to 10,000/mL), we investigated several cytoad-

herence interactions involved in the development of high parasite

densities and the symptoms of malaria. We found that parasitized

CB RBCs are impaired in their binding to MVECs, monocytes,

and nonparasitized RBCs. Abnormal display of PfEMP-1 and

knobs on the surface of CB RBCs correlated with these findings

and is reminiscent of that on HbC and HbS RBCs [10,11]. IgG (at

physiological levels of 10 mg/mL) purified from the plasma of

immune Malian adults almost completely abolished the adherence

of parasitized AA and CB RBCs to MVECs. At lower doses (up to

6 mg/mL), immune IgG effected greater reductions in the

cytoadherence of parasitized CB RBCs than parasitized AA

RBCs, suggesting that HbF and maternal immune IgG work

cooperatively to impair cytoadherence in vivo.

We propose that HbF and PfEMP-1-specific IgG substantially

attenuate parasite virulence by weakening cytoadherence in vivo,

which prevents the sequestration of most parasitized RBCs at the

late ring stage (only early ring forms are observed circulating in

the bloodstream) and thus enables their removal from the

bloodstream by the spleen. Lower avidity interactions with host

cells might also mitigate the inflammatory potential of the

remaining sequestered parasites. By these mechanisms, HbF and

maternal immune IgG could produce the dramatic reductions in

parasite densities and malaria episodes observed in young infants

– consistent with the proposed cooperative effects of HbS and

acquired immunity [11,35]. This model suggests that HbF and

other hemoglobin variants might confer less protection against

malaria in low-transmission settings where humoral immunity is

not transplacentally or naturally acquired. This hypothesis is

further strengthened by reports of non-immune HbS children

with high parasitemias and severe malaria [36], and could be

more rigorously tested by studying non-immune hemoglobino-

pathic individuals who acquire malaria. Our findings indicate

that measurements of PfEMP-1-specific antibody levels are likely

to be particularly relevant and informative in studies of infant

immunity to malaria [37,38,39].

By altering PfEMP-1 display, HbF impairs cytoadherence by a

mechanism similar to that of HbC and HbS [10,11], two

hemoglobin variants for which malaria protection is well

documented [40,41,42,43,44,45]. Like HbC and HbS RBCs

[46], CB RBCs contain elevated levels of membrane-associated

hemichromes [47] and IgG (not shown). These and other shared

characteristics might interfere with the trafficking of PfEMP-1 to

the CB RBC membrane. In addition, the waning protective effects

of maternal immune IgG and HbF might be reconstituted by the

contemporaneous development of humoral immunity and expres-

sion of HbC and HbS in some African infants, which would

cooperate to extend malaria resistance into their early childhood.

Our data thus provide a rationale for testing whether hydroxyurea

and other HbF-inducing agents can be used as prophylaxis against

severe and fatal malaria in very young ‘wildtype’ children who lack

protective polymorphisms. Our findings also raise the possibility

that polymorphisms that produce unstable hemoglobin (HbC,

HbS, HbE, alpha- and beta-thalassemias, G6PD deficiency) confer

malaria resistance by a common mechanism. Cooperative

interactions between cytoadherence-inhibiting IgG (e.g., PfEMP-

1-specific IgG) and diverse hemoglobin variants suggest that

therapeutics and vaccines that disrupt PfEMP-1-mediated cytoad-

herence phenomena will reduce the morbidity and mortality of

malaria.

Supporting Information

Table S1 Relative red blood cell (RBC) invasion and develop-

ment, cytoadherence and rosetting, and PfEMP-1 expression on

parasitized AA and CB RBCs: data separated out by P. falciparum

line.

Found at: doi:10.1371/journal.pone.0014798.s001 (0.02 MB

DOCX)

Figure 4. Adherence of parasitized RBCs to MVECs in the presence of immune IgG. The numbers of parasitized AA and CB RBCs adhering
to 100 MVECs in the presence of either non-immune or immune IgG are shown. Comparisons were made in parallel using IgG at final concentrations
of either 10 mg/mL (a) or 0.5–6 mg/mL (b). Median values are indicated by horizontal bars. Results were obtained from 2 parasite lines (3D7, FCR-3),
multiple blood donors (6AA, 6CB), and 4 endothelial cell lots. For each combination of parasite line and RBC sample tested, the numbers of
parasitized RBCs bound to 100 MVECs are shown in Table S2.
doi:10.1371/journal.pone.0014798.g004
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Table S2 Relative adherence of parasitized AA and CB red

blood cells (RBCs) to microvascular endothelial cells (MVECs) in

the presence of nonimmune IgG (NIgG) or immune IgG (IIgG).

Found at: doi:10.1371/journal.pone.0014798.s002 (0.01 MB

DOCX)

Figure S1 Morphology and distribution of knobs on the surface

of parasitized HPFH RBCs.

Found at: doi:10.1371/journal.pone.0014798.s003 (5.98 MB TIF)
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