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Abstract

Background: Alternative polyadenylation as a mechanism in gene expression regulation has been widely recognized in
recent years. Arabidopsis polyadenylation factor PCFS4 was shown to function in leaf development and in flowering time
control. The function of PCFS4 in controlling flowering time was correlated with the alternative polyadenylation of FCA, a
flowering time regulator. However, genetic evidence suggested additional targets of PCFS4 that may mediate its function in
both flowering time and leaf development.

Methodology/Principal Findings: To identify further targets, we investigated the whole transcriptome of a PCFS4 mutant
using Affymetrix Arabidopsis genomic tiling 1.0R array and developed a data analysis pipeline, termed RADPRE (Ratio-based
Analysis of Differential mRNA Processing and Expression). In RADPRE, ratios of normalized probe intensities between wild
type Columbia and a pcfs4 mutant were first generated. By doing so, one of the major problems of tiling array data—
variations caused by differential probe affinity—was significantly alleviated. With the probe ratios as inputs, a hierarchy of
statistical tests was carried out to identify differentially processed genes (DPG) and differentially expressed genes (DEG). The
false discovery rate (FDR) of this analysis was estimated by using the balanced random combinations of Col/pcfs4 and pcfs4/
Col ratios as inputs. Gene Ontology (GO) analysis of the DPGs and DEGs revealed potential new roles of PCFS4 in stress
responses besides flowering time regulation.

Conclusion/Significance: We identified 68 DPGs and 114 DEGs with FDR at 1% and 2%, respectively. Most of the 68 DPGs
were subjected to alternative polyadenylation, splicing or transcription initiation. Quantitative PCR analysis of a set of DPGs
confirmed that most of these genes were truly differentially processed in pcfs4 mutant plants. The enriched GO term
‘‘regulation of flower development’’ among PCFS4 targets further indicated the efficacy of the RADPRE pipeline. This simple
but effective program is available upon request.
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Introduction

Polyadenylation is one of the essential processes during the

maturation of most mRNAs in eukaryotic cells. Accumulating

evidence suggests that this process has been widely employed by

higher eukaryotes, through alternative polyadenylation (APA), to

regulate gene expression and therefore plays roles in specific

biological functions[1–13]. Arabidopsis polyadenylation factor

PCFS4 has been shown to function in the alternative polyadenyl-

ation of FCA pre-mRNA and therefore affects the regulation of

flowering time [13]. FCA encodes two major transcript isoforms,

FCA-gamma and FCA-beta. FCA-gamma is derived from the regular

poly(A) site (distal to the promoter) and encodes the functional

FCA, while FCA-beta is from the poly(A) site within intron 3

(proximal to the promoter) and is non-functional [5,14]. By

physically interacting with other polyadenylation factors, PCFS4

promotes the proximal poly(A) site usage and thus controls the

ratio of the two transcript isoforms of FCA and flowering time

[13,15]. In addition to flowering time, PCFS4 also functions in leaf

development, as indicated by its mutant pcfs4-1 abnormality [13].

However, PCFS4’s control of leaf morphology could not be

explained by its role in APA of FCA since the leaf morphology was

not affected in fca mutants [13]. Therefore, we reasoned that in

addition to FCA, there may be other target(s) of PCFS4 that
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mediate its function in leaf development, likely through a

molecular mechanism similar to the APA of FCA. To explore

this possibility, we employed a whole genome tiling microarray

technology to search the Arabidopsis transcriptome for the

differentially processed genes (DPG, defined as those genes whose

pre-mRNA processing was altered in the pcfs4 mutant) and

differentially expressed genes (DEG, defined as those genes whose

steady-state level of mRNA abundance was altered, but the

mRNA processing was not affected in the pcfs4 mutant). The

DPGs are likely the direct targets of PCFS4 and the DEGs may be

the indirect or secondary targets.

Genomic tiling microarray technology has been used in a variety of

applications in plants including empirical annotation of the

transcriptome, Chip-chip studies, mapping the methylome, and

identification of DNA polymorphism [16–26]. In the genomic tiling

microarray, specifically in the oligonucleotide tiling array, the probes

are designed to cover the whole genome with a very high resolution

[27]. For example, Arabidopsis tiling 1.0R array (Affymetrix) tiles 6.4

million 25-mer probes per array with a resolution of about 35 bp [24].

High probe density results in each of the transcription units being

represented by multiple probes, in contrast to ‘‘one-probe-one-gene’’

in expression microarrays. Multiple probes for a given transcription

unit render abundant measurements which allows for further

statistical evaluations, and therefore, leads to more accurate results.

Furthermore, if a gene encodes multiple transcript isoforms, the gene

could be revealed by plotting the probe signal intensities against the

gene structure [28,29]. It is these features that make it possible to use

Arabidopsis tiling 1.0R array to study not only the DEGs, but also the

DPGs in the pcfs4 mutant.

The power of the whole genome tiling array is due to its high probe

density, which results in high volume of data output. However, at the

same time, the massive volume of data and the inherent nature of the

data - low signal-to-noise ratio - make the extraction of biologically

meaningful information challenging [27,30]. In the last several years,

a few analysis methods for tiling array data have been published,

including TileMap, gSAM, Segmentation, BASIS, ARTADE and

TileScope [28,31–34]. The TileMap, Segmentation, ARTADE and

TileScope methods focused on mapping deduced transcript units on

the genome; gSAM was designed to find the differentially expressed

transcription units, but specifically deals with the experimental design

in a manner of time series; BASIS was designed to identify the

differentially expressed splicing isoforms, but has the pre-requisite

that the splicing isoforms have already been defined. In addition,

different methods often deal with data from different tiling array

platforms and/or for specific applications. Although one method

might be adapted to analyze data from different platforms and/or for

a different application, the adaptation is not always straightforward.

To identify the DPGs and DEGs of PCFS4, we used

Arabidopsis tiling 1.0R array from Affymetrix and developed a

data analysis pipeline, termed ‘‘Ratio-based Analysis of Differen-

tial mRNA Processing and Expression’’ (RADPRE). One of the

major problems with tiling array data analysis is that the intensities

of the multiple probes representing a given transcript unit (a

transcript isoform) or annotation unit (such as an exon) are highly

variable [27]. Heterogeneous probe affinity is one of the many

factors contributing to the variation [35]. Efforts have been made

to remove the probe affinity effects using both computational and

empirical techniques, which have been especially helpful in

mapping transcription activity [29,35–37]. Given the specific

purpose of this study and that the probe intensities between the

two experimental conditions are highly correlated, we designed the

RADPRE analysis pipeline, efficiently alleviating the problem of

probe affinity variations by generating Control/Treatment (or

Treatment/Control) ratios of probe intensities. The ratios

representing a transcript or annotation unit were further subjected

to a classical T-test and F-test (ANOVA) to determine whether a

given gene was being differentially processed (DPGs) and/or

expressed (DEGs). This protocol, although designed and used here

for the identification of DPG and DEG targets of PCFS4, should

be applicable to study the effects of other factors related to mRNA

processing (splicing, polyadenylation, etc), transcription initiation,

and/or gene expression.

Results

Data description
There were six CEL file data (wt1, wt2, wt3, pcfs4.1, pcfs4.2

and pcfs4.3) from the hybridization of Arabidopsis tiling 1.0R

array with the targets prepared from three biological replicates of

each wild type Col (WT) and the PCFS4 mutant (pcfs4-1) grown in

a randomized block design. The suffix number of the file name

denotes the block number. The data was analyzed according to

the steps shown in Figure 1. The underlying principle, the analysis

details and the results of each step are described as follows.

Preprocessing of the raw data
For a given probe, its signal intensity recorded in the CEL file

could be attributed to the relative abundance of its corresponding

target in the sample. Other factors include the background

(defined as the signal intensity of a probe generated when its

corresponding target was missing from the population), the

spatially uneven hybridization on the same array chip, the

unequal amount of targets applied to different array chips and

the heterogeneous probe affinities [35,38]. The effects of the first

three factors were removed through background correction and

across array normalization. The probe affinity effect was removed

by generating the ratio of WT/pcfs4 as detailed below.

Background correction and across-array normalization
The quality of the array data is essential for extracting

biologically meaningful information. Therefore, the six CEL file

data were first checked for their quality through ‘‘exploratory’’

data analysis with raw and log-transformed intensities [39]. The

even distributions of signal intensities across the chips indicated

high quality original data (Figure S1). Among the available

methods for background correction and across-array normaliza-

tion, ‘‘VSN’’ and ‘‘RMA’’ were chosen for the processing of our

array data [38,40]. The box-plots of before- and after-normaliza-

tion data clearly indicated that the normalization removed the

across-array bias and rendered the data distribution more

consistent among the 6 data files (Figure 2). Although there was

no significant difference observed between VSN and RMA

normalizations, the signal intensities were less varied with the

former method (Figure 2). Therefore, the down-stream data

analysis was carried out using the ‘‘VSN’’ normalized data.

Ratio generation
As in other tiling array data, the probe intensities of the data,

which were supposed to represent the same transcript unit, were

highly varied due to the heterogeneous probe affinity (Figure 3A)

[27]. Despite this, the probe intensities seemed highly correlated

across multiple samples (among replicates and/or treatments)

(Figure 3A, B). Indeed, the box plot of correlation coefficients from

exons with $3 probes revealed that 50% of the correlation

coefficients ranged from 0.34 to 0.86, with a median of 0.67

between the WT and the pcfs4 mutant (Figure 3B). Therefore, the

probe affinity effects might be removed by generating the ratio of

WT to pcfs4 as previously suggested [27]. As shown (Figure 3C),

Tiling Microarray Analysis
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the variation of the ratios representing the same annotation unit

was dramatically reduced in comparison to those of the same set of

probe intensities for either wild type or mutant (Figure 3A). The

variations measured with the standard deviation for the probe

intensities and ratios for all exons ($3 probes) were box-plotted.

Based on the box-plot, the variation among the ratios was

significantly lower than the probe intensities of either the WT or

pcfs4 mutant (Figure 3D). Thus, the down-stream statistical

analyses were performed with the probe intensity ratios instead

of the probe intensity per se. Since the distribution of the probe

intensity ratios skewed to lower values, the ratios were first log-

transformed. As shown in Figure 4, the distribution of log-

transformed (base 2) ratios was largely normal (Table S1), which

was required for the down-stream statistical analyses [41].

Construction of CDF files
Affymetrix provides the component definition file (CDF)

‘‘At35b_MR_v04-2_TIGRv5.bpmap’’ for the Arabidopsis tiling

1.0R array, in which the detailed genomic information of the

probes were denoted. For the purpose of this study, a new CDF

Figure 1. A flow-chart of RADPRE analysis pipeline. A) Preprocessing of data including background correction, across-array normalization,
probe filtering and trimming, ratio generation, and log-transformation. B) To identify transcripts with at least one of its exon ratio means not equal to
one, a one-sample two-tails T-test was applied to every exon of an annotated transcript with the null hypothesis that the ratio mean of the exon was
equal to one. C) For those transcripts identified from the T-test in (B), a one-way ANOVA and F-test was performed for each transcript with its exons
as the ‘‘level’’ parameter. Every transcript with the ratio means of all its exons being equal would be a putative DEG target. Otherwise, the transcript
would be a direct DPG target. D) A further one-sample two-tails T-test was applied to every one of the putative DEG targets from (C) to test whether
the ratio mean of the whole transcript was equal to one. If the ratio mean was not equal to one, the transcript would be a DEG target.
doi:10.1371/journal.pone.0014719.g001

Figure 2. Box plots of log-transformed raw data (left panel), VSN-normalized (middle panel) and RMA-normalized (right panel)
data. The across-array variations were significantly reduced after normalization.
doi:10.1371/journal.pone.0014719.g002
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file, ‘‘AtTA.cdf’’, was constructed based on the following criteria:

1) only the perfect match (PM) probes with a unique match

position in the genome were considered; 2) the probes spanning

the borders of annotation units were removed; and 3) the

annotation units represented by a single probe were not

considered. The reasons for trimming the probes and annotation

units are as follows. The mismatch probes (MM) in the tilling array

were intended to be references for the non-specific hybridization

to PM probes. However, studies indicated that although MM

might help to remove the non-specific signal intensity to some

extent, as many as 30% of MM probes had intensities higher than

their corresponding PM probes, thus defeating the purpose of

using the MM intensity to adjust the PM intensity [27,38]. For the

probes spanning the border of the annotation units, their

corresponding targets only partially matched the probes, rendering

those probes equivalent to the non-perfect matches. Thus, the

signal intensities of these probes were underestimated for the

abundance of their corresponding targets. For those annotation

units represented by a single probe, only 3 ratios (for each probe)

were available for the down-stream calculation of T-statistics and

F-statistics. The sample size was likely too small to utilize these

statistical tests. Therefore, those annotation units were not

considered for the analysis. Depending on the analysis purpose,

the probes were either grouped based on annotation units (such as

exons) or transcription units (transcript isoforms).

Statistic tests to identify DPGs and DEGs
The underlying concept to identify the DPG targets of PCFS4 is

depicted in Figure 5. With a given unknown gene, it was assumed

the gene had two major transcripts derived from its pre-mRNA by

APA, as in the case of FCA [13]. For example, if the choice of

poly(A) sites is controlled by PCFS4, then the ratio of exon 3

abundance between WT and pcfs4 would be altered such that the

ratio of exon 3 would deviate from 1 (more or less than 1) while the

ratios of exon 1 and exon 2 should be equal to 1 (Figure 5). This

case could be generalized as follows: if the APA of a given gene is

controlled by PCFS4, then 1) the WT/mutant ratio of one or more

exons would not be equal to one, and 2) the ratio of at least one

exon would not be equal to the ratios of other exons. This

generalization would also hold true if a gene’s splicing and/or

transcription initiation was affected by PCFS4. In the case of a

given gene being a DEG target, which was defined as whole gene

expression difference rather than an individual exon difference,

the ratios between WT and pcfs4 of all exons for this gene would

have the same degree of deviation from 1 (if larger than 1, under

expressed in pcfs4; if smaller than 1, over expressed in pcfs4).

Figure 3. The variation of probe intensity across the same annotation unit was significantly alleviated by generating a ratio
between WT and the pcfs4 mutant. A) A plot of the probe intensities normalized against the average of all the probes across the annotation unit.
The probe intensities fluctuated dramatically among probes, yet were highly correlated between wild type (WT) and mutant (pcfs4). B) The
correlation coefficients of all exons with more than three probes were first calculated and then box-plotted. The median correlation coefficient was
around 0.67 with the majority between 0.34 and 0.86. C) A plot of probe intensity ratios across the annotation unit. With the ratios, the variation
among the probes was significantly reduced compared to the variation of intensities in (A). D) The variations of probe intensities or ratios across
every exon with more than three probes were measured with standard deviation and then box-plotted. With ratios (pcfs4/WT), the median Standard
Deviation (Std) was around 0.40, in contrast to the median Std of probe intensities of WT or pcfs4, 0.67 and 0.69.
doi:10.1371/journal.pone.0014719.g003
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Based on the concept described above, hierarchical statistical

analyses were applied to the log-transformed ratio data to identify

both DPG and DEG targets of PCFS4 (Figure 1B, C, D). A student

one sample two-tails T-test was first performed on all the exons of a

given transcript of a given gene. The null hypothesis was the mean

of log-transformed ratios for the exon was equal to zero (Figure 1B).

If all mean ratios of every exon within the transcript were equal to

one (indicative of no change between WT and the mutant), the gene

was not a target of PCFS4. Otherwise, a one-way ANOVA followed

by F-statistic were conducted to test whether the ratio means of each

and every exon were equal (Figure 1C). If the answer is ‘‘yes’’, then

the corresponding gene was considered to be a candidate DEG

target of PCFS4 (indicative of uniformly changed expression levels

of the whole transcript). Otherwise, the gene was considered to be a

DPG target of PCFS4 (indicative of partial changes of the transcript;

Figure 1C). To increase the specificity for the candidate DEG

targets of PCFS4, a further T-test was carried out with the null

hypothesis being the ratio mean of all probes within the entire

transcript was equal to one. If the null hypothesis was accepted, then

the gene was not a DEG target of PCFS4. Otherwise, the gene was a

target of PCFS4 (Figure 1D).

To estimate the false discovery rate (FDR) of the above analyses,

we applied the concept of using balanced random combinations of

samples from two conditions. Specifically, each balanced random

sample consisted of two WT/pcfs4 and two pcfs4/WT ratios [23,42].

Since we had only three replicates of each WT and pcfs4, a fourth

sample was generated by taking the geometric average of the three

replicates for WT or pcfs4 so that the random combinations would

be balanced (meaning two WT/pcfs4 ratios and two pcfs4/WT ratios

Figure 4. The density distribution of ratios (upper-panel) or
log-transformed ratios (lower-panel). The latter was largely
normal.
doi:10.1371/journal.pone.0014719.g004

Figure 5. Schematics of how a DPG gene could be identified based on the ratios of its exons between wild type Col (WT) and the
pcfs4 mutant (MU). The gene structure was shown on the top of the graph with filled boxes denoting exons, lines denoting introns, and the short
lines under the exons denoting the tiling array probes. The gene could generate two transcripts, a long (LT) and a short (ST), with LT derived from a
distal poly(A) site and containing exon 3 (hatched box), and ST from a proximal poly(A) site within intron 2. The thickness of the box represents the
relative abundance of the transcripts. The relative abundance of two transcripts was altered between WT and MU due to the shift of the poly(A) site
usage between WT and MU. The measured abundance of each exon was based on its corresponding probes, which reflected the sum of two
transcripts. The measured abundance of exon 1 and 2 was the same between WT and MU, but that of exon 3 was different. Therefore, the ratio of
exon 1 and 2 between WT and MU was equal to 1, but different from the ratio of exon 3. In that case, the poly(A) site choice was not affected by the
mutant and the relative abundance of the two transcripts would be the same between WT and MU. The ratio of the measured abundance between
WT and MU would be equal for all three exons.
doi:10.1371/journal.pone.0014719.g005
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for each combination). With the RADPRE analysis of each random

combination, a certain number of genes would be called significant

based on a certain p-value (Table 1). The average number of

significant genes from all possible combinations served as the

number of falsely discovered genes. FDR was calculated based on

the number of false discovered genes and the number of identified

DPG or DEG targets of PCFS4.

Following the RADPRE analysis, 68 DPG and 114 DEG targets

of PCFS4 were identified with the FDR of 1% and 2%,

respectively (Table 1; Table S2 and Table S3). Close examination

of the probe intensities along the gene bodies revealed that the 68

DPG targets could be explained by 3 simple models: 1) alternative

polyadenylation, 2) alternative splicing, and 3) alternative

transcription initiation (Table S2). An example of each model is

illustrated in Figure 6. The examples shown here are also

supported by data from other sources. Both genes, At4g38160

(Figure 6A) and At5g46490 (Figure 6B), have more than one gene

model and supported by more than one full-length cDNAs from

The Arabidopsis Information Resources (TAIR; www.arabidopsis.

org). These transcripts are the results of both alternative

polyadenylation and alternative splicing. In the case of

At5g52910 (Figure 6C), only one full-length cDNA supported

the 3’part of the gene model, there are, yet, numerous of ESTs

supporting the expression of the 5’part of At5g52910 (TAIR).

It is noteworthy that categorizing each gene into one of the

models was purely based on the probe intensities. Given the actual

transcript isoforms are unknown for each gene (tiling array does

not offer individual sequence information), this classification is

essentially tentative and by no means should be used to replace

further experimental exploration.

Verification of DPG targets of PCFS4
To verify that the DPG genes were truly differentially processed,

a set of DPG targets chosen to cover the whole range of p-value

(from low to high) were tested using quantitative (real-time) PCR.

Originally, we chose the first two genes of every 10 DPGs to make

the sample list. Due to technical problems such as 1) two or more

gene models correspond to the same gene, 2) no suitable primers

could be designed for a given gene, or 3) the failed qPCR, the

sample list ended up with a total of 17 genes. Seven of these genes

were from DPGs with 1% FDR, and 10 from genes between 1% to

2% FDR (Figure 7). For each gene, two pairs of primers were

designed. One pair targeted on the exon(s) whose expression

showed no (or less) difference between WT and pcfs4 while the

other pair targeted on the exon(s) that was differentially expressed

(or showed a larger difference). The first strand cDNA samples

were synthesized from the same RNA samples prepared for the

tiling array hybridization targets.

For the 7 genes tested from the DPG list (68 genes) with the

FDR of 1% (Table S2), 5 of them showed significant ratio

differences between two parts of each gene (Figure 7). Of the two

genes showing no significant ratio differences, gene No. 2 showed

an expression difference between wild type and pcfs4 mutant, while

gene No. 35 has a p-value (0.08) close to the critical p-value of

0.05. Thus, FDR of 1% is a reasonable estimate of the ‘‘true’’ false

discovery rate of the top 68 DPGs.

For FDR at the 2% level, a total of 17 genes were tested, 9 of

them showed significant ratio differences (Figure 7). For the rest 8

genes, 6 of them showed differences between wild type and mutant

for at least one part of each gene, suggesting these genes were

potential DEG targets. These results indicated that the FDR of 2%

for the 142 DPGs was an under-estimate of ‘‘true’’ false discovery

rate. However, most of the falsely discovered genes were DEG

targets of PCFS4. For the DPGs being tested with qPCR, both the

changing direction and scale are consistent between qPCR and the

tiling array results for most of them. The only exceptions are genes

No. 35, No. 101 and No. 107, which are not the DPG targets of

PCFS4 (Figure 7 and data not shown).

In summary, when the p-value of F-test was set low, the

estimated FDR of DPGs was reasonably accurate and most of the

DPGs were genuinely differentially processed in the pcfs4 mutant.

With the increase of p-value, the estimated FDR became less

accurate and more genes than estimated were not ‘‘truly’’

differentially processed.

Gene Ontology (GO) analysis of the DPG and DEG targets
of PCFS4

To examine what biological processes the DPGs of PCFS4 may

be involved in, a GO analysis of the 68 DPGs was performed using

GOEAST [43]. Results showed that ‘‘response to stress’’ and

‘‘regulation of flower development’’ were among the most

enriched GO terms with p-values less than 0.0001 (Table S4).

The GO term ‘‘regulation of flower development’’ was signifi-

cantly enriched in the 68 DPG targets, which further strengthens

the efficacy of RADPRE in the identification of authentic DPG

targets since the major phenotype of pcfs4 is delayed flowering time

[13]. While the enrichment of the genes involved in ‘‘response to

stress’’ was unpredicted, it suggested that PCFS4 very likely played

a role in stress responses. Furthermore, it has already been

documented that stress could cause changed flowering time [44–

47]. Thus, it is possible that the altered processing of the genes

involved in stress response contributed, to some extent, to the

flowering time delay in the pcfs4 mutant.

Given that the genes involved in ‘‘regulation of flower

development’’ and ‘‘response to stress’’ were enriched in the DPGs,

the direct targets of PCFS4, the two GO terms might also be

enriched in all targets (direct and indirect) of PCFS4. The GO

analysis of the combined DEGs and DPGs using GOEAST proved

this reasoning (Table S5). Both GO terms, ‘‘regulation of flower

development’’ and ‘‘response to stress,’’ were indeed enriched in the

pooled targets (Table S5). In addition, ‘‘sulfur metabolic process,’’

‘‘circadian rhythm’’ and ‘‘S-glycoside metabolic process’’ were

among the most enriched GO terms. It is well known that circadian

Table 1. The false discovery rate (FDR) of Differentially
Processed Genes (DPGs) and Differentially Expressed Genes
(DEGs).

P-Value

T-test F-test # of genes FDR (%)

DPGs 0.05 0.05 1013 7.3

0.01 0.05 515 3.0

0.01 0.01 176 2.8

0.001 0.05 142 1.9

0.0001 0.05 68 1.0

DEGs 0.05 0.05 3546 14.8

0.01 0.05 1554 7.9

0.001 0.05 485 5.0

0.0001 0.05 220 3.5

0.00001 0.05 114 1.8

Note: T-test and F-test, as depicted in Figure 1b and c; the p-value for the T-test
on the whole transcript level (Figure 1d) was set at 0.05 (see Results section).
doi:10.1371/journal.pone.0014719.t001
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rhythm is tightly related to flowering time and the genes in the two

terms were also overlapped to some extent (Table S5) [48–50].

Whether the ‘‘sulfur metabolic process’’ and ‘‘S-glycoside metabolic

process’’ were also related to flower development and/or stress

response needs to be further explored. Alternatively, PCFS4 could

function directly in these two processes.

Discussion

To identify additional targets of PCFS4, we performed a set of

tiling array experiments and developed an analysis pipeline,

RADPRE, for Affymetrix Arabidopsis tiling array data. Using this

pipeline, we identified some potential direct and indirect targets.

The validity of these targets will be subjected to further testing and

confirmations. One of major problems for tiling array data is the

probe intensity fluctuation within a gene or a gene transcript due

to the heterogeneity of probe affinities to their matching sequences

[27]. For studies examining the differences between biological

samples from two experimental conditions, the probe affinity

effects may be alleviated by using the ratios of probe intensities of

one sample to the other [27]. Indeed, the probe intensities among

the replicates (within WT or pcfs4 mutant) or between treatments

(WT and pcfs4) were highly correlated (Figure 3). By generating the

ratios between WT and pcfs4 mutant, variation across probes

within a transcription unit was significantly alleviated (Figure 3).

With the log-transformed ratios, which largely followed the

Gaussian distribution (Figure 4), hierarchical statistical tests were

performed in RADPRE for the annotated transcript isoforms of

each gene to find the DPG or DEG of PCFS4 (Figure 1).

In this study, RADPRE was used to process data from a

randomized block design for two biological conditions. The ratio

generation was straight-forward since the wild type replicate was

simply paired with the replicate of mutant within the same block

(wt1/pcfs4.1; wt2/pcfs4.2 and wt3/pcfs4.3). However, if the

experiment was carried out with a completely randomized design,

the ratio generation could have been complicated since the pairing

method for the wild type and mutant replicates would not be

explicit. One solution would be to randomly pair the replicates of

wild type and mutant. In this case, there would be nine

combinations, resulting in nine ratios for each probe. Since the

nine ratios would not be totally independent of each other, the

degrees of freedom for the down-stream statistical analysis would be

difficult to define. A simple solution would be to choose three

independent ratios to represent the probes. This way, if there was no

block effect, it would be equivalent to the randomized block design.

Otherwise, the power of statistic justification might be compromised

by the block effect. Therefore, as with other pipelines, appropriate

experimental design for RADPRE is important and the statistical

parameters may need to be adjusted accordingly.

Since RADPRE analysis could differentiate the DPG from the

DEG targets, it could also be applied to experiments that simply

look for differentially expressed genes. This means Arabidopsis

tilling 1.0R array could be used as an expression array by this

pipeline. A recently published method was specifically dedicated to

this purpose [17]. Our method, however, can be used to extract

both DPG and DEG information. The differentially processed

genes are of special interest not only for investigating the roles of

polyadenylation factors, but also for the splicing and transcription

factors that may have an impact on the transcript compositions or

expression levels. Given that RADPRE analysis was based on the

annotated structures of genes, it has to rely on accurately annotated

genomes. RADPRE is a fairly good choice for its simplicity and

specificity with an estimated FDR of 1%. This FDR closely reflects

the true false discovery rate since 6 of 7 DPG targets were verified

with real-time PCR analysis (Figure 7). However, caution needs to

be taken for using the FDR when the DPG list is expanded with

increased p-values. It is noteworthy that in some cases (such as genes

No. 54 and 139) not only were the genes being differentially

processed but the over-all transcription level seems affected in the

mutant also (Figure 7). This is not a surprise given that the pre-

mRNA processing is tightly coupled with the transcription process

as demonstrated by recent studies [51].

PCFS4 has been shown to regulate the APA of FCA pre-mRNA

[13]. However, FCA could not be identified in this study. This is

likely due to the sensitivity of different experimental methods and

the relative abundance of the target FCA. Indeed, the probe

Figure 6. The DPGs of PCFS4 could be explained by 3 simple
models: alternative polyadenylation, alternative splicing and
alternative transcription initiation, as shown by A)
At4g38160.2, B) At5g46490.2, and C) At5g52910.1, respective-
ly. Each data point represented the average of three replicates. The
dotted vertical lines separate annotation units of the gene with or
without difference between wild type (WT) and pcfs4 mutant. The
corresponding gene structure was presented under each plot with
boxes denoting the exons and lines denoting the introns.
doi:10.1371/journal.pone.0014719.g006
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intensities along the FCA gene body were hardly differentiable

from those of intergenic regions around the FCA gene (Figure S1),

suggesting the low abundance of FCA mRNA. It is known that the

abundance of FCA mRNA is extremely low. In order to use

Northern blot analysis to detect the FCA expression level, the

poly(A) RNA from 400 mg of total RNA had to be loaded for a

single hybridization [13–15]. In contrast, the cDNA target for the

Arabidopsis tiling 1.0R array hybridization was prepared from 7

mg of total RNA without amplification, about 60 fold less than the

amount used in Northern blot analysis (see Materials and

Methods). Thus, the sensitivity of detection by RADPRE can

only be limited by the tiling array technology. Under the same

consideration, the DPGs and DEGs could be an underestimate of

the real alternatively transcribed and processed genes.

Close examination of the probe intensities along the gene bodies

for DPGs revealed that the differential processing could be

explained by three simple models including alternative polyadenyl-

ation, alternative splicing and alternative transcription initiation

(Figure 6; Table S2). This suggested that PCFS4 plays roles not only

in polyadenylation, but also in splicing and transcription. This is not

surprising given that an increasing body of evidence supports that

polyadenylation is tightly coupled to the transcription and splicing

processes in vivo [51–56]. Indeed, the yeast, human and Drosophila

orthologs of Arabidopsis PCFS4 have been documented to function

in transcription termination and RNA Polymerase II proccessivity

by interacting with the C-terminal domain of Pol II [57–59]. Thus,

the DPG targets of PCFS4 might open an avenue for further

investigation of how polyadenylation might be coupled with other

mRNA processing processes in plants.

Materials and Methods

Experimental design and RNA preparation
The freshly harvested Arabidopsis thaliana seeds of wild-type

ecotype Columbia and pcfs4-1 mutant (short as pcfs4 in the text)

[13] were germinated in 464 cm pots with SunGrow-360 soil

(Scotts Inc.). About 100 seeds were sown for each pot, with three

pots for each line in a randomized block design. The imbibed

seeds were first stratified at 4 uC in the dark for two days and then

grown in growth chamber at 22 uC, under 16/8 hr photoperiod.

The above ground tissue of 15-day old seedlings was collected 8

hours after dawn. Total RNAs were extracted using Concert Plant

RNA reagent (Invitrogen) and further treated with Turbo DNA-

free (Ambion) following the manufacture’s instructions. The

integrity of the total RNA was examined using Agilent 2100

Bioanalyzer.

Target preparation and hybridization
The double-stranded cDNA targets were prepared using the

Affymetrix GeneChip WT Double-Stranded Target Assay kit

(Affymetrix, PN900813). Briefly, first strand cDNA was synthe-

sized from 7 mg of total RNA with random primers and

Superscript II reverse transcriptase. The RNA strand was digested

with RNase H and the second strand cDNA was further

synthesized with DNA polymerase I. In both the 1st and 2nd

strand synthesis, a fraction of dUTP was added in the reactions so

that the uracil in the double strand cDNA could serve as a

substrate of Uracil-DNA Glycosylase (UDG) for the downstream

fragmentation. The fragmented double stranded cDNA was end-

labeled with the biotin-labeled DLR (dual luciferase reporter)

using Terminal Deoxynucleotidyl Transferase (Affymetrix,

PN900812). The labeled targets were hybridized to the Arabi-

dopsis Tiling 1.0R array (Affymetrix, PN900594) using Gene-

ChipH Hybridization, Wash, and Stain Kit (Affymetrix, PN

900720). Hybridization was carried out on Affymetrix GeneChip

Hybridization Oven 640, washed and post-hybridization stained

on Affymetrix GeneChip Fluidics Station 450. Hybridization

signals were collected using an Affymetrix GCS 3000 7G scanner

and processed with GeneChip Operating Software. Both target

preparation and hybridization were performed in the Microarray

Figure 7. Quantitative PCR confirmation of the DPG targets of PCFS4. The average log fold change of pcfs4/WT is shown for two parts of
each gene with a capped vertical line representing the standard error. The filled and open boxes represent the two parts of each gene being tested.
The gene part showing a larger difference between wild type and mutant based on the tiling array data is represented by the filled box while the part
showing less (or no) difference is represented by the open box. The double asterisk ‘‘**’’ denotes the genes showing significant difference (p = 0.05)
for the ratios of two parts of each gene by qPCR. The single asterisk ‘‘*’’ denotes the genes whose one or both parts showed significant difference
(p = 0.05) between wild type and the pcfs4 mutant, but whose ratio of two parts showed no significant difference. The first 7 genes were from the
DPG list with the FDR of 1% and they were a part of the total 17 genes from the DPG list with the FDR of 2%.
doi:10.1371/journal.pone.0014719.g007
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Core Facility, University of Kentucky. The final output was six

CEL files containing raw data with wt1, wt2 and wt3 from wild

type Col, and pcfs4.1, pcfs4.2 and pcfs4.3 from the pcfs4 mutant.

The suffix number of the three replicates denotes the block

number.

Annotation
Affymetrix provided probe information for the Arabidopsis tiling

1.0R array in the component definition file (CDF) named

‘‘At35b_MR_v04-2_TIGRv5.bpmap’’ (www.affymetrix.com), which

denoted whether the probe was a PM (perfect match) or MM

(mismatch) probe, the x and y coordinate of each probe on the chip

and the exact locations of the probes in the genome. Based on

‘‘At35b_MR_v04-2_TIGRv5.bpmap’’ file and TAIR 8 annota-

tion (ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR8_genome_

release/TAIR8_gff3/TAIR8_GFF3_genes.gff), we generated a new

CDF file, named ‘‘AtTA.cdf’’, in which only the probes with unique

and perfect matches in the whole genome were considered. The

unique and perfect match probes were picked up using MUMmer

tool (http://mummer.sourceforge.net/). There were 2.8 million

unique and perfect match probes in ‘‘AtTA.cdf’’, accounting

87.5% of the total PM probes (3.2 million). The CDF files used in

this study were essentially derived from ‘‘AtTA.cdf’’.

Data preprocessing
The raw data (CEL data) was first assessed for its quality with

‘‘image’’ and ‘‘box-plot’’ functions and then further normalized by

‘‘VSN’’ within the Bioconductor package vsn in R [35,39,40].

VSN is a protocol that combines the background correction and

across array normalization [40]. The ratio of WT/pcfs4 for each

probe was generated using normalized data. To remove the block

effects, ratios between WT and pcfs4 were produced pair-wisely

within each block, namely, wt1/pcfs4.1, wt2/pcfs4.2 and wt3/

pcfs4.3. These tiling array data were deposited to GEO

(GSE21250).

Data analysis
The ratios were first log-transformed (base 2) and then the

transformed ratios were grouped based on annotated exons. For

each exon, whether the mean of the log-transformed ratios was

equal to zero was justified based on a one-sample two-tailed T-test.

As illustrated in Figure 1, any annotated transcript which had at

least one exon whose mean was not equal to zero was considered

to be a candidate target of PCFS4, either differentially processed

or expressed. For any candidate target, a one-way ANOVA

analysis and F-statistic calculation were further performed to test

whether the means of its exons were equal. Any annotated

transcript with equal exon means and transcripts with a single

exon were considered to be a differentially expressed target of

PCFS4 (DEGs), a possible indirect target of PCFS4. In contrast,

any annotated transcript with unequal exon means was considered

to be a differentially processed target of PCFS4, a possible direct

target of PCFS4.

Quantitative PCR
The same total RNAs mentioned above (section ‘‘Experimental

design and RNA preparation’’) were used to synthesize the first

strand cDNA using reverse transcriptase Superscript III (Invitro-

gen). Two pairs of primers were designed for each candidate

target, with one pair of primers to test the differentially expressed

region of the transcript and the other set for the region of the

transcript that showed no or less difference. The primer sequences

are provided in the supplemental materials (Table S6). Real-time

PCR was performed with IQ SYBR Green Supermix (170-8884,

Bio-Rad) on an ICycler machine (Bio-Rad). The primer pair

targeted on the beta-tublin6 transcript was used as an internal

control [13]. For each primer pair, the RNAs from three WT

replicates and three pcfs4 replicates were tested. The Ct value of

each primer pair was first normalized to that of beta-tublin6

followed by a two-tailed T-test for the significant difference

between WT and pcfs4.

Gene Ontology (GO) analysis
GOEAST is a web-based tool kit for the analysis of Gene

Ontology enrichment [43]. Using the Batch Genes program

within the GOEAST package, we analyzed the DPGs or the pool

of DPGs and DEGs with their TAIR gene identifiers as inputs.

The gene ID list of TAIR9 was used as the background gene set.

The analysis was performed using the statistical method

‘‘Hypergeometric’’ with the significance level of FDR set at 0.01.

Supporting Information

Figure S1 The probe intensi3es along the FCA gene and the

gene At5g46490 and their surrounding intergenic regions.

Found at: doi:10.1371/journal.pone.0014719.s001 (0.14 MB

PDF)

Table S1 One-Sample Kolmogorov-Smirnov Test of the ratio

distribution before and after log-transformation.

Found at: doi:10.1371/journal.pone.0014719.s002 (0.04 MB

PDF)

Table S2 The identified 142 DPGs differentially processed in

the pcfs4 mutant and the possible mechanisms for differential

processing.

Found at: doi:10.1371/journal.pone.0014719.s003 (0.08 MB

PDF)

Table S3 The identified DEG targets of PCFS4.

Found at: doi:10.1371/journal.pone.0014719.s004 (0.07 MB

DOC)

Table S4 The most enriched GO terms and their corresponding

genes from the 68 DPG targets of PCFS4.

Found at: doi:10.1371/journal.pone.0014719.s005 (0.05 MB

PDF)

Table S5 The most enriched GO terms and their corresponding

genes from the GO analysis of the pooled DPG and DEG targets

of PCFS4.

Found at: doi:10.1371/journal.pone.0014719.s006 (0.06 MB

PDF)

Table S6 Sequences of the primers for the confirmation of DPG

targets.

Found at: doi:10.1371/journal.pone.0014719.s007 (0.03 MB

PDF)
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