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Abstract

Background: The study of large-scale genome structure has revealed patterns suggesting the influence of evolutionary
constraints on genome evolution. However, the results of these studies can be difficult to interpret due to the conceptual
complexity of the analyses. This makes it difficult to understand how observed statistical patterns relate to the physical
distribution of genomic elements. We use a simpler and more intuitive approach to evaluate patterns of genome structure.

Methodology/Principal Findings: We used randomization tests based on Morisita’s Index of aggregation to examine
average differences in the distribution of purines and pyrimidines among coding and noncoding regions of 261
chromosomes from 223 microbial genomes representing 21 phylum level groups. Purines and pyrimidines were aggregated
in the noncoding DNA of 86% of genomes, but were only aggregated in the coding regions of 52% of genomes. Coding and
noncoding DNA differed in aggregation in 94% of genomes. Noncoding regions were more aggregated than coding regions
in 91% of these genomes. Genome length appears to limit aggregation, but chromosome length does not. Chromosomes
from the same species are similarly aggregated despite substantial differences in length. Aggregation differed among
taxonomic groups, revealing support for a previously reported pattern relating genome structure to environmental
conditions.

Conclusions/Significance: Our approach revealed several patterns of genome structure among different types of DNA,
different chromosomes of the same genome, and among different taxonomic groups. Similarity in aggregation among
chromosomes of varying length from the same genome suggests that individual chromosome structure has not evolved
independently of the general constraints on genome structure as a whole. These patterns were detected using simple and
readily interpretable methods commonly used in other areas of biology.
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Introduction

Evidence that selection affects the organization of information

within genomes has resulted in efforts to characterize large-scale

patterns of genome structure. Recently, advanced statistical and

graphical methods such as chaos game theory, wavelet analyses,

information theory, thermodynamics, and fractal geometry have

been used to examine large-scale genome structure [1–12]. The

results of these studies have increased our knowledge of how

genomes are organized by moving beyond simple characterizations

such as genome length and GC content, to study how the

distribution and organization of information within genomes may

be evolutionarily constrained [7]. While statistically informative, the

structures quantified by these studies can be difficult to understand,

making it difficult to interpret how the observed statistical patterns

relate to the physical distribution of genomic elements.

Considering the difficulty of linking complex statistical patterns

to the physical structure and biological processes affecting genomic

evolution, we ask whether patterns in large-scale genomic

structure can be quantified using a simpler approach with an

intuitive structural interpretation. This simplification has the

potential to allow for less statistically abstracted interpretations of

genomic structural patterns. Here, we attempt such an approach

using a straightforward definition of one of the most intuitive

structural properties of sequential data, aggregation. We use this

measure to detect a general difference among the two major kinds

of DNA and the two forms of nitrogenous bases commonly used in

other studies [1,4,6,8,13–14]. Specifically, genomes are comprised

of regions of DNA that code or do not code for proteins and are

composed of two different structural forms of nitrogenous bases,

purines (Pu) represented by adenine and guanine, and pyrimidines

(Py) represented by thymine and cytosine. Assuming that coding

and noncoding DNA are structured by different selective forces

[14], common units of coding and noncoding regions (i.e. Pu and

Py) may exhibit different distributions resulting from different

structuring forces. Our aim was to use Morisita’s Index of

aggregation (IM) [15–18] to examine whether: 1) Pu and Py exhibit

non-random structure within sequences; 2) aggregation differs

between coding and noncoding DNA; and 3) patterns of

aggregation differ among chromosomes of the same species and

among taxonomic groupings. If meaningful patterns can be

detected this suggests that aggregation may provide an intuitive

measure of structural genomic patterns that can be meaningfully

influenced by biological processes.
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Results

Purines (Pu) and pyrimidines (Py) were distributed similarly

within genomes and chromosomes, as illustrated by nearly

identical distributions within coding and noncoding DNA (Fig. 1)

and the similar results of statistical analyses (Table 1 and 2). In

coding DNA Pu and Py were less aggregated (i.e. more evenly

distributed) than random in approximately 44% of genomes, and

more aggregated than random in almost 52% of genomes

(p,0.01; Table 1). Noncoding DNA was rarely more evenly

distributed than random (,10% of genomes) with 86% of

genomes exhibiting significant aggregation (p,0.01; Table 1).

The difference in aggregation between coding and noncoding

DNA was significant in 94% of chromosomes (n = 245). Of these

245 chromosomes, noncoding DNA was more aggregated than

coding DNA in 91% of cases (n = 224). Hence, coding DNA was

more aggregated than noncoding DNA in only 21 chromosomes

(8.0%), from 18 genomes.

Of the 18 genomes (21 chromosomes) where coding DNA was

more aggregated than noncoding DNA, seven genomes belong to

the Spirochaetes group. The other 11 genomes are widely

distributed across groups: Alphaproteobacteria (3), Aquificae (1),

Bacterioides/Chloribi (1), Betaproteobacteria (1), Crenarcheota

(2), Euryarchaeota (1), Gammaproteobacteria (1), and Nanoarch-

eota (1). Only two of the 13 Spirochaete members represented in

the dataset showed greater average aggregation in noncoding

Figure 1. Kernel density curves reveal different distributions for coding and noncoding DNA. Kernel density curves for purines and
pyrimidines within coding (C) and noncoding DNA (N). Distributions for purines and pyrimidines nearly completely overlap. Curves for noncoding
DNA are shifted towards higher values of aggregation while curves for coding DNA are centered closer to the derived value for randomness, 0.91936.
Apparent bimodality within coding regions may have resulted from the sample-size of different taxonomic groupings (e.g. 32 Gammaproteobacteria
within a narrow range), but note the lack of bimodality among corresponding noncoding regions of the same set of genomes.
doi:10.1371/journal.pone.0014651.g001
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DNA than coding DNA. Compare this to Actinobacteria (N = 17),

Thermotogae (N = 8), Firmicutes (N = 15), and Epsilonproteobac-

teria (N = 9) where all members showed greater average

aggregation in noncoding DNA, or to Gammaproteobacteria

(N = 32), Euryarchaeota (N = 11), or Betaproteobacteria (N = 26)

where all but one member showed greater average aggregation in

noncoding DNA. All other groups had three or fewer members

lacking greater average aggregation within noncoding DNA than

coding DNA. Hence, Spirochaetes appear to be the only phylum-

level group where noncoding DNA is not typically more

aggregated than coding DNA.

Aggregation varied significantly among phyla, with individual

groups of taxa typically occupying narrow ranges of aggregation and

having little-to-no overlap with most other groups (Fig 2). However,

the distribution of taxonomic groups across the observed range of

aggregation revealed no apparent phylogenetic clustering or pattern.

For instance, proteobacteria are distributed throughout while

archaeal groups are separated by bacterial groups. When the set of

200 genomes was examined as a group, with an average measure of

aggregation for each genome represented by a single data point,

coding and noncoding regions formed different distributions of

aggregation with noncoding regions shifted towards higher values of

aggregation (Fig. 1). Despite a smooth unimodal distribution of

aggregation values among noncoding DNA, coding DNA from the

identical set of genomes exhibited an apparent bimodality. While the

first mode could be the result of sample bias, the lack of a

corresponding mode in the curve for noncoding DNA suggests two

different subgroups of genomes with aggregated noncoding DNA;

one where the distribution of nitrogenous bases in coding DNA is

under-aggregated to essentially random (IM = 0.91936), and one

where the distribution is significantly aggregated.

Aggregation, as estimated with Morisita’s Index, showed a

significant correlation with GC content and a slight but also

significant correlation with percent coding DNA (Figure 3).

Aggregation was also significantly correlated with genome length.

The strength of the correlation and the shape of the distribution

reveals that estimates of IM decreased and converged on lower

values with increasing genome length (Fig. 4), suggesting that larger

genomes tend to be less aggregated. Among genomes with multiple

chromosomes, IM and chromosome length were not correlated

(Fig. 4). However, when the lengths of these chromosomes were

summed to obtain the length of the genome, the pattern of limited

aggregation with increasing genome length was again obtained

(Fig. 2). Additionally, aggregation was similar among chromosomes

of the same species (average % difference = 0.2860.04 SE for Py to

0.2760.04 SE for Pu) despite large differences in chromosome

length (average % difference = 91.369.23 SE).

Discussion

Both structural forms of nitrogenous bases clearly exhibit non-

random distributions within genomic sequences and are nearly

always distributed similarly. Steps taken to remove statistical

effects of density, sampling scale, and GC bias, and to examine the

statistical relationships of aggregation to GC content, percent

coding DNA, and genome length reveal that the reported

differences between coding and noncoding DNA are likely due

to meaningful patterns of Pu and Py clustering within sequences

and not due to the statistical effects of these other variables.

Despite removing statistical effects of GC-content by recoding

genomes in Purines and Pyrimidines, and using a measure of

aggregation that is independent of the ratio of coding to noncoding

DNA, GC-content, genome length (but not chromosome length),

and percent coding DNA were significantly correlated with

aggregation. Though these results suggest that relationships among

these structural genomic features are real, further studies will be

necessary to understand these patterns.

Genome length appears to set a maximum limit on the degree of

aggregation possible (Fig. 4). This pattern holds for genomes with

single and multiple chromosomes. However, the lengths of

chromosomes from multi-chromosomal genomes do not appear

to show the same relationship. Instead, chromosomes of the same

species are similarly aggregated despite large differences in length.

When the lengths of these chromosomes are summed to obtain

overall genome length, their summed lengths follow the decreasing

pattern shown for single chromosome genomes (Fig. 4). At the

chromosome scale, aggregation appears to be a property of the

species, largely invariant with chromosome length. However,

overall aggregation seems to be limited by genome length, perhaps

Table 1. Aggregation among microbial genomes.

Genomes, N = 223 Coding Noncoding

Pu Py Pu Py

Aggregated 52.0% (n = 116) 52.0% (n = 116) 86.1% (n = 192) 86.1% (n = 192)

Random 5.4% (n = 12) 4.0% (n = 9) 3.6% (n = 8) 4.0% (n = 9)

Overdispersed 42.6% (n = 95) 44.0% (n = 98) 10.3% (n = 23) 9.9% (n = 22)

doi:10.1371/journal.pone.0014651.t001

Table 2. Aggregation among microbial chromosomes.

Chromo, N = 261 Coding Noncoding

Pu Py Pu Py

Aggregated 46.7% (n = 122) 47.9% (n = 125) 80.4% (n = 210) 80.5% (n = 210)

Random 5.4% (n = 14) 5.4% (n = 14) 5.4% (n = 14) 5.7% (n = 15)

Overdispersed 47.9% (n = 125) 46.7% (n = 122) 14.2% (n = 37) 13.8% (n = 36)

doi:10.1371/journal.pone.0014651.t002
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regardless of the number of chromosomes comprising a genome.

Both similarity in aggregation among chromosomes of varied

length from the same genome, and the tendency for aggregation

among chromosomes to be influenced by overall genome length,

suggests that chromosome structure has not evolved independently

of general constraints on overall genome structure.

Noncoding DNA was almost always more aggregated than

coding DNA. In other words, nitrogenous bases of similar

structure are more likely to be found in close proximity within

noncoding DNA than within coding DNA. This conclusion is

based on the genome-wide averaging of tens of thousands of

estimates of IM across a diverse collection of 223 microbial

genomes, and hence, represents a general low-resolution pattern of

genome structure. It may be unlikely that such a pattern is the

result of one or even a few specific genetic or evolutionary

processes. What it does suggest is that the functions that coding

Figure 2. Box plots showing ranges of aggregation values (IM) for pyrimidines within coding and noncoding DNA of 21 microbial
groups. The distribution of box plots for coding DNA (A) is shifted more towards lower values of aggregation and closer to randomness than those
for noncoding DNA (B) which are shifted towards values of higher aggregation.
doi:10.1371/journal.pone.0014651.g002
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and noncoding DNA perform, and the pressures that affect their

evolution, are different enough to manifest a general difference in

the gross distribution of their common elements.

For Spirochaetes, the pattern is typically reversed. Spirochaetes

are a small and cohesive group of gram-negative chemohetero-

trophs. They are unusual in their linear chromosomes, cytoskel-

eton, long helical cells, and coevolution with a host-specific phage.

As such, it is possible that these traits that distinguish Spirochaetes

from other microbes explain their exception to the general pattern.

However, a superficial investigation of the microbial traits is

unlikely to explain this reversed pattern, because a variety of cell

shapes (e.g. coccus, rod, spiral), chromosome shapes (e.g. linear,

circular), temperature ranges (e.g. mesophilic, thermophilic),

habitats (e.g. soils, sulfur springs, hosts), chromosome lengths

(490885-5566749), and percent coding DNA (0.7475-0.9483), are

represented within the set of 18 genomes where coding DNA was

on average more aggregated that noncoding DNA.

The observed bimodality in the distribution of aggregation

values for coding DNA suggests the presence of two general groups

of genomes differing characteristically in the patterns of aggrega-

tion within coding DNA. Whether these two groups differ in a

biologically meaningful way that influenced the distribution of

Figure 3. Plots of aggregation (IM) vs. % GC content and % coding DNA, with a plot of % coding DNA vs. % GC content. Aggregation
of pyrimidines within coding DNA (blue) and noncoding DNA (green) shows a greater linear relationship to %GC content than to % Coding DNA. %
Coding DNA and % GC (red) content are not correlated.
doi:10.1371/journal.pone.0014651.g003
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structurally different nitrogenous bases has not yet been deter-

mined. Further investigation is necessary to determine whether

this bimodality results from the specific genomes chosen for

analysis or whether it is an indicator of an important biological

process that has shaped genome evolution among microbes.

The distribution of phyla across the range of aggregation in this

study strongly corroborates the pattern described by Bohlin et al.

(2009) who examined the genomic fraction of purine and purine/

pyrimidine stretches (i.e. an indirect measure of aggregation) in

relation to environmental variables across a similar but smaller set

of prokaryote phyla [19]. Though there are no methodological

similarities, and noncoding DNA is analyzed separately from

coding DNA in this study, both studies reveal that phyla occupy

similarly ordered and narrow ranges of aggregation (Table 3).

When comparing the ranks of phyla common to both studies there

were four exact matches and four instances where phyla differed

by only one rank. The reproduction of this pattern in spite of

minimal methodological similarity suggests that the pattern is

Figure 4. Plots of aggregation (IM) vs. genome length and chromosome length for Purines (Pu). (Top) Aggregation of purines in coding
(blue plots) and noncoding (green plots) DNA for 223 genomes. (Middle) Aggregation of purines in coding and noncoding DNA for the 33 genomes
with multiple chromosomes. (Bottom) Aggregation of purines in coding and noncoding DNA for 71 individual chromosomes from the 33 genomes
with multiple chromosomes. These plots reveal that dissecting a genome into its constituent chromosomes destroys the generally decreasing pattern
of aggregation with increasing genome length.
doi:10.1371/journal.pone.0014651.g004
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robust and relatable to functional traits that interface with the

exogenous environment (Bohlin et al. 2009).

Despite the potential for exceedingly complex distributions of

bases within coding and noncoding regions, the study of large-

scale genomic structure clearly does not preclude the use of simple

approaches to arrive at general patterns based on intuitive

properties. It is clear that those forces that have structured protein

coding and noncoding regions, as well as individual chromosome

and overall genome structure, have left evidence of their effects at

the level of common elements, the two types of structural

nitrogenous bases. We suggest that processes and constraints with

predominant effects on genome structure should influence the

patterns of aggregation observed in this study. While statistical

approaches to large scale genome structure have the potential to

reveal novel and meaningful patterns as well as structural

relationships, we suspect that the general patterns reported here

are unlikely to be explained by statistical approaches alone, that is,

without establishing the genetic or evolutionary mechanisms. Lack

of clarity in the interpretation of statistical methods, metrics, and

results that document novel and poorly understood structural

patterns can only be a detriment to this endeavor.

Materials and Methods

Obtaining genomic data
We created Perl scripts to examine 261 chromosomes of 223

genomes from 21 phylum level microbial groups, downloaded

from the National Center for Biotechnology Information micro-

bial genome website, www.ncbi.nlm.nih.gov/genomes/lproks.cgi.

We downloaded FASTA sequence and GenBank feature files. We

picked genomes and chromosomes that represented a broad range

of lengths and protein coding contents. Pearl scripts (Program

Script S1 & S2) and a table of microbial genome information and

per chromosome results (Table S1) can be accessed through

supplementary materials.

Genome handling and aggregation estimation
We obtained estimates of aggregation for coding and noncoding

DNA by using a sliding window approach to estimate the average

aggregation of Pu and Py among consecutive non-overlapping

100-base sections of chromosomes. Rather than examine each

individual coding or noncoding region separately, we examined

coding and noncoding DNA as concatenated sequences of

individual regions. These approaches alleviated two problems.

First, analyzing individual coding and noncoding regions leaves a

considerable amount of genome unanalyzed because individual

coding and noncoding regions are rarely perfect multiples of a

particular window size. Second, information regarding GC

content is lost when sequences are binarily recoded according to

Pu (A,G) and Py (C,T), hence removing potential statistical effects

of GC content on aggregation.

We used Morisita’s Index (IM) [15–18] as our aggregation

metric. IM is commonly used in ecological and evolutionary studies

[20–23] to study the spatial distribution of age classes, genotypes,

and species, and has been shown to be a more precise and less

biased descriptor of spatial aggregation than other methods (e.g.

variance:mean ratio) [15]. IM uses the number of occurrences

among subsections of sampling areas (i.e., windows) to estimate

measurements of aggregation based on a sampling probability.

Specifically, IM measures how many times more likely it is that two

randomly selected individuals will be from the same subsection of

study area than if the individuals in the population were

distributed at random. For example, IM = 1.5 indicates that the

probability of sampling two individuals from the same quadrat is

50% greater than if the population was randomly distributed (i.e.,

Poisson distributed). An IM of 0.5 indicates this probability is 50%

less likely than random. IM is not typically used in cases of severely

limited occupancy (e.g. linear segments of genomes of n size

holding, at most, n Pu or Py). As a result, the value representing

randomness was offset from IM = 1.0 to IM = 0.91936

(SE = .000057), as determined from 20,000 randomizations.

Therefore we compared observed values to randomizations of

the same sequence (see below) to determine if the genome was

more of less aggregated than random and to determine whether or

not this difference was statistical meaningful.

Morisita’s Index is calculated as:

IM~
X

X{1

� �
1

m

� �
s2

m
zm{1

� �

where X is the total number of individuals in the sampling

universe, m is the mean number of individuals per quadrat (i.e.

subsection of the sampling universe), and s2 is the variance of

individuals among quadrats. The formulation here is identical to

that in Hurlbert (1990). In the present study, X is the total

number of Pu (or Py) in a 100 base section of a genome, referred

to here as a window, m is the average number Pu or Py within

each 10 base subsection of the window, and s2 is the variance of

Pu or Py among the 10 subsections. It can be seen from the

above equation that Morisita’s Index is independent of genome

length, genome segment length, and number of genome

segments and is thus independent of the density of individuals

in the window [15]. Using IM thus controlled for differences in

the density of Pu and Py among genomes. We also confirmed

that IM was insensitive to window and subsection size by

reanalyzing a random subset of 29 genomes using several

combinations of window size (100, 400) and subsection size (10,

20, 40). These combinations yielded qualitatively similar results

(see table in supplementary materials).

Table 3. Phyla ranked according to aggregation of purines,
averaged for coding and noncoding DNA, as reported here,
and as reported in the results of Bohlin et al. (2009).

Present Study Bohlin et al. (2009)

Rank Purine Aggregation Purine Stretches

1 Chlamydia Thermotoga

2* Thermotoga Spirochaetes

3 Firmicutes Chlamydia

4 Spirochaetes Euryarcheota

5 Deltaproteo Crenarchaeota

6* Crenarchaeota Firmicutes

(7) Epsilonbacteria Epsilonbacteria

8* Cyanobacteria Deltaproteo

9 Alphaproteo Cyanobacteria

(10) Gammaproteo Gammaproteo

11 Euryarcheota Chloroflexi

12* Chloroflexi Alphaproteo

(13) Actinobacteria Actinobacteria

(14) Betaproteo Betaproteo

Ranks in parentheses (n = 4) are exact matches, ranks with asterisks (n = 4) are
one rank different.
doi:10.1371/journal.pone.0014651.t003
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Randomizations
We created 100 randomized versions of each genome for

comparison with actual genomes by randomly redistributing

Pu and Py within individual coding and noncoding regions.

These randomized genomes were analyzed as described above

for comparison to actual genomes. By avoiding changes in the

number of Pu and Py among individual regions, observed

differences reflect the effect of nitrogenous base order;

another control for the effects of Pu and Py density. P-values

were determined to be less than 0.01 when average

measurements of IM from real genomes were greater than

those from all 100 randomizations or less than those from all

100 randomizations.

Statistical analysis
Microbial genomes typically contain a much larger fraction of

coding than noncoding DNA. Here, the percentage of coding

DNA ranged from 73.54 to 95.54%. Under this circumstance, IM

is calculated more times for coding DNA (typically tens of

thousands) than noncoding DNA (typically thousands). To account

for this difference in sample size, we chose non-parametric rank-

sum tests to determine whether Pu and Py generally differ in

aggregation between coding and noncoding regions of individual

genomes. Additionally, we conducted Spearman’s rank correlation

to determine whether aggregation was related to percent coding

DNA, genome length, chromosome length, and GC-content. We

chose a nonparametric correlation technique because all datasets

were non-normally distributed as determined from the Lilliefors

test for normality. We used the student version of MATLAB v7.7.0

to generate kernel density curves, box plots, and to conduct all

statistical analyses.

Supporting Information

Table S1. This table list those microbes used for analysis in this

study. Results for rank-sum tests and average calculation of

Morisita’s Index of aggregation are presented in following columns

(N = noncoding, C = coding, Pur = purine, Pyr = pyrimidine).

Found at: doi:10.1371/journal.pone.0014651.s001 (0.18 MB

XLS)

Program Script S1. A plain text document of the script named

genomic_agg, created by Ken Locey. This script is to be run after

the gff_reader script.

Found at: doi:10.1371/journal.pone.0014651.s002 (0.02 MB

TXT)

Program Script S2. A script to be run before genomic_agg.

This script uses Genbank and Fasta files, checks them for

agreement, and generates a file used by genomic_agg. This script

was created by Ken Locey.

Found at: doi:10.1371/journal.pone.0014651.s003 (0.00 MB

TXT)
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