
Dynamic Approach to Space and Habitat Use Based on
Biased Random Bridges
Simon Benhamou*

CEFE, CNRS, Montpellier, France

Abstract

Background: Although habitat use reflects a dynamic process, most studies assess habitat use statically as if an animal’s
successively recorded locations reflected a point rather than a movement process. By relying on the activity time between
successive locations instead of the local density of individual locations, movement-based methods can substantially
improve the biological relevance of utilization distribution (UD) estimates (i.e. the relative frequencies with which an animal
uses the various areas of its home range, HR). One such method rests on Brownian bridges (BBs). Its theoretical foundation
(purely and constantly diffusive movements) is paradoxically inconsistent with both HR settlement and habitat selection. An
alternative involves movement-based kernel density estimation (MKDE) through location interpolation, which may be
applied to various movement behaviours but lacks a sound theoretical basis.

Methodology/Principal Findings: I introduce the concept of a biased random (advective-diffusive) bridge (BRB) and show
that the MKDE method is a practical means to estimate UDs based on simplified (isotropically diffusive) BRBs. The equation
governing BRBs is constrained by the maximum delay between successive relocations warranting constant within-bridge
advection (allowed to vary between bridges) but remains otherwise similar to the BB equation. Despite its theoretical
inconsistencies, the BB method can therefore be applied to animals that regularly reorientate within their HRs and adapt
their movements to the habitats crossed, provided that they were relocated with a high enough frequency.

Conclusions/Significance: Biased random walks can approximate various movement types at short times from a given
relocation. Their simplified form constitutes an effective trade-off between too simple, unrealistic movement models, such
as Brownian motion, and more sophisticated and realistic ones, such as biased correlated random walks (BCRWs), which are
too complex to yield functional bridges. Relying on simplified BRBs proves to be the most reliable and easily usable way to
estimate UDs from serially correlated relocations and raw activity information.
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Introduction

Habitat selection is a dynamic process during which a moving

animal chooses the habitat patches it visits and the time it spends

within each of them. However, even in recent studies involving

individuals tracked at a relatively high fix rate using global

positioning system (GPS), movement information provided by

serial correlation between successive relocations has largely been

ignored: habitat use is most often estimated statically as if these

relocations were unlinked [1–3]. Methods taking relocation history

into account are nevertheless emerging [4]. The most direct way to

develop a dynamic approach to space and habitat use obviously

rests on movement analysis, which highlights how animals can

spend more time within preferred habitat patches at each visit [5–

7] and come back to these patches more frequently [8].

Nevertheless, by integrating the times spent by an animal in the

various parts of its home range (HR) over the long term, the

utilization distribution (UD) can provide effective complementary

information about habitat use [9]. Although they are commonly

computed through a static approach involving location-based

kernel density estimations (LKDE) [10,11] over arbitrary periods,

UDs can be usefully tackled in a dynamic framework by

identifying sub-annual HRs based on stationary phases rather

than on proxies of seasonal changes [12] (example in Fig. 1) and

by taking advantage of movement and activity information to

improve biological relevance of space use estimates. The present

paper focuses on this second stage that involves the computation of

movement-based rather than location-based UDs.

Contrary to the classical LKDE method, which focuses on the

density of presumably unlinked relocations [11], movement-based

methods consider the activity times spent between pairs of

successive relocations. Two methods of this type have been

proposed. The first is based on Brownian bridges (BBs) [13,14],

while the other rests on empirical movement-based kernel density

estimation (MKDE) [15]. Paradoxically, in assuming that

movements are purely and constantly diffusive (although condi-

tioned by the set of relocations), the BB method denies the

existence of HR and habitat preferences, which involve stationary

space use patterns [16–19] at large scales and changes in diffusion

(through changes in speed and sinuosity [20]) and memory-based

reorientations [19,21,22] at small scales. It might be argued that

basic HR behaviour may result from a few rebounds of a diffusive
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movement at HR boundaries (as for gas molecules in a tank), and

habitat preferences may be integrated simply through changes in

the diffusion coefficient [23]. However, an advection process is

required to allow for more realistic HR behaviour [16–19] based

on frequent reorientations towards preferred areas, and changes in

advection strength can allow for changes in space use intensity

much more efficiently than changes in diffusion [21,24]. On the

other hand, the MKDE method is implicitly assumed to be able to

deal with any type of movement an animal may perform in its HR,

but lacks theoretical foundations. Here I show that using

elementary advective-diffusive bridges instead of purely diffusive

BBs is the most reliable and easily usable means to outline active

UDs from serially correlated relocations and raw activity data.

This approach solves theoretical inconsistencies of the BB method

and provides sound theoretical foundations for the MKDE

method, which turns out to be a useful way to implement such

UD computations.

Before entering the core of the subject, let us introduce some

basic variables. Consider a GPS tracked animal, whose raw

activity (vs. resting) was monitored continuously by a sensor

detecting head movements. The i th track segment, linking

successive relocations zi-1 = (xi-1, yi-1) and zi = (xi, yi) is characterised

by length Li = ||zi–zi-1||, recording time interval TR(i), proportion

of activity time Pi and thereby activity time Ti = PiTR(i). Hereafter,

the time t M [0, Ti] will refer to the activity time elapsed from the

previous relocation (resting time is ignored; see rationale in [15]).

For simplicity, the track segment rank index i will be omitted when

unnecessary: any two successive relocations will be referred to as

z0 = (x0, y0) and zT = (xT, yT).

Methods

Biased Random Bridges
Call fW(z, t | z0) the probability density function (PDF) of getting

an animal at any location z = (x, y) at a given time t.0 knowing

that it starts at location z0 at time t = 0 and performs a biased

random walk (BRW) with speed s. A BRW is a discrete-step walk

whose successive movement directions h are drawn independently

Figure 1. Utilization Distribution (UD) of an African buffalo herd for a 4-week stationary period computed using simplified BRBs
(smin = 100 m, D = 440 m2/min and Tmax.30 min) through the MKDE method (hmin = smin and hmax = (s2

min+DTmax/2)0.5). The top panel
shows how the period considered (early wet season, indicated by the white background) was delineated by marked and durable changes in mean or
variance of longitude or latitude (computed over a few days in a sliding window). The bottom left panel shows the herd movement (big dots
represent GPS relocations recorded at 30-min intervals and tiny dots locations interpolated along track segments at 1-min activity intervals) and the
different habitat types available within 95% UD cumulative frequency isopleths (R: Rocky grounds, G: Forest galleries, P: Perennial grasses, A: Annual
grasses). The bottom right panel shows the GPS relocations (black dots) and UD cumulative frequencies up to 95% (the colour attributed to a given
percentage p applies to areas comprised between p and p–5% isopleths).
doi:10.1371/journal.pone.0014592.g001

Biased Random Bridges
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from each other in an angular distribution with mean w,

corresponding to the preferred moving direction, and concentra-

tion parameter c = E[cos(h–w)] (with c = 0, a BRW downgrades to

Brownian motion). This advection-diffusion model [20,24]

generates both a drift v = [v cos(w), v sin(w)] of the mean location,

mw(t) = z0+vt, with speed v = ||v|| = sc in direction w, and an

anisotropic diffusion, involving a collinear (Dw) and an orthogonal

(Dw+p/2) diffusion coefficient. The degree of anisotropy depends on

the shape and concentration parameter of the angular distribution

and on the movement speed variability [25]. The marginal

variance on any arbitrary axis with orientation a, including X

(a= 0) and Y (a= p/2) axes, is s2
W (t)a = 2Dat, where Da = [Dw+

tan2(w–a)Dw+p/2]/[1+tan2(w–a)] is the diffusion coefficient along

this axis. The central limit theorem warrants that fW(z, t | z0)

converges (with a speed inversely related to c) towards an elliptical

bivariate Gaussian PDF, with drift direction w corresponding to

either the major (Dw.Dw+p/2) or minor (Dw+p/2.Dw) axis:

fW (z,tDz0)~
1

4p�DDt
exp {

Zw(t)D{1
xy ZT

w(t)

4t

" #
ð1Þ

with ZW(t) = z–z0–vt (ZT
w is the transpose of ZW)

where �DD = (DwDw+p/2)0.5 = [D0Dp/2(1–r2
xy)]0.5 is the mean (isotro-

pically equivalent) diffusion coefficient and Dxy is the diffusion

matrix, based on the diffusion coefficients along the X and Y axes,

D0 and Dp/2, and correlation rxy = tan(w)(D0 –Dp/2)/[(D0Dp/2)0.5

(1–tan2(w))].

Consider now that the animal is relocated at location zT at time

t = T. Similarly to a BB, a biased random bridge (BRB) is built up

by integrating over time (between 0 and T) the PDF fB(z, t | z0, zT)

of getting the animal at any location z at a given time t,T

conditioned by both starting (z0) and ending (zT) locations: gB(z |

z0, zT) =
Ð T

0
fB(z, t | z0, zT)dt/T. The movement performed from z

to zT does not depend on the movement previously performed

from z0 to z. The PDF of getting the animal at location zT at time

T, knowing that location at time t is z, is therefore equal to fW(zT,

T–t | z). Based on conditional probability formula, it is easy to

show that fB(z, t | z0, zT) can be computed as:

fB(z, t D z0, zT ) ~ fW (z, t D z0) fW (zT , T { t D z) = fW (zT , T D z0) ð2Þ

By combining Eqs (1) and (2) and re-arranging terms, the

asymptotic expression of fB(z, t | z0, zT) is shown to correspond to

an elliptical bivariate Gaussian PDF, with the same eccentricity

and major axis orientation as fW(z, t | z0):

fB(z,tD z0,zT ) ~
T

4p�DDt(T{t)
exp {

ZB(t)D{1
xy ZT

B(t)

4t(T{t)=T

" #
ð3Þ

with ZB(t) = z–z0–(zT–z0)t/T (ZT
B is the transpose of ZB)

The mean location, mB(t) = z0+(zT–z0)t/T, slides from z0 to zT

with constant speed L/T. The marginal variance on any arbitrary

axis with orientation a is s2
B(t)a = 2Dat(1–t/T). It is therefore null at

times t = 0 and t = T, and takes its maximum value, equal to DaT/

2, at time t = T/2, irrespective of the bridge length L. At short

times, fW(z, t | z0) has a symmetry axis corresponding to the drift

direction but not necessarily a symmetry centre [25]. The

additional constraint of being at location zT at time T should

force fB(z, t | z0, zT) to have a symmetry centre (although not

necessarily to be Gaussian), so that its main asymptotic properties

should remain (at least approximately) valid at short times.

The advection process affects both the orientation of a BRB,

which tends to align in the drift direction, and its shape, as a

stronger advection involves a longer and lower bridge on average

(the time-integrated PDF gB(z | z0, zT) is inversely proportional to

the bridge length L, with E(L).vT). The mathematical expression

of BRBs depends however only marginally (through the matrix

diffusion) on the drift characteristics, which do not affect the

expected value mB(t) or the mean diffusion coefficient �DD. They only

affect the degree and orientation of diffusion anisotropy. In theory,

these two parameters need to be known to compute BRBs, but

they usually cannot be estimated in practice. As they have only a

weak influence, diffusion anisotropy can be neglected. For this

purpose, BRWs are approximated as Brownian walks (with

diffusion coefficient D) on which a drift v is appended. In this

simplified formulation, fB(z, t | z0, zT) converges quickly towards a

circular bivariate Gaussian PDF, fully independent of the drift v
(Da = D for any axis orientation a, Dxy = DI2 where I2 is the 2x2

identity matrix). There is therefore no need to explicitly know the

drift characteristics to compute simplified BRBs, which rest on

exactly the same PDFs as BBs (v = 0).

In both standard BRBs (at large times T) and simplified BRBs

(including BBs), the expected value E[d2(t)] =s2
B(t)0+s2

B(t)p/2 of the

squared distance d2(t) = ||zt–mB(t)||2 between any location zt at

time t and its expected value mB(t) is equal to 2t(1–t/T)(D0+Dp/2).

Three properties are noteworthy: (1) E[d2(t)] takes its maximum

value at time t = T/2; (2) this maximum value is proportional to T;

(3) the ratio E[d2(t)]/E[d2(T/2)] is equal to 4t/T(1–t/T) for a given

T value. Computer simulations showed that, at short times T, the

first and second properties still hold true for standard BRBs, but

the function E[d2(t)]/E[d2(T/2)] vs. t/T tends to be a little bit

skewed. This result confirms that, despite differences in diffusion

anisotropy and short-time behaviour, simplified BRBs act as valid

proxies for standard BRBs.

Space use estimates based on simplified Biased Random
Bridges

It was cleverly proposed [13,14] that local space use density

could be computed from bridges linking every couple of successive

relocations as the time-weighted average of their respective time-

integrated PDFs: u(z) =SiTi gB(z | zi-1, zi)/Si Ti. The local con-

tribution of each bridge to the UD is thus nicely assumed to be

proportional to the time spent by unit length Ti/Li. However,

these pioneering studies considered only bridges that are Brownian

and characterized by the same diffusion coefficient, and thereby

should be relevant only for animals wandering (no HR) in a

uniform environment (purely random resource distribution). The

use of simplified BRBs in place of BBs, involving an advective-

diffusive instead of a purely diffusive movement process, should

provide a sound theoretical basis to compute HR space use

estimates. Indeed, not only do changes in advection direction w
allow for critical reorientations towards preferred HR areas but

changes in advection strength can further allow for changes in

space use intensity more efficiently than changes in diffusion

because the bridge shape is more sensitive to the drift speed v than

to the diffusion coefficient D. As BBs and simplified BRBs rest on

the same PDF, methods formerly developed to compute BB-based

UDs can nevertheless provide valid estimates when some

conditions are fulfilled (see below).

A key point in BRBs is that the advection component (and

possibly the diffusion coefficient) is allowed to change freely (both

in terms of direction and strength) between bridges, but should

nevertheless remain constant during each of them (Eqs 1–3 are not

valid otherwise). It is therefore necessary to set an upper time

threshold Tmax to warrant homogeneous movements (i.e. no

Biased Random Bridges
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marked drift or diffusion changes) between successive relocations:

track segments that are longer in time are dismissed from UD

computation. The introduction of this time threshold results in an

overall upper limit for the BRB movement variance s2
B(t),

obtained at time t = T/2 for T = Tmax: b2
Tmax = DTmax/2. In

contrast, there is no theoretical reason to include this time

constraint in the BB method, as it a priori assumes purely diffusive

movements characterised by a diffusion coefficient that remains

constant for the whole tracking period.

A last question concerns the space use intensity to attribute to

recorded locations. To circumvent the infinite values taken by fB(z,

t | zi-1, zi) at times t = 0 and t = Ti and to take the recording noise

into account, it was proposed [13,14] to give BBs a total variance,

s2
tot(t)i, written as the sum of the time-weighted recording noise

variance e2 and movement variance s2
B(t)i, s

2
tot (t)i = e2[t2+(Ti–t)2]/

T2
i +2Dt(1–t/Ti). If this solution was applied to BRBs, the total

variance would paradoxically take its lowest rather than highest

value at mid-distance (t = Ti/2) when the recording noise is large

(e2.DTi) and the animal moves quite straight (involving a strong

drift and low diffusion). Furthermore, when the recording noise is

practically negligible with respect to patch sizes, as occurs with

current GPS tracking, it seems preferable to incorporate a

relocation variance that is associated to animal behaviour instead

of recording device noise [15]. Indeed, a GPS fix should be

considered a punctual sample of the possible locations at which the

animal may be observed at that time, given its current

motivational state and history. Even if the recording noise is

low, the relocation variance should therefore be large enough to

encompass potential locations occurring in the same habitat patch

as the recorded location. This relocation variance should represent

the minimum value of the total variance even for an animal

moving straight for a while and will therefore be referred to as

s2
min. It may be assumed either to have a constant weight in the

total variance or to progressively merge with the movement

component s2
B(t)i. This leads to the respective expressions of the

total variance:

s2
tot(t)i ~ s2

min z vi(t)b
2
Tmax ð4aÞ

s2
tot(t)i ~ ½1 {vi(t)�s2

min z vi(t)b
2
Tmax ð4bÞ

with vi(t) = 4t(1 –t/Ti)/Tmax. Although Eq. (4b) is more intuitively

appealing, it can be applied only for D.2s2
min/Tmax, and the result

it provides marginally depends on the chosen value of Tmax,

contrary to Eq. (4a), which warrants full independence. Space use

density at any location z, u(z), can then be computed from the

time-weighted contributions of the simplified BRBs associated to

the NS track segments of the path:

uBRB(z)~
XNS

i~1

ðTi

0

1

2ps2
tot(t)i

exp {
z{mB(t)ik k2

2s2
tot(t)i

" #
dt

,XNS

i~1

Ti ð5Þ

with mB(t)i = zi-1+(zi–zi-1)t/Ti and Ti reset to 0 for any track

segment lasting more than Tmax.

Computing simplified BRB-based UDs through location
interpolation

In the MKDE method [15], movement information provided

by serially correlated locations is incorporated through location

interpolation in the otherwise classical LKDE framework [10,11].

Although it was developed on empirical grounds, I show here that

the MKDE method turns out to be a useful way to compute

simplified BRB-based UDs.

The method consists in dividing the ith track segment in ni =

round(Ti/t) intervals, where t is a time constant, by interpolating

ni–1 equidistant locations along it. In this way, contributions to the

UD of the successive relocations distribute preferentially in the

local movement direction rather than uniformly in any direction

(as occurs in the LKDE method), and the local density of

interpolated locations warrants that these contributions are

proportional to the times spent per unit length Ti/Li. The mth

location of the i th segment, fi(m) = zi-1+(zi–zi-1)m/ni (with m = 0, 1,

…, ni), lies at distance mLi/ni from the previous relocation zi-1. It

therefore represents the expected animal’s location at time

t = mTi/ni in BB and BRB theory. As too large delays in relocation

may result in dubious movement information due to a too weak

serial correlation, an upper recording time limit, Tmax, has been

introduced to filter out couples of successive relocations that are

not sufficiently serially correlated to warrant that the animal was

more likely to be in between them than anywhere in its HR at

intermediate times. No locations are therefore interpolated along

track segments lasting more than Tmax. These segments are also

ignored in the BRB method for similar reasons, although

expressed in a slightly different way.

A variable smoothing parameter (which acts as a standard

deviation in kernel functions) is then attributed to any (interpolated

or recorded) location:

hi(m) ~ ½h2
min z 4m=ni(1 m=ni)(h

2
max { h2

min)Ti=Tmax�0:5 ð6Þ

Its lower limit, hmin (.0.5tLi/Ti for all i thanks to a small enough

t value) applies to any recorded location (m = 0 or m = ni). Its upper

limit, hmax, applies to the centre of any track segment lasting Tmax

for which the animal was always active (Ti = Tmax). Thus, hi(m)

takes its minimum value at times t = 0 and t = Ti, and reaches a

local maximum (which increases with Ti) at time t = Ti/2.

Although various equations can give rise to such properties, the

particular form of Eq. (6) was designed to be consistent with BB

theory [15]. In incorporating an upper time threshold Tmax, Eq. (6)

turns out to be the discrete time expression of the total standard

deviation of simplified BRBs: it can be derived from Eq. (4) by

setting stot(t)i = hi(m), t/Ti = m/ni, smin = hmin and either bTmax =

[h2
max–h2

min]0.5 (Eq. 4a) or bTmax = hmax (Eq. 4b).

Space use density at any location z, u(z), is then estimated using

circular bivariate Gaussian kernel functions centred on locations

fi(m) with standard deviation hi(m). As the track segments

considered (TR(i)#Tmax) are not necessarily contiguous, it is

preferable to re-index the whole set of NL recorded and

interpolated locations as fk and associated smoothing parameters

as hk (with k = 1, 2, …, NL) independently of the track segment to

which they belong, before computing u(z) as:

uMKDE(z)~
1

2pNL

XNL

k~1

1

h2
k

exp {
z{fkk k2

2h2
k

" #
ð7Þ

It eventually turns out that Eq. (7) corresponds to an easy and

effective way to work out Eq. (5), which has no analytical solution.

Diffusion coefficient and drift speed estimations
Consider a triplet of successive relocations zi-1, zi and zi+1. If zi

were missing but the drift v remained approximately constant

Biased Random Bridges
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between the previous and next recording times (i.e. TR(i)+
TR(i+1)#Tmax), the expected animal location at time t = Ti would

be mB(zi) = zi-1+(zi+1–zi-1)Ti/(Ti+Ti+1), with associated movement

variance s2
B(Ti) = 2DTiTi+1/(Ti+Ti+1). The expected value of the

squared distance d2
i = ||zi–mB(zi)||2 between actual relocation zi

and its expected value mB(zi) is therefore E(d2
i ) = 2s2

B(Ti) =

4DTiTi+1/(Ti+Ti+1). The diffusion coefficient D can then be

estimated from the NC couples of consecutive track segments

involved as:

D~
1

4NC

XNC

i~1

d2
i (T{1

i zT{1
iz1) ð8Þ

For safety, this computation should be restricted to movements

liable to be globally homogeneous between zi-1 and zi+1 by dismissing

couples with Ti.2Ti+1 or Ti,Ti+1/2 or Li.2Li+1 or Li,Li+1/2.

Alternatively, D may be estimated using maximum likelihood [14].

There are also two noteworthy cases where D should be set to 0:

when the animal is immobile (although active) or when it moves

straight between relocations (purely advective movements). Both

cases may occur simultaneously with browsers eating on shrubs

scattered in semi-desertic habitats. The maximum movement

variance, b2
Tmax = DTmax/2, can then be used in Eq. (4a) or (4b) to

estimate the time-specific PDF fB(z, ti | zi-1, zi) of simplified BRBs

associated to track segments lasting less than Tmax, and in Eq. (6) to

set the maximum smoothing parameter value of the MKDE

method: hmax = (h2
min z b2

Tmax)0.5 or hmax =bTmax, depending on

whether the relocation variance is assumed to be constant or to

merge progressively within the movement variance.

Habitat-specific diffusion coefficients DH, estimated by applying

Eq. (8) to the couples of consecutive track segments that are fully

included in the same habitat type H, may be easily incorporated in

the MKDE method by attributing habitat-specific hmax values to

the various recorded and interpolated locations. Very high fix rates

are however required in practice to get sufficiently large samples of

couples of consecutive track segments occurring in the same

habitat type to reliably estimate DH coefficients for the habitat

types that are scarce or fragmented. Squared distances d2
i are

asymptotically distributed according to a rescaled x2
2 law [20],

involving large random errors (coefficient of variation equal to 1).

This can lead to noticeable over or underestimations of DH values

when sample sizes are low.

The location zi reached at time t = Ti by a simplified BRW

obeys a circular bivariate PDF fW(zi, Ti | zi-1) with mean

mW(Ti) = zi-1+vTi and variance s2
W (Ti) = 2DTi. The expected

squared distance (track segment length) is therefore E(Li
2) =

v2Ti
2+4DTi. Even if the diffusion coefficient is set to a single

global value D, the drift speed v is ever allowed to depend on the

habitat type traversed by varying between track segments. The

squared drift speed for each habitat type H can be estimated from

the NH track segments that are fully encompassed in the habitat

type considered (it is obviously much easier to find single track

segments than couples of consecutive track segments that are fully

encompassed in a given habitat type) as:

v2
H~

1

NH

XNH

i~1

L2
i =T2

i {4D=Ti

� �
ð9Þ

Less preferred habitat types should be characterised by larger

values reflecting fast and oriented transit movements whereas

lower values should indicate mainly diffusive movements within

patches of highly preferred habitat types. Negative values may

even occur because the latter movements are likely to involve

habitat-specific diffusion coefficients DH lower than the global D

value that has been estimated for the whole environment. More

reliable drift speed values should therefore be obtained when

reliable habitat-specific coefficients DH can be used in Eq. 9

instead of a global D value.

Results

Here I illustrate the relevance of the BRB method to estimate

habitat use by an African buffalo (Syncerus caffer) herd in the early

wet season of 2008. This herd inhabited areas close to the south-

western bank of the Niger River in W park (see [26] for details).

One female was equipped with a GPS collar programmed to

acquire fixes at TR = 30 min intervals. Raw activity (resting vs.

non-resting) was continuously monitored over 5-min intervals

using a head-movement sensor included in the GPS collar. As

ruminant grazers, buffalos move when they eat. Track segments

shorter than 50 m were therefore filtered out even when associated

to a high proportion of activity time (possibly due to disturbance

by flies). Note that, for species that can intensively feed while

remaining almost immobile like browsers, such short and active

bouts should be kept but given a null diffusion coefficient.

Most buffalo herds in [26] were tracked at 180 min intervals,

involving median distances between successive relocations about

10 times smaller than HR diameters. Larger delays resulted in

loose serial correlations. Hence, it appears unreasonable to set Tmax

to a value larger than 180 min. In the present example, 99.7% of

the recording intervals lasted 30 min and 0.3% 60 min due to a

few missing fixes. Hence, UD estimates (Fig. 1) obtained by setting

Tmax to any value larger than 30 min will be almost (Tmax,60 min)

or strictly (Tmax$60 min) identical. Keep in mind however that, to

estimate the diffusion coefficient D, the drift has to be assumed to

be constant during at least two consecutive track segments (i.e.

Tmax$60 min).

Given the fragmented structure of the habitat, a reasonable

choice for smin would have been to set its value to about 50 m for a

solitary individual. As the centre of gravity of a herd does not

necessarily coincide with the location of the tracked individual, it

seems preferable to set smin to a larger value, e.g. 100 m.

Application of Eq. (8) revealed that the global diffusion coefficient

D was 440 m2/min (b180 = 200 m). Habitat-specific DH values

ranged between 220 m2/min (b180 = 140 m) and 350 m2/min

(b180 = 180 m). Most of these DH values must be considered with

caution, however, because of the small sample sizes (Table 1).

The results obtained in terms of normalised (between 0 and 1)

habitat preferences are quite robust (changes #0.01) to the choice

of smin (50 vs. 100 m) or the way smin and bTmax are combined (Eq.

4a vs. 4b). Unsurprisingly, the squared drift speed (estimated using

Eq. 9) took its highest value in areas belonging to the least

preferred habitat type and its lowest value in areas belonging to the

most preferred habitat type (Table 1).

Discussion

Biological relevance of simplified Biased Random Bridges
Animal movements are best modelled as biased correlated

random walks (BCRWs) with adjustable levels of directional bias

and directional correlation [20,24]. With a constant bias direction,

BCRWs, as BRWs, are ballistic at long time periods (the net

straight line displacement tends to be proportional to the travel

length) whereas, with a bias directed toward a central place, they
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lead to stationary space use patterns [16,21]. Without any bias,

BCRWs reduce to CRWs, which are diffusive walks at long time

periods but seem to be ballistic at short ones [20,24]: their

tendency to hold an initial movement direction for a while results

in a short term pseudo-drift that is inversely related to their

sinuosity. Contrary to Brownian motion, simplified BRWs can

therefore represent various types of animal movements at short

time periods quite realistically. Using computer simulations, it can

be shown however that the expected value of the squared distance

d2(t) = ||z0+(zT–z0)t/T–zt||2 does not present exactly the same

properties in CRBs and BRBs: E[d2(t)] takes its maximum value at

time t = T/2 in both BRBs and CRBs, but this maximum value

tends to increase faster than T in CRBs, and the function E[d2(t)]/

E[d2(T/2)] vs. t/T, which is parabolic in simplified BRBs, tends to

be more bell-shaped in CRBs. These differences are sufficiently

weak to imply that simplified BRBs constitute a valid approxima-

tion of CRBs or BCRBs when relocations are acquired frequently

on a regular time basis (so as to minimize inter-bridge variations in

time T). Simplified BRBs are as simple as BBs to apply, as they can

be computed without any knowledge about the direction and

strength of the advection. They are thus the only advective-

diffusive bridges that are sufficiently simple to be usable in

practice, while they remain sufficiently sophisticated to suitably

represent various types of movements between known relocations

acquired within a relatively high rate.

The introduction of an advection process whose characteristics

can change from one bridge to the next allows for the actual

abilities of a resident animal to frequently reorientate towards the

more attractive areas of its HR (through changes in advection

direction) and to locally adapt its space use intensity to the type of

habitat it crosses (through changes in advection strength).

Simplified BRBs thus provide a functional way to obtain reliable

HR space use estimates from GPS fixes that have been obtained at

a high rate and raw activity information. Simplified BRB-based

UDs can easily be computed using the MKDE method, which can

further cope with the presence of obvious boundaries to avoid

attributing non-null space use values to inaccessible areas and

underestimated values to accessible adjacent areas [15]. Finally,

drift speed estimates make it possible to quantify the extent to

which higher cumulative space use frequencies in some areas were

due to higher habitat-dependent instantaneous space use intensity.

Complementary path recursion analyses [8] are required to

determine the extent to which preference for these areas was also

due to more frequent returns to them. A user-friendly program for

computing BRB/MKDE-based UDs (including boundary man-

agement and, if a habitat map is available, habitat preferences and

drift speed estimations) in a form allowing effortless integration in

ArcGIS and R/adehabitat environments [27] is available upon

request.

Given the crucial function of advection, the validity of HR space

use estimates obtained with the BB method is questionable. As BBs

and simplified BRBs involve identical PDFs, the computational

procedure on which the BB method rests should be globally valid

when animals performs advective-diffusive movements with a

locally (within bridge) constant drift instead of purely diffusive

ones. In practice, the BB and BRB methods differ primarily by the

specification of an upper recording time threshold Tmax in the

latter, and secondarily by different expressions of the relocation

variance. Thus, for an animal tracked with a high fix rate with

respect to its usual movement speed and HR size, as in the buffalo

example, the BB and BRB methods will provide similar (identical

if the same relocation variance was used) UD estimates because all

recording time intervals TR were shorter than any reasonable Tmax

value. In such cases, the BRB method will not provide better

results than the BB method would do, although confidence in their

validity can be higher.

Key role of the upper recording time threshold
In both BB and BRB methods, the expected animal location at

intermediate times is assumed to slide along a straight line from

one relocation to the next with a constant local speed, involving a

homogenous movement process. The key role of the upper

recording time threshold Tmax is precisely to filter out track

segments that are likely to involve marked changes in the preferred

moving direction and/or other movement characteristics. There is

obviously no reason to introduce such a time threshold when

movements are a priori assumed to be purely and constantly

diffusive. It has been acknowledged, however, that too long delays

between successive relocations may be problematic for the BB

method because they may involve some orientation process (i.e.

advection) towards the HR centre [14]. The identity of BB and

simplified BRB equations shows that the existence of an

orientation process towards any goal (not limited to the HR

centre) does not matter by itself, provided that recording time

intervals TR are small enough to warrant that its characteristics

remain approximately constant between successive relocations.

The time threshold Tmax prevents the use of the BRB method

when animals were tracked with a too low fix rate. If numerous

rack segments are longer in time than Tmax, the fix data set is then

better considered as the output of a point rather than a movement

process, and UDs are better estimated using the classical LKDE

method. The BB method might still be used in this case, as it

incorporates no time threshold, but will provide dubious results.

The BRB method is quite flexible when implemented via MKDE

as it mechanically generates LKDE-based UD estimates with a

constant smoothing parameter equal to hmin (which must be set to

an appropriate value for LKDE) whenever all track segments are

longer in time than Tmax. With animals tracked with a relatively

Table 1. Habitat-specific diffusion coefficients, preferences and drift speeds.

Diffusion coefficient % Habitat availability % Habitat use Normalised preference Drift speed

Rocky grounds 350 (20) 40 18 0.096 16 (75)

Galleries –– (0) 2 1 0.149 13 (2)

Annuals 320 (61) 47 53 0.237 9 (204)

Perennials 220 (21) 11 28 0.518 6 (86)

Most habitat-specific diffusion coefficients (expressed in m2/min) were computed from too few couples of consecutive track segments (sample sizes between
parentheses) to be reliable. Both habitat availability (non-weighted proportion of each habitat type) and use (UD-weighted proportion of each habitat type) were
computed on the areas encompassed within 95% isopleths (see Fig. 1). Normalised preferences correspond to habitat use/availability ratios subject to unit-sum
constraint. Drift speeds values (expressed in m/min) should be considered with extreme caution when computed from only a few track segments.
doi:10.1371/journal.pone.0014592.t001
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high fix rate, too long track segments may nevertheless still occur

because of missing fixes (GPS failures). The BB and BRB methods

will provide similar UD estimates when there are no missing fixes,

but will increasingly diverge as the fraction of segments longer

than Tmax increases. The BB method will tend to provide

increasingly dubious results because it will estimate erroneous

space use frequencies attached to an increasing number of too long

segments, whereas the BRB method, which filters them out, will

tend to provide increasingly biased results in terms of habitat

preferences because GPS failures are often habitat-dependent

[28,29]. However, this bias may be corrected later by re-

attributing the activity times initially removed from UD compu-

tation to the habitats in which the animal was likely to be. Finally,

if the programmed recording time intervals were lower than Tmax/

2, occasional missing fixes will be replaced by bridge probability

estimations with a cost limited to a marginal loss of accuracy.

A general guideline to determine a suitable Tmax value consists in

estimating the serial correlation between subsampled relocations.

Determining whether the correlation level is low enough to

consider relocations as being statistically independent is relatively

easy [30]. In contrast, it is harder to determine whether the serial

correlation between relocation is high enough to provide suitable

movement information. In the absence of standardized procedure,

one may consider that the serial correlation is sufficiently high

when the median distance between successive relocations is much

(e.g. 10 times) smaller than the HR diameter. If it is necessary to

keep one relocation every n to obtain a low serial correlation, the

Tmax value can be set to n–1 times the recording time interval

(assuming that data were acquired with a constant recording time

interval). Setting Tmax to any larger value will lead to identical

results if the GPS failure rate is negligible. When an animal cannot

be tracked with a high fix rate for extended periods because of

electric power constraints, the recording time interval could be set

to a reasonable Tmax value (e.g., based on a pilot study) if the failure

rate is negligible, but a doubled rate will have to be used

occasionally to estimate the diffusion coefficient D. If GPS failures

occur more often, this doubled rate will have to be used routinely.

Towards a dynamic approach to space and habitat use
Before the GPS era, getting wild animal locations in the field

often required manual triangulation, a highly time-demanding

task. Wildlife researchers then usually looked at acquiring only the

minimum relocation number necessary to obtain reliable HR size

estimates. It was then important to check that relocations were

statistically independent [30,31] because a serial correlation

indirectly meant that the whole tracking period was too short to

let animals move around in their whole HRs. However, serial

correlation does not matter by itself in HR estimation [32–35],

and getting samples of serially correlated relocations that are large

enough to be representative of the whole HR use is currently no

problem with GPS tracked animals. In this new context, needs are

reversed: it has become important to record highly serially

correlated relocations so as to obtain effective movement

information. Recording raw activity concurrently is also of major

importance to distinguish resting and intensive space use [15]. In

principle, only activity times matter in bridge computations

(resting habitat preferences can be estimated separately from

resting locations). If of some interest, however, global rather than

active UDs can be computed with a modified version of the BRB

method in which resting relocations are kept and given a null

diffusion coefficient.

Although it has been applied with apparent success to markedly

serially correlated relocations, the LKDE method was initially

designed to deal with independent locations. It involves a

smoothing parameter which can be fixed or variable, and depends

on the global (fixed) or local (variable) location density [10,11].

The best way to estimate this key parameter in HR studies is still

open to discussion [36]. A poor choice is likely to result in

unreliable UD estimates [3,15,34]. In fact, with serially correlated

locations reflecting a movement rather than an independent point

process, probability density estimation is not just a matter of

location density. Through its MKDE form, the BRB method

involves a variable smoothing parameter whose minimum value

depends on the habitat grain and maximum value depends on

(possibly habitat-specific) movement diffusion coefficient(s). It

should therefore provide more biologically relevant UD estimates.

By relying on very general movement rules (advection-diffusion),

this promising approach stays at the interface between general

statistical approaches, which can coarsely describe any location

pattern and relate it to habitat covariates [9] but fully ignore the

underlying movement processes, and mechanistic approaches

[16,37], which rely explicitly on hypothetical movement processes

that may be too specific to apply to a large range of situations. The

dynamic approach to space and habitat use based on BRBs should

therefore contribute to a renewed foraging theory [38] by bridging

the gap between habitat selection and movement ecology studies.
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