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Abstract

Background: With the huge amount of uncharacterized protein sequences generated in the post-genomic age, it is highly
desirable to develop effective computational methods for quickly and accurately predicting their functions. The information
thus obtained would be very useful for both basic research and drug development in a timely manner.

Methodology/Principal Findings: Although many efforts have been made in this regard, most of them were based on
either sequence similarity or protein-protein interaction (PPI) information. However, the former often fails to work if a query
protein has no or very little sequence similarity to any function-known proteins, while the latter had similar problem if the
relevant PPI information is not available. In view of this, a new approach is proposed by hybridizing the PPI information and
the biochemical/physicochemical features of protein sequences. The overall first-order success rates by the new predictor
for the functions of mouse proteins on training set and test set were 69.1% and 70.2%, respectively, and the success rate
covered by the results of the top-4 order from a total of 24 orders was 65.2%.

Conclusions/Significance: The results indicate that the new approach is quite promising that may open a new avenue or
direction for addressing the difficult and complicated problem.
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Introduction

With the rapid growth of genome sequences and gene

expression profiles, there is increasing concern about using

computational methods to determine the linkages between protein

sequences and their biological functions [1,2,3,4]. This is because

experimental determination of protein functions is not only

expensive but also time-consuming and hence can no longer

catch up with the pace of the fast growth of newly found proteins.

In this paper, we are to propose a computational method to tackle

the problem by studying the functions of proteins in mouse, one of

the most extensively studied organisms. On one side, functions of

many proteins of mouse are already known, which can help us

establish a statistical predictor with solid training dataset. On the

other side, thousands of proteins of mouse still lack functional

annotation [5] and it would be beneficial if a well-performed

predictor can be developed to provide us with their possible

functions in a timely manner, particularly for drug target selecting

and screening [4].

The most established approaches [6] for protein function

prediction are based on sequence similarity using BLAST [7],

sequence motifs such as PROSITE [8], profile methods such as

PFAM [9] and PSI-BLAST [7], and structure based method such

as FATCAT [10] and ProCAT [10]. However, estimates based on

2 million known proteins suggested that about 33% of proteins

with unknown function were closely related to well-characterized

homologues and could be effectively targeted by these methods

[11]. Because protein-protein interaction (PPI) data sets are

becoming increasingly available for more and more organisms,

using PPI data to assign protein function has also been extensively

studied. Algorithms based on PPI data suggest that proteins with

short distances to each other in the network are likely to share the

common biological functions [12,13,14,15], and interactive

neighbors are more likely to have the same biological functions

than non-interactive ones [16,17]. This is because the query

protein and its interactive proteins may form a protein complex to

perform a particular function. In a recent review [12], R Sharan

et al described two main classes of the network-based methods for
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predicting protein functions: direct methods such as neighborhood

counting based method [18],Graph theoretic methods [19,20];

module-assisted methods such as hierarchical clustering-based

methods [21,22], graph clustering methods [23,24]. However,

some few researches were carried out by only considering binary

interactions [25,26,27] in this regard; i.e., whether they are

interactive with each other or not, without considering the

likelihood of the occurring of these interactions. Actually, such

likelihood is often associated with the interaction strengths.

Another problem is that some proteins still lack interaction data,

preventing them from being predicted and analyzed. In view of

this, in the current study we are to adopt a weighted interaction

network instead of binary one. For those proteins that do not have

PPI data, the hybrid properties of proteins, including their

biochemical and physicochemical properties, are used to code

the protein samples for prediction. Because such coding treatments

have been successfully used to improve the quality in predicting

many other protein attributes, such as membrane protein type

[28], protein subcellular locations [29], and protein complexes

[30].

A total of 24 functional categories are adopted in this paper.

Each protein is predicted as belonging to some of these 24

functional categories. Here, we are concerned about not only the

first-order predicted function - the most likely function predicted

by the prediction model, but also the lower-order functions sorted

by the prediction criteria. As a result, the accuracies of the first-

order function prediction for the overall training set and test set

were 69.1% and 70.2%, respectively.

Materials and Methods

Data set
The dataset for studying the functions of proteins in mouse here

was downloaded from MfunGD [31] (MOUSE Functional

Genome Database, ftp://ftpmips.gsf.de/MfunGD/). There are a

total of 24 function categories from FunCat [32], which are

collected from manually annotation in the literature and GO

annotation [33,34]. Among the 42,682 proteins obtained, there

were 14,732 proteins with both sequence and function informa-

tion, constituting the benchmark dataset. These proteins belonged

to 24 functional categories. The number of proteins in each of the

24 categories is shown in Table 1, from which we found that most

proteins perform more than one function.

The interaction network takes proteins as its nodes, with an

edge between two proteins if they interact with each other. The

initial weighted PPI network was retrieved from STRING [35]

(http://string.embl.de/), which is a large database of known and

predicted protein interactions. These interactions contain direct

(physical) and indirect (functional) interactions, derived from

numerous sources such as experimental repositories, computa-

tional prediction methods. In the network, each edge is marked

with a score as the edge weight to quantify the interaction

confidence, i.e., the likelihood that an interaction occurs.

Then the obtained 14,732 proteins were separated into two

subsets: (A) 10,194 proteins in the above PPI network for training

and testing the network-based method (see the following section);

(B) 4,538 proteins not in the PPI network for training and testing

Table 1. Functional classification of proteins of mouse.

Functional number Functional Category Number of proteins

1 METABOLISM 2714

2 ENERGY 605

3 CELL CYCLE AND DNA PROCESSING 1123

4 TRANSCRIPTION 2128

5 PROTEIN SYNTHESIS 490

6 PROTEIN FATE (folding, modification, destination) 2490

7 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT (structural or catalytic) 8414

8 REGULATION OF METABOLISM AND PROTEIN FUNCTION 1115

9 CELLULAR TRANSPORT, TRANSPORT FACILITIES AND TRANSPORT ROUTES 2411

10 CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM 4077

11 CELL RESCUE, DEFENSE AND VIRULENCE 778

12 INTERACTION WITH THE ENVIRONMENT 1492

13 SYSTEMIC INTERACTION WITH THE ENVIRONMENT 2086

14 TRANSPOSABLE ELEMENTS, VIRAL AND PLASMID PROTEINS 11

15 CELL FATE 1313

16 DEVELOPMENT (Systemic) 1044

17 BIOGENESIS OF CELLULAR COMPONENTS 980

18 CELL TYPE DIFFERENTIATION 370

19 TISSUE DIFFERENTIATION 426

20 ORGAN DIFFERENTIATION 559

21 SUBCELLULAR LOCALIZATION 9767

22 CELL TYPE LOCALIZATION 274

23 TISSUE LOCALIZATION 366

24 ORGAN LOCALIZATION 620

doi:10.1371/journal.pone.0014556.t001
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hybrid-property based method (see the following section). For

subset A, 1,076 proteins were randomly selected as the

independent test set denoted by S
n
Te for network-based method,

the remaining 9,118 proteins were comprised of training set S
n
Tr.

Because the initial network was divided into two parts, some edges

were removed, causing a few proteins to drop the connection to all

their neighbors in the initial network. Such proteins losing PPI

information should be taken away from the training set and test set

for network-based method. As a result, Sn
Te consisted of 1,074

proteins and 88,960 interactions, and Sn
Tr consisted of 9,093

proteins and 742,200 interactions. For subset B, the homologous

proteins were removed by CLUSTAL-W [36] to keep any two

proteins having lower than 50% sequence identity, and then 248

proteins were randomly selected to constitute the test set Sh
Te for

hybrid-property based method, the remaining 2,905 proteins were

assigned as training set Sh
Tr. These four datasets can be found in

Table S1, Table S2, Table S3, and Table S4.

Network-based method
Firstly the proteins in the MfunGD [31] database and those in

the STRING [35] database need to be registered with each other

to construct the weighted PPI interaction network. Then the

functions of a query protein can be predicted by using the

interaction network according to some criteria.

Network mapping. The protein IDs in MfunGD were

different from those, the ensemble protein IDs in STRING. To

convert MfunGD IDs to ensemble IDs, the ID (the MGI ID [37])

of each MfunGD protein was mapped to the ensemble ID by

applying BioMart [38] to get the corresponding ensemble IDs

from the MGI IDs.

Prediction with PPI information. Towards a query protein

in the PPI network, we care not only about its neighbor proteins,

but also about the weights of the interactions. Generally, let us

consider a PPI network in which proteins belong to 24 functions

(F~½F1,F2,:::,F24�), where F1 denotes the ‘‘METABOLISM’’, F2

the ‘‘ENERGY’’, F3 the ‘‘CELL CYCLE AND DNA

PROCESSING’’, and so forth (cf. Table 1). Suppose the

network consists of n proteins P1,P2,:::,Pnf g, in which the

functions of the k-th protein is denoted by

W(Pk)~½fk,1,fk,2,:::,fk,j ,:::,fk,24�T (k~1,2,:::,n; j~1,2,:::,24) ð1Þ

where

fk,j~
1, if Pk has the j-th function

0, otherwise

�
ð2Þ

For a query protein Px, we define its interaction with the

proteins in the PPI network like this

W (Px)~½wx,1,wx,2,:::,wx,k,:::,wx,n�T ð3Þ

where wx,k represents the interaction confidence score [35]

between Px and the k-th protein in the network; when there is

no interaction between them, we have wx,k~0. By default, we also

have wx,k~0 if x~k since there is no self-interaction in the

network. Here, let us introduce a new concept, the so-called

‘‘inclined potential’’ of protein Px to the j-thfunction, as can be

formulated by

Y(Px[j)~
Xn

k~1
wx,kfk,j (j~1,2,:::,24) ð4Þ

where Y(Px[j) is the ‘‘inclined potential’’ of protein Px to the

j-thfunction in the PPI network. Therefore, the larger the value of

Y(Px[j), the more likely the protein Px performs the

j-thfunction. In other words, the most likely function of the

protein Px can be predicted as the m-th function if

m~argmaxj Y(Px[j)jj~1,2,:::,24f g ð5Þ

where m represents the argument of j that maximizes the value of

Y(Px[j). However, most proteins in vivo often perform more

than one function, the prediction with only one candidate function

is not sufficient. In view of this, to make the predictor capable to

deal with proteins with multiple functions and provide experi-

mental biologists with more flexible information in prioritizing

candidate targets, let us introduce a 24-D (dimensional vector) to

reflect the probability with which the query protein may perform

each of the 24 functions, as formulated as follows

D; Y(Px[j)jj~1,2,:::,24f g~V~

m1

m2

..

.

mj

..

.

m23

m24

2
66666666666664

3
77777777777775

ð6Þ

where D; is a descending operator to arrange the 24 scores

of Y(Px[j) according to the descending order; i.e.,

m1§m2§ � � �§mj§ � � �§m24. Accordingly, if m1~Y(Px[15),

m2~Y(Px[1), m3~Y(Px[5), …, then that the query protein Px

performs the 15thfunction (CELL FATE) will have the highest

likelihood, that Px performs the 1stfunction (METABOLISM) will

have the second highest likelihood, that Px performs the

5thfunction (PROTEIN SYNTHESIS) will have the third highest

likelihood, and so forth (cf. Table 1). In rare case when more than

one element in Eq.6 has the same score, their order will be

assigned randomly. According to the descending order of Eq.6, the

predicted results are respectively called the 1st-order result, the

2nd-order result, the 3rd-order result, and so forth.

Hybrid-property approach
Firstly, each protein is coded into feature vector using the

hybrid properties. Secondly the features are sorted in descending

order by mRMR method. Thirdly, Incremental Feature Selection

Method was applied to select the best-performing predictor

constructed by Nearest Neighbor Algorithm.

Biochemical and physicochemical description of pro-

teins. Many studies have indicated that the success rates for

predicting protein attributes could be remarkably improved by

incorporating various biochemical or physicochemical properties

into the descriptors of protein samples [39,40] and a long list of

relevant references cited in a recent review [41]). Therefore, the

biochemical and physicochemical properties (hybrid properties) of

proteins are used to code proteins. As the name suggests, it consists

of two kinds of properties: (1) Biochemical properties, including

two features: amino acid composition, and secondary structural

propensity; (2) Physicochemical properties, including five features:

polarizability, solvent accessibility, normalized van der Waals

volume, and polarity [40].

Predicting Protein Functions
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Of the above seven features, except for the amino acid

composition that is an extended quantity to reflect the entire

protein, the rest are local quantities to reflect each of the

constituent amino acids. Each of such local feature quantities can

be classified into two or three groups. For instance, for each amino

acid, the secondary structural propensity is characterized as three

groups: helix, sheet and coil as predicted by Predator [42]; the

hydrophobicity is classified into polar, neutral, or hydrophobic

[43]; the solvent accessibility is marked as buried or exposed to

solvent by PredAcc [44].

The biochemical or physicochemical character of a protein

sequence can be reflected through each of these local feature

properties. For instance, using P, N and H to represent the three

groups of hydrophobicity: polar, neutral, and hydrophobic, a

given protein sequence ‘‘MSDKPDMAEIEKFSKETIEQEKQA-

GESTQEKNPLPMLLPATDKSKLKKTE’’ can be transformed

into ‘‘HNPPNPHNPHPPHNPPNHPPPPPNNPNNPPPPNHNH-

HHNNNPPNPHPPNP’’.

For each such letter sequence, three properties can be obtained:

composition (C), transition (T), and distribution (D). C describes

the global percent composition of each of the groups in the letter

sequence; T, the percent frequencies with which the letter changes

to another along the entire length of the letter sequence; and D,

the distribution pattern of the letters along the sequence,

measuring the percentage of the sequence length within which

the first, 25%, 50%, 75%, and 100% of the amino acids of each

letter is located.

Take the 50-length letter sequence described above as an

example. It is composed of 10 Hs, 16Ns, 24Ps. The first feature C

is 10=50~20:0%, 16=50~32%, and 24=50~48% for H, N and

P, respectively. For the feature T, there are totally 31 transitions in

the sequence, with 8 between H and N, 16 between N and P, and

7 between H and P, so the feature T can be calculated as

8=49~16:33%, 16=49~32:65% and 7=49~14:29%, respectively.

The first, 25%, 50%, 75% and 100% of H is located at the

position of the 1st, 10th, 18th, 37th, and 46th in the letter

sequence. Thus the feature D for H is 1=50~2%, 10=50~20%,

18=50~36%, 37=50~74%, and 46=50~92%. The feature D for

N and P can be calculated with the similar method, and the results

are: the feature D for N is 4%, 28%, 54%, 78%, and 98%; and

that for P is 6%, 24%, 44%, 64%, and 100%, respectively. With

all these, the three properties of the letter sequence are

C~ 20%,32%,48%ð Þ, T~ 16:33%,32:65%,14:29%ð Þ, and D~
2%,20%,36%,74%,92%,4%,28%,54%,78%,98%,6%,24%,44%,ð

64%,100%Þ, a total of 21 features.

For the solvent accessibility, there are only two local feature

groups, and hence resulting in seven features rather than 21 as

illustrated above. The amino acid compositions have 20 features,

each of which represents the percentage or occurrence frequency

of the constituent amino acids in a protein sample [45]. For each

of the other five local feature properties, 21 global features can be

obtained as in the case of hydrophobicity described above. Using

all these results, a total of 132 (132~5|21z20z7) features can

be obtained to represent a protein sequence. Listed in Table 2 are

the 132 features used in our study.

After each protein was coded, two criteria were applied to the

vectors set. (1) Excluded proteins with the same coding vectors, but

the different functional categories. (2) Keep one of the proteins

that share common coding vectors and functional categories.

Feature sorting. Maximum Relevance, Minimum Redun-

dancy (mRMR) Method was originally developed by Peng et al. to

process microarray data [46]. The idea is to rank each feature

based on its relevance to the target and redundancy with other

features. A ‘‘good’’ feature is defined as one that has the best trade-

off between maximum relevance to target and minimum

redundancy within the features. To quantify both relevance and

redundancy, mutual information (MI), which estimates how much

one vector is related to another, is defined as following.

I(x,y)~
ÐÐ

p(x,y) log
p(x,y)

p(x)p(y)
dxdy ð7Þ

where x, y are two vectors, p(x,y) is the joint probabilistic density,

p(x) and p(y) are the marginal probabilistic densities.

Let V denotes the whole feature set, while Vs denotes the

already-selected feature set which contains m vectors. The to-be-

selected feature set with n features is denoted by Vt. The relevance

D of the feature f in Vt with the target c can be calculated by:

D~I(f ,c) ð8Þ

And redundancy R of the feature f in Vt with all the features in

Vs can be calculated by:

R~ 1
m

P
fi[Vs

I(f , fi) ð9Þ

To obtain the feature fj in Vt with maximum relevance and

minimum redundancy, Eq. (8) and Eq. (9) are combined to obtain

the mRMR function:

max
fj[Vt

I(fj ,c){ 1
m

P
fi[Vs

I(fj, fi)

" #
(j~1,2,:::,n) ð10Þ

For a feature set with N, the feature evaluation will be executed

N rounds. In the first round, the redundancy is 0 for Vs is null,

therefore the feature with the maximum relevance to target c is

selected. After the N evaluations, the following feature set S in the

selection order can be obtained by the mRMR method:

S~ f0

0
, f1

0
,:::, fh

0
,:::, fN{1

0n o
ð11Þ

where the subscript index indicates at which round the feature is

Table 2. Biochemical and physicochemical features of
proteins and their dimensionality.

Property name Number of feature Total

C T D

Hydrophobicity 3 3 15 21

Secondary structure 3 3 15 21

Solvent accessibility 1 1 5 7

Normalized van der Waals
Volume

3 3 15 21

Polarity 3 3 15 21

Polarizability 3 3 15 21

Amino Acid Composition 20 20

doi:10.1371/journal.pone.0014556.t002
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selected. The better the feature, the earlier it will satisfy Eq. (10),

the earlier it will be selected, and the smaller its index will be.

Prediction with hybrid properties. Nearest Neighbor

Algorithm (NNA) is a simple machine learning method that

arranges the object to the class of its nearest neighbor sample. It

has been widely used for predicting protein subcellular localization

(see, e.g., a comprehensive review [47] and the references cited

therein). In this study, the similarity between vector Pi and Pj is

defined as

Q(Pi,Pj)~ cos (Pi,Pj)~
Pi
:Pj

jjPijj:jjPj jj
ð12Þ

where Pi
:Pj is the inner product of Pi and Pj , and jjPijj and jjPj jj

represent their modules, respectively.

Also suppose that a query proteins Px in the dataset consisting

of n proteins P1,P2,:::,Pnf g, then the larger the value of Q(Px,Pk),
the more likely Px has the same function as Pk.

Modeling. Incremental Feature Selection Method [48,49]

(IFS) is employed to select the optimal feature subset from the

feature space and the predictor with best performance. Firstly, 132

feature subsets were generated according to the sorted features like

this

Si~ff0, f1,:::, fig(0ƒiƒN{1) ð13Þ

where fi is the i-th feature in the sorted 132 features. With

each feature subset, the proteins were recoded to

(iz1)-dimensionalvectors. Then the functions of protein are

predicted with the hybrid properties as described above (see Eq.12

and Eq.6) according to NNA. A curve named IFS curve, was

plotted by using index i as the x-axis and the first order accuracy of

feature subset Si as the y-axis. The optimal feature set

Soptimal~ f0,f1, . . . ,fhf g was selected when the curve arrived at

the apogee with index h. Meanwhile, the predictor based on

Soptimal was used to predict the functions of proteins.

For more discussions about the hybrid-property approach, refer

to [49,50].

Overall prediction
The prediction was carried out according to such a procedure

that if a test protein has PPI information, the network-based

method was applied for identifying its functions; otherwise, the

hybrid-property based method was applied.

Three cross-validation methods are often used in statistical

prediction [51]: independent dataset test, subsampling (K-fold)

test, and jackknife test. Of these three, the jackknife is deem the

most objective that can always yield a unique outcome for a given

benchmark dataset as elucidated in [29] and demonstrated by

Eq.50 of [47]. Accordingly, the jackknife test has been increasingly

used by investigators to evaluate various predictors (see, e.g.,

[52,53,54,55]). During the jackknifing for the network-based

method, each node (protein) was in turn taken away from the PPI

network and then predicted. During the jackknifing for the hybrid-

property based method, each protein was in turn singled out and

predicted according to the NNA. In this study, the j-th order

overall accuracy ACj for the dataset can be calculated like this

ACj~
Mj

N
(j~1,2,:::,24) ð14Þ

where Mj is the number of proteins whose j-th order predicted

function is the one of the true functions of the proteins, and N is

the total number of proteins in the dataset. Therefore, the 24-

order overall accuracies were used as an evaluation for the both

methods. The higher ACj with a small j and the lower ACj with a

large j mean that the method performs well in the prediction.

Besides, the average number of functions that each protein in

the dataset performs can be calculated like this

C~
Number of functions of proteins

Number of proteins
ð15Þ

Hence, another evaluation for both the methods was presented

as the likelihood that the first k-order prediction results include all

the functions of proteins, which can be calculated like this

Pk~

Pk
j~1

ACk

P24

j~1

ACj

ð16Þ

where k is the smallest integer greater than or equal to C. A large

Pk also means a good performance of the method for the protein

functions prediction.

Results and Discussion

Performance of network-based method
In this study, 9,093 proteins and 1,074 proteins were used to

train and test the network-based method. The overall jackknife

success rate on S
n
Tr and S

n
Tethus obtained for the first-order

function was 75.9% and 78.2%, respectively. Shown in Table 3
are the accuracies of all the 24-order function predictions using the

PPI network-based approach. For training set S
n
Tr, in all the cases,

higher-order function prediction is better than the lower one,

implying that the protein functions are nicely sorted using the

prediction criteria. The average number of functions that a protein

possesses is 3.25 according to Eq. (15). Therefore we only consider

the first 4 (4~ 3:25½ �z1) ones in the 24-order predictions. The

probability that all true functions included for a protein by taking

the first 4-order predicted functions is 68.4% according to Eq. (16),

indicating that the predictor performs quite well in predicting

these functions.

Performance of hybrid-property based method
After the filtering procedure (see biochemical and physico-

chemical description of proteins section), the obtained S
h
Tr

comprised of 2,842 proteins and S
h
Te comprised of 246 proteins

were then used to train and test the hybrid-property based

method. Listed in Table 3 are the accuracies by the jackknife test

with the hybrid-property based method. The prediction accuracy

of the first-order predicted function for S
h
Tr and S

h
Te were 47.2%

and 35.4%, respectively, using 90 optimized hybrid features

selected by IFS procedure from a total of 132 features, which can

be seen from the IFS curve in Figure 1. Detail of these 90 features

can be found in Table S5, and the distribution of the subtypes of

protein hybrid properties in the 90 features is showed in Figure 2.

For the training set Sh
Tr, the average number of functions that a

protein possesses is 2.81. Thus the first 3 (3~ 2:81½ �z1) ones in the

24-order predictions is considered. According to Eq. (16), it is

44.1% for the probability that all true functions of a protein are

included by taking the first 3-order predicted functions, indicating

that the predictor using hybrid properties performs fairly well.

Predicting Protein Functions
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The overall prediction
The overall prediction combines the results of predictions from

both network-based and hybrid-property based methods. The

accuracies of the first-order function prediction for the overall

training set (Sn
TrzSh

Tr) and test set (Sn
TezSh

Te) were 69.1% and

70.2%, respectively. Results of the other-order function predictions

are shown in Table 3. For the overall training set, the average

number of functions that a protein possesses is 3.14. Here, we still

only consider the first 4 (4~ 3:14½ �z1) ones in the 24-order

predictions. According to Eq. (16), it is 65.2% for the probability that

all true functions of a protein are included by taking the first 4-order

predicted functions, indicating that our method performs quite well

for the entire prediction. In this study, for the 24-order predicted

functions generated by the method, the first 4-order predicted

functions should be paid more attention to than other functions.

Comparison of network-based methods with STRING
data and IntAct data

Besides the known PPIs, STRING also includes the predicted

PPIs from the computational prediction methods. Here we want to

investigate whether using both the known and predicted PPIs will

improve the performance of the predictor using only the known

PPIs or not. The known PPIs were downloaded from the IntAct

[56], where the high-quality molecular interactions were collected

from the curation of published literature or from the data

depositions of the expert curators. After mapping the IntAct data

to MfunGD, we filtered the proteins without function annotation.

As a result, a PPI network consisted of 1,939 proteins and 6,543

known interactions was obtained. With the network, the jackknife

test prediction accuracies of the network-based method for the

1,939 proteins are listed in Table 4. Meanwhile, with the

STRING network (S
n
Tr), the prediction accuracies for the 1,939

proteins are also listed in Table 4. The first-order prediction

accuracy with STRING data is 83.5%, 26% higher than the first-

order prediction accuracy with IntAct data (57.5%). For the

collected 1939 proteins, the average number of functions that a

protein possesses is 3.94. The probabilities that all true functions of

a protein are included by taking the first 4-order predicted

functions are 66.3% and 47.4% for STRING data and IntAct

data, respectively. The comparison indicates that the network-

based method performed better with the STRING PPIs than the

IntAct PPIs.

Limited to the existing biotechnology means, many PPIs are

difficult to detect in the lab. Therefore, the existing PPI networks

derived from the experiments only cover a very small part of the

total proteome. For example, InterAct [56] stores ,3000 mouse

protein with PPI information about 7% of the mouse proteom; and

DIP [57] contains ,1,000 mouse protein with PPI information,

about 2% of the mouse proteom. STRING trys to integrate as many

PPIs data as possible mainly from four sources: genomic context,

high-throughput experiments, co-expression and previous knowl-

edge. STRING (version 8.0) gathered ,2.5 million proteins of 630

Table 3. The 24-order prediction accuracies of the three methods on the training/test sets.

Network-based method Hybrid-property based method Motif-based method Overall prediction

Order Sn
Tr Sn

Te Sh
Tr Sh

Te Sn
Tr Sn

Te Sh
Tr Sh

Te Sn
TrzSh

Tr Sn
TezSh

Te

1 75.93% 78.21% 47.15% 35.37% 57.12% 42.67% 31.83% 32.69% 69.07% 70.23%

2 64.38% 70.11% 40.71% 32.52% 51.79% 40.04% 30.48% 27.88% 58.74% 63.11%

3 50.52% 53.91% 35.26% 24.80% 45.65% 39.57% 28.48% 30.77% 46.89% 48.48%

4 31.09% 35.10% 26.14% 21.54% 34.68% 32.33% 24.22% 29.81% 29.91% 32.58%

5 20.07% 24.21% 20.16% 24.39% 25.64% 27.07% 22.82% 18.27% 20.09% 24.24%

6 14.71% 17.60% 14.07% 16.67% 17.95% 20.96% 16.87% 15.87% 14.56% 17.42%

7 11.33% 12.76% 11.86% 13.41% 14.42% 18.42% 14.46% 12.98% 11.45% 12.88%

8 8.37% 9.68% 10.70% 15.85% 10.88% 14.19% 14.41% 12.98% 8.92% 10.83%

9 6.82% 9.87% 8.97% 14.63% 9.11% 13.16% 12.11% 12.98% 7.33% 10.76%

10 6.16% 6.61% 8.27% 13.01% 8.18% 11.75% 13.21% 8.65% 6.66% 7.80%

11 4.76% 5.49% 7.00% 6.50% 6.69% 12.31% 11.41% 11.06% 5.30% 5.68%

12 4.65% 5.87% 6.33% 5.28% 5.95% 10.15% 9.61% 9.62% 5.05% 5.76%

13 3.86% 4.56% 5.77% 5.28% 5.30% 9.40% 8.96% 8.65% 4.32% 4.70%

14 3.66% 3.54% 6.30% 3.66% 5.42% 9.02% 7.11% 8.17% 4.29% 3.56%

15 3.04% 4.10% 4.33% 3.25% 4.43% 8.74% 8.56% 7.21% 3.34% 3.94%

16 2.64% 3.35% 4.22% 2.85% 3.67% 8.74% 6.91% 1.92% 3.02% 3.26%

17 2.36% 2.51% 3.52% 1.22% 3.77% 8.83% 5.21% 2.40% 2.64% 2.27%

18 2.13% 1.86% 4.26% 2.44% 3.19% 6.86% 5.46% 1.92% 2.64% 1.97%

19 1.67% 2.23% 3.87% 3.66% 2.84% 6.11% 5.61% 1.92% 2.20% 2.50%

20 1.63% 2.05% 2.78% 2.03% 2.34% 4.32% 4.50% 0.96% 1.90% 2.05%

21 1.59% 1.49% 2.74% 4.47% 2.07% 4.51% 3.55% 0.48% 1.87% 2.05%

22 1.46% 1.30% 1.83% 0.41% 1.64% 4.51% 4.50% 0.48% 1.55% 1.14%

23 1.07% 1.12% 1.90% 1.22% 1.10% 3.57% 3.20% 0.48% 1.27% 1.14%

24 0.78% 1.12% 0.49% 0.41% 0.06% 0.66% 2.75% 0.48% 0.71% 0.98%

doi:10.1371/journal.pone.0014556.t003

Predicting Protein Functions

PLoS ONE | www.plosone.org 6 January 2011 | Volume 6 | Issue 1 | e14556



organisms together. For mouse, STRING covers ,25% of the

proteom. Therefore, the functions of more proteins will be predicted

using the network-based method with STIRNG PPIs.

It should be pointed out that STRING data contains many

predicted PPIs, which may lead to the wrong classifications. To

avid the problem, we used the interaction confidence score (i.e.

edge weight) in the network-based method as described above.

According to STRING, a more reliable PPI will be assigned a

higher edge weight. From the principle (Eq. (1) – Eq. (6)), the

network-based method is robust with respect to false PPIs. Overall,

the predicted PPIs should be used very cautiously.

Comparison between the network-based method and
hybrid-property based method

In this study, network-based method and hybrid-property based

method were developed to predict the functions of protein in

mouse. In order to compare the performance between them, we

also trained and tested the hybrid-property based method using

the S
n
Tr and S

n
Te. The prediction results are listed in the Table 3.

The first-order prediction accuracies on the Sn
Tr and Sn

Te are

57.1% and 42.7%, respectively, which are much lower than the

prediction accuracies of the network-based method on the same

training set and test. For the training set S
n
Tr, the probability that

all true functions included for a protein by taking the first 4-order

predicted functions is 58.4% according to Eq. (16), which are also

lower than the probability of 68.4% of the network-based method.

Therefore, the network-based method outperforms the hybrid-

property based method.

Comparison between the hybrid-property based method
and the motif-based method

As a sequence-based method, the hybrid-property based

method should be compared to other sequence-based method.

We selected the method based on the motif information to predict

functions of proteins, which has been proved to effective for the

predicting functions of proteins in yeast [58]. The motif-based

method can be described as follows: First, 739 short domain

sequence were downloaded from SBASE [59], which is a

collection of domain sequences designed for facilitating the

detection of domain homologies. Then BLASTP [7] was used to

compare the protein with the 739 domain sequences to find the

alignments with e-value lower than 0.8. The protein sequences

can be represented by vector: V~½v1,v2,:::,v739�, where

vi~1(i~1,2,:::,739) when e-value of the alignment lower than

0.8, otherwise vi~0. Using NNA, the method was trained and

tested on the same training set (S
h
Tr) and test set (S

h
Te). The

prediction results are listed in the Table 3. The first-order

prediction accuracies on the S
h
Tr and S

h
Te are 31.8% and 32.7%,

respectively, which are lower than the prediction accuracies of the

hybrid-property based method. For S
h
Tr, the probability that all

true functions included for a protein by taking the first 3-order

predicted functions is 30.6%, which are also lower than the

probability of 44.1% of the hybrid-property based method.

Overall, the hybrid-property based method performs a little better

than the motif-based method.

Biological relevance of the optimized hybrid features
It is shown in Figure 2 that amino acid compositions and

secondary structure contribute the most towards protein function

Figure 1. The IFS curve of 132 hybrid features used in hybrid-
property based method. It shows that the first order prediction
accuracy by the hybrid-property based method varies with the
increment of the features. The curve arises to the apogee when the
number of features is 90.
doi:10.1371/journal.pone.0014556.g001

Figure 2. Distribution of the subtype of hybrid properties in the optimized 90 features. X-coordinates represent seven kinds of
biochemical and physicochemical attributes, and Y-coordinates correspond with the frequency of each attribute occurring in the selected the 90
features.
doi:10.1371/journal.pone.0014556.g002
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prediction. These protein properties have also been used for

predicting many other protein attributes, such as classification of

nuclear receptors, protein fold recognition [60], protein quater-

nary structure [61], membrane protein types [28], and protein

folding rate [62,63], among many others. Amino acid composi-

tions are reported to correlate to proteins’ structural and biological

characters [64,65]. Alteration of secondary structure is a common

and causative factor for causing human diseases [66,67,68] by

probably altering the protein functions. It has also been reported

that the alteration of secondary structure of amyloid beta peptide

relates to the neurotoxic activity in vitro [69,70]. Listed above are

just a few examples of showing the importance of these protein

properties in shaping protein functions. There are surely a number

of other findings in validating their importance, as well as the

importance of other properties investigated in this study, such as

the polarity, normalized van der Waals volume, polarizability,

hydrophobicity, and solvent accessibility.

In this study, we propose a novel multi-target model, in which a

sample may belong to several classes, for predicting protein

functions. Two kinds of multi-target predictors are implemented:

one is for proteins with PPI information and the other for those

without PPI information. The average number of functions that a

protein possesses is 3.14. There are 24 protein functional

categories, meaning that in average a random guess of a protein

function will have a success chance of 13.1% (13:1%~3:14=24),

much lower than the first order prediction accuracy of 69.1%.

Therefore, our method can serve as a useful high throughput tool

for annotating the functions for many uncharacterized protein

sequences. It is very interesting to see that the PPI network-based

method is significantly better than the hybrid-property based

method in both the rates of first-order function prediction and the

probability rates calculated by Eq. (16). It is anticipated that the

method based on the PPI network information is quite promising,

and may become a powerful tool for annotating the functions of

proteins.
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