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Abstract

Background: The heparin-binding plasma protein histidine-rich glycoprotein (HRG; alternatively, HRGP/HPRG) can suppress
tumor angiogenesis and growth in vitro and in vivo. Mice lacking the HRG gene are viable and fertile, but have an enhanced
coagulation resulting in decreased bleeding times. In addition, the angiogenic switch is significantly enhanced in HRG-
deficient mice.

Methodology/Principal Findings: To address whether HRG deficiency affects tumor development, we have crossed HRG
knockout mice with the RIP1-Tag2 mouse, a well established orthotopic model of multistage carcinogenesis. RIP1-Tag2
HRG2/2 mice display significantly larger tumor volume compared to their RIP1-Tag2 HRG+/+ littermates, supporting a role
for HRG as an endogenous regulator of tumor growth. In the present study we also demonstrate that platelet activation is
increased in mice lacking HRG. To address whether this elevated platelet activation contributes to the increased
pathological angiogenesis in HRG-deficient mice, they were rendered thrombocytopenic before the onset of the angiogenic
switch by injection of the anti-platelet antibody GP1ba. Interestingly, this treatment suppressed the increase in angiogenic
neoplasias seen in HRG knockout mice. However, if GP1ba treatment was initiated at a later stage, after the onset of the
angiogenic switch, no suppression of tumor growth was detected in HRG-deficient mice.

Conclusions: Our data show that increased platelet activation mediates the accelerated angiogenic switch in HRG-deficient
mice. Moreover, we conclude that platelets play a crucial role in the early stages of tumor development but are of less
significance for tumor growth once angiogenesis has been initiated.
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Introduction

Histidine-rich glycoprotein (HRG; alternatively, HRGP/

HPRG) has been identified as an angiogenesis inhibitor in vitro

and in vivo by us and others [1,2,3]. HRG is a 75 kDa single chain

heparin-binding plasma protein produced by the liver [4].

Structurally, HRG consists of three distinct domains; an amino-

terminal part with two cystatin (cysteine proteinase inhibitor)-like

domains, which classifies HRG as a member of the cystatin

superfamily together with e.g. kininogen and fetuin, a central

histidine/proline-rich (His/Pro-rich) domain organized in tandem

repeats of a consensus GHHPH motif, and a carboxy-terminal

domain. Multiple binding partners for HRG have been reported,

such as heparin/heparan sulfate, divalent cations, components in

the coagulation-fibrinolysis system; plasminogen and fibrinogen, as

well as components in the immune system such as T lymphocytes,

monocytes/macrophages and immunoglobulins [4]. Monocytes

were previously believed to express HRG, since HRG binds to the

cell surface of monocytes, but more recent data demonstrate that

RNA is found only in the liver [5]. In addition, HRG has been

reported to be present within platelets and megakaryocytes [6].

Mice lacking the HRG gene are viable and fertile, but have an

enhanced coagulation resulting in decreased bleeding times [7].

HRG thereby exemplifies one of several molecules regulating both

angiogenesis and hemostasis [8].

Platelets are anuclear cellular fragments derived from mega-

karyocytes in the bone marrow and play a crucial role in

regulating blood hemostasis. At sites of blood vessel injury,
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platelets are activated and aggregate at the site of the damaged

endothelium to prevent hemorrhage. Besides their role in

hemostasis, platelets contribute to non-hemostatic processes such

as immunity, tumor metastasis and angiogenesis [9,10,11].

Platelets contain a large number of both pro- and antiangiogenic

factors and regulation of angiogenesis by platelets was suggested as

early as 1968 [12]. Examples of positive regulators of angiogenesis

found in platelets are VEGF-A, VEGF-C, platelet-derived growth

factor (PDGF) and fibroblast growth factor-2 (FGF-2), while

negative regulators include thrombospondin, platelet factor-4 (PF-

4) and plasminogen activator inhibitor type-1 (PAI-1) [8,13].

Despite their content of both positive and negative regulators of

blood vessel formation, platelets have in several different

experimental settings been shown to stimulate angiogenesis

[11,14,15,16,17]. It is well known that cancer patients have an

increased turnover of platelets and increased risk of thrombotic

occlusion, as a result of increased platelet activation. Both

increased coagulation and platelet activation have been demon-

strated to stimulate tumor angiogenesis, as well as metastasis, and

can therefore contribute to disease progression [11,18].

In the present study we address how lack of HRG affects tumor

growth. For this purpose we have crossed HRG-deficient mice with

the orthotopic RIP1-Tag2 mouse model of insulinoma [19]. These

mice carry the SV40 T-antigens under the control of the insulin

promoter, which is expressed in the islets of Langerhans in the

pancreas. The Rip1-Tag2 is an orthotopic model of multistage

carcinogenesis, believed to better reflect the stepwise process of tumor

development via distinctive stages, than conventional subcutaneous

models with injected tumor cells. One of these stages represents the

‘‘angiogenic switch’’. Moreover, we investigate whether the deregu-

lated hemostasis in HRG-deficient mice contribute to the elevated

angiogenic switch, previously reported in these mice.

Materials and Methods

Antibodies
The following primary antibodies were used in this study: anti-

Ki67 (Dakocytomation/ M7249), anti-cleaved caspase-3 (Cell

Signalling/9661), anti-CD31 (BD/557355), anti-CD41 (BD/

553847) and anti- GP1ba (Emfret/R300). The following direct-

conjugated antibodies were used for flow cytometry: PE-

conjugated anti-mouse GPIIb/IIIa (JON/A/M023-2/Emfret),

PE-conjugated anti-P-selectin (Emfret/M130-2) and FITC-conju-

gated anti-GPIX (Emfret/M051-0). Control antibodies for flow

cytometric analysis were: PE-conjugated rat IgG (Emfret/P190-2),

FITC-conjugated rat IgG (Emfret/P190-1), rabbit IgG (Cedar-

lane/CLRB00) and FITC-conjugated rat IgM (555583/BD). The

following secondary antibodies were used: anti-rat Alexa488

(Molecular Probes/A21208), anti-rabbit (BA-1000/Vector Labo-

ratories), anti-mouse (BA-9200/Vector Laboratories) and anti-rat

(BA-9400/Vector Laboratories).

Ethics Statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and/or local animal

welfare bodies, and all animal work was approved by the Uppsala

University board of animal experimentation (C279/7) and thus

performed according to the United Kingdom Coordinating

Committee on Cancer Research (UKCCCR) guidelines for the

welfare of animals in experimental neoplasia [20].

RIP1-Tag2 HRG+/+ and RIP1-Tag2 HRG2/2 mice
All mouse strains were on a pure C57BL/6 genetic background.

HRG deficient female mice were mated with RIP1-Tag2 positive

(RT2) males to produce founder mice for breeding of RT2/

HRG2/2 and RT2/HRG+/+ littermates. From 10 weeks of age,

all RIP1-Tag2 positive mice received drinking water supplied with

5% sucrose to relieve hypoglycemia induced by the insulin-

secreting tumors. DNA extracted from tail biopsies was used as the

template for genotyping by PCR. The following primers were

used: Forward HRG primer 59-CCTGGGGTCAAAGTGAA-

CATGC-39; reverse HRG wild-type primer 59-CGCTCTGT-

CCAAGTGGGCGTCA-39; reverse knockout HRG primer

(located in neomycin cassette) 59-TTGTGTAGCGCAAGTGC-

CAGCG-39; forward Tag2 primer 59-GGACAACCACAACTA-

GAATGCAG-39; reverse Tag2 primer 59-CAGAGCAGA-

ATTGTGGAGTGG-39.

Dissection and quantification of angiogenic islets and
tumors

Twelve or 15 weeks old RT2/HRG+/+ or RT2/HRG2/2 mice

were anesthetized by intraperitoneal injection of 2% avertin.

Heart perfusion was done with 10 ml of phosphate buffered saline

(PBS) (pH 7.4) followed by 10 ml of 2% paraformaldehyde (PFA)

in PBS (pH 7.4). Pancreases were removed from the abdominal

cavity and tumors and angiogenic islets were dissected away from

exocrine pancreas under a stereo dissection microscope at 610

magnification. Tumors and angiogenic islets (defined as blood

containing hyperplastic islet with a diameter of ,1 mm) were

measured and counted. Tumor volumes were calculated by the

formula ((p/6)6width26length). Tumors and angiogenic islets

were stored in a 30% sucrose in PBS solution over night at 4uC.

The material was frozen in Tissue-TekH O.C.T. and stored at

270uC until further processing.

Immunohistochemistry
Frozen sections of mouse tissue were fixed in ice-cold methanol,

washed in PBS, incubated with 1% H2O2 to quench endogenous

peroxidases and blocked in 3% bovine serum albumin (BSA)+20%

horse serum in PBS for 30 min. To reduce background signal

from endogenous biotin in the pancreas, an avidin/biotin blocking

kit (SP-2001/Vector Laboratories) was applied before addition of

antibodies. Sections were incubated with primary antibody for

2 hours at room temperature or at 4uC over night. Primary

antibodies were diluted in blocking buffer as follows: CD31 1:500,

cleaved caspase-3 1:200, Ki67 1:100 and CD41 1:300. For

enzymatic detection, sections were incubated with 1% H2O2 prior

to blocking. In order to detect primary antibody binding sites,

sections were incubated with biotinylated anti-rat (CD31, Ki67,

CD41) or anti-rabbit (cleaved caspase-3) antibody for 30 minutes

diluted 1:300 in blocking buffer. After washing, sections were

incubated with HRP-conjugated streptavidin (SA-5004/Vector

Laboratories) diluted 1:200 in blocking buffer for 30 minutes at

room temperature. Binding sites were subsequently visualized with

a HRP substrate using the AEC Peroxidase Substrate Kit (SK-

4200/Vector Laboratories). Hematoxylin staining was used to

visualize nuclei.

Quantification of proliferation, apoptosis, vascularization
and platelets in tissue

The proportion of proliferative and apoptotic cells in tumors

was assessed by manual counting of the total number of cells and

the number of Ki67 and cleaved caspase-3 positive cells

respectively. A total number of 5000 cells were counted for Ki67

and approximately 30 000 cells were counted for cleaved caspase-

3 in each group, in tumor tissue derived from n = 3 individuals/

group (cleaved caspase-3) or n = 4 individuals /group (Ki67).

Platelet Regulation by HRG
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Tumor vascularization (length, volume and surface density) was

quantified by stereology as previously described in tissue from

n = 7 individuals/group [21].

Analysis of CD41 positive platelets in kidney from healthy mice

were done by manual counting of all positively stained platelets in

sections from whole kidney from n = 5–6 individuals/group. The

data is given as average number of platelets/field. The proportion

of platelets in tumor tissue is much higher compared to healthy

tissue and the area stained positive for CD41 in tumors was

therefore quantified using the image analysis program Image J

1.42 software (National Institutes of Health). The data is presented

as % of total tumor area.

Blood sampling
Blood was drawn by cardiac puncture from isoflurane

anesthetized mice and anti-coagulated with 0,00129 M citrate.

Platelet aggregation
Citrated blood was centrifuged at 1800 rpm for 5 minutes and

the supernatant was further centrifuged at 800 rpm for 6 minutes

to obtain platelet-rich plasma (PRP). To obtain platelet-poor

plasma (PPP), the supernatant was additionally centrifuged at

3000 g for 10 minutes. Platelet count was adjusted to 3506103

platelets/ml with PPP or Tyrode’s buffer. Aggregation was induced

with 20 mg/ml collagen, 0,15 U/ml bovine thrombin or 20 mM

ADP. Platelet aggregation activity was measured in a platelet

aggregometer (Labor FIBRINTIMERH, Ahrensburg, Germany)

where light transmission is recorded over time. Light transmission

is increased as platelets aggregate.

Platelet analysis in mouse blood with flow cytometry and
cell counting

For flow cytometry, 5 ml citrated blood was incubated with

antibody and HEPES-buffered saline (145 mM NaCl, 5 mM KCl,

1 mM MgSO4, 10 mM HEPES, pH 7,4) in a total volume of

50 ml. Dilution of antibodies were 1:10 for anti-fibrinogen, anti-

GPIIb/IIIa, anti-GPIX and anti-P-selectin. ADP activation was

done with 5–20 mM ADP for 15 minutes at room temperature and

stopped by addition of 400 ml 0,4% PFA/PBS (pH 7,4) and

incubation at room temperature for 15 minutes. Thrombin

activation was performed using 0,01 U/ml thrombin (HCT-

0020 Haematologic technologies inc), together with 1 mM

PefablocFG (Pentapharm) to prevent fibrin clot formation.

Activation was ended at different time points by fixation of cells

with 400 ml 0,4% PFA/PBS (pH 7,4). Staining with antibodies

was done after fixation and washing of thrombin activated

samples. Samples were washed with 1 ml PBS and centrifuged

at 1500g for 15 minutes and cells resuspended in 0,5 ml PBS prior

to analysis. Flow cytometric analysis was performed and platelets

were gated to see mean fluorescence intensity (MFI) of the

respective antibody staining for the platelet population. For

platelet numbers, either whole blood was stained as described

above and GPIX positive cells given as percentage of the total

number of cells in whole blood, or the absolute number of

platelets/volume in whole blood was determined using a cell

counter (Coulter).

Blocking of platelet activation by Plavix
C57BL/6 female mice, wild type (Taconic, Denmark) and

HRG2/2, were treated with Plavix (clopidogrel; Sanofi pharma)

at 0,25 mg/ml (30 mg/kg/day) or 0,50 mg/ml (60 mg/kg/day) in

their drinking water during three days. Control mice received only

water. Mice were anesthetized with isoflurane, blood drawn by

cardiac puncture and anti-coagulated with 0,00129 M citrate

before analysis of ADP-induced activation of the fibrinogen

receptor and the relative number of GPIX positive platelets in

whole blood.

GP1ba treatment of RT2/HRG+/+ and RT2/HRG2/2 mice
Angiogenic islets: GP1ba treatment of RT2/HRG+/+ or RT2/

HRG2/2 female mice started with 4 mg GP1ba antibody/g body

weight (60 mg/mouse) at five weeks of age (day 0), administered by

intra-peritoneal injection. The treatment was continued with 2 mg

GP1ba antibody/g body weight (30 mg/mouse) every third day

until day 9. The mice were then allowed to recover platelet levels

for five days prior pancreatic dissection and counting of angiogenic

islets at day 14, when the mice were seven weeks old.

Tumor volume: GP1ba treatment of RT2/HRG+/+ or RT2/

HRG2/2 female mice started at nine weeks of age (day 0) and

continued with injections every third day until day 12. The mice

were then allowed to recover platelet levels for nine days prior

pancreatic dissection and analysis of tumor volume at day 21,

when the mice were 12 weeks old.

Statistical analysis
All statistical analyses in this study were performed using the

non-parametric two-tailed Mann-Whitney test. The Mann-

Whitney test should be used instead of the parametric Student’s

t-test when the number of observations in each group are few

(approximately ,50). * is defined as p#0.05, ** as p#0.01 and

*** as p#0.001.

Results

Generation of HRG-deficient RIP1-Tag2 mice
With the aim to investigate how lack of HRG affects tumor

angiogenesis and growth in vivo, we crossed HRG-deficient mice

with the RIP1-Tag2 model of spontaneous insulinoma [19]. This

transgenic tumor model carries the SV40 T antigens under control

of the rat insulin promoter, which is expressed in the islets of

Langerhans in the pancreas. The RIP1-Tag2 mouse is an

orthotopic model of multistage carcinogenesis and is considered

to be a more accurate model for the stepwise development of

tumors than conventional subcutaneous models with injected

tumor cells. One of these stages represents the ‘‘angiogenic

switch’’, which is required for the transition from hyperplasia to

neoplasia and further tumor growth. During this stage, the islet

capillaries that are normally quiescent, are characterized by

endothelial proliferation, vascular dilation and microhemorrha-

ging. Around 10% of the 400 islets present in a mouse pancreas

adapt an angiogenic phenotype and out of these angiogenic islets

12–25% further develop into larger tumors [19].

RIP1-Tag2 positive (RT2) HRG heterozygote (HRG+/2) males

were mated with RIP1-Tag2 negative HRG+/2 females to enable

analysis of HRG wild type (HRG+/+) and HRG knockout (HRG2/2)

littermates in a RT2 positive genetic background. The genotypes of

the mice were determined by PCR (Fig. 1A). The following PCR-

products were generated; RT2 449 bp, HRG+/+ 310 bp, HRG2/2

378 bp and HRG+/2 310 and 378 bp (Fig. 1B).

Accelerated tumor growth in HRG-deficient RIP1-Tag2
mice

Analysis of tumor growth in RT2/HRG+/+ and RT2/HRG2/2

mice was performed on gender-matched groups at two ages, 12 and

15 weeks. The total tumor burden was assessed by two parameters;

total tumor volume and number of tumors. At 12 weeks of age, the

mean total tumor volume in the HRG2/2 group was two times
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higher than in the HRG+/+ group (Fig. 2A, table 1). Three weeks

later, at 15 weeks of age, the difference between the two groups was

further enhanced. At this time point the mean total tumor volume in

the HRG2/2 group was more than three times higher than in the

HRG+/+ group (Fig. 2B, table 1). The number of tumors did not

differ between the groups at any age (data not shown).

Tumors in HRG-deficient RIP1-Tag2 mice display
increased proliferation

To investigate why tumors were larger in HRG-deficient mice,

we analyzed the proliferative and apoptotic status, as well as the

vascularization, of the dissected tumors. Immunohistochemical

stainings directed against Ki67 revealed a significantly increased

proliferation in tumors from the RT2/HRG2/2 group compared

to the RT2/HRG+/+ group (Fig. 3A and C). No difference in

apoptosis was detected as judged from immunohistochemical

stainings directed against cleaved caspase-3 (data not shown).

We have in a previous study shown that lack of HRG affects the

angiogenic switch in the RIP1-Tag2 model with significantly

elevated numbers of angiogenic islets in RT2/HRG2/2 mice as

compared with RT2/HRG+/+ littermates at 7 weeks of age [3].

To investigate how lack of HRG affects pathological angiogenesis

in established tumors we performed stereological quantification

[21] of tumor vascularization in 12 weeks old RT2/HRG+/+ and

RT2/HRG2/2 mice. This method estimates the total length,

volume and surface area of the vasculature per tumor volume. In

contrast to our findings regarding the angiogenic switch, we could

not detect any statistically significant differences between RT2/

HRG+/+ and RT2/HRG2/2 mice with respect to vascularization

of established tumors (Fig. 3B, D–F).

Enhanced platelet aggregation in HRG-deficient mice
HRG2/2 mice have a shorter bleeding time than wild type

mice [7], suggesting that platelet function may be regulated by

HRG. To address this possibility we analyzed whether activation

of platelets was affected in HRG-deficient mice. Platelet activation

can be measured by their extent of aggregation following

activation in vitro. For this purpose an aggregometer was used

and light transmission recorded over time. As platelets aggregate,

light transmission is increased. Platelet-rich plasma (PRP) was

prepared from RT2-negative HRG+/+ and HRG2/2 mice and

platelets were activated by the addition of collagen (20 mg/ml),

thrombin (0,15 U/ml) or ADP (20 mM). All three platelet

activators enhanced aggregation in HRG2/2 PRP compared to

Figure 1. Genotyping PCR. Offspring from mating between RT2/HRG+/2 males and HRG+/2 females were genotyped by a five-primer PCR. (A) The
five primers give three distinct PCR products. Primer pair F-127/R+183 gives a 310 bp HRG wild type allele product, primer pair F-127/RNeo gives a
378 bp HRG knockout allele product and primer pair RT1/RT2 gives a 449 bp RT2 transgene allele product. The location of each primer is indicated in
the map by an arrow. (B) PCR products separated on a 2% agarose gel. All six possible genotypes are presented.
doi:10.1371/journal.pone.0014526.g001
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HRG+/+ PRP (Fig. 4A). The HRG deficient mice used for this

assay were either on a pure C57BL/6 (B6) or a mixed 129/

Ola,C57BL/6 (129/B6) genetic background.

To determine if this fast aggregation was accompanied by an

increased expression of platelet surface activation markers, we

activated platelets from HRG+/+ and HRG2/2 mice with

thrombin or ADP and analyzed expression of P-selectin and the

activated fibrinogen receptor (GPIIb/IIIa) by flow cytometry in

whole blood. No difference in the upregulation of these activation

markers could be detected between platelets from wild type and

HRG-deficient mice (Fig. 4B and C). These data indicate that the

enhanced platelet aggregation in mice lacking HRG is most likely

caused by an alteration in the plasma milieu surrounding the

platelets, rather than related to the activation status of the platelets

per se.

The level of circulating platelets is regulated by HRG
To further analyze platelet activation in vivo in HRG knockout

mice, we measured the level of circulating platelets as well as the

presence of platelets in tissue from HRG+/+ and HRG2/2 mice.

Activated platelets leave the circulation and become arrested in the

vascular bed. A reduced number of platelets in the blood can

therefore reflect an increase in platelet activation. We analyzed the

number of circulating platelets in whole blood from healthy (RT2-

negative) wild type and HRG-deficient mice using a cell counter.

There was a significant decrease in the number of platelets in

blood from HRG2/2 mice compared to wild type (Fig. 5A),

supporting the conclusion that platelets are more easily activated

in the absence of HRG. It is well established that tumors can

promote coagulation and platelet activation, for instance by

expression of tissue factor [22]. In agreement, platelet levels were

significantly reduced in blood from wild type mice with insulinoma

(RT2/HRG+/+) compared to healthy wild types (HRG+/+)

(Fig. 5A). However, RT2-positive HRG2/2 mice (RT2/HRG2/2)

showed no further decrease in platelet numbers compared to

HRG2/2 mice without tumors (HRG2/2). Healthy HRG-deficient

mice had in fact similar platelet levels as wild type mice with

insulinoma (Fig. 5A).

To determine the amount of platelets arrested in tissue in

healthy (RT2-negative) mice, immunohistochemical analysis of

kidney from wild type and HRG knockout mice was performed

using an antibody against the platelet marker CD41. As can be

seen in figure 5B (left panel) and C, a significantly higher number

of platelets was detected in tissue from mice lacking HRG. When

the same analysis was performed on tumor tissue, as well as kidney

(data not shown), from RT2-positive HRG+/+ and HRG2/2 mice,

no statistically significant difference with respect to CD41 staining

could be detected between the two groups of mice (Fig. 5B (right

panel) and D). This result is in agreement with the similar levels of

circulating platelets in RT2-positive (HRG+/+ and HRG2/2)

mice, regardless of genotype (Fig. 5A), and probably reflects the

platelet activating properties of tumor cells.

To directly address if enhanced platelet activation caused the

reduction in circulating platelets in mice lacking HRG, we

employed the drug Plavix (clopidogrel), which inhibits platelet

activation via the ADP receptor P2Y. Two doses of the inhibitor

were administered via the drinking water; 30 mg/kg/day

( = 0,25 mg/ml) or 60 mg/kg/day ( = 0,50 mg/ml) during three

days. To assess the efficacy of the treatment, blood was drawn by

cardiac puncture and activation of the fibrinogen receptor

(GPIIb/IIIa) was analyzed by flow cytometry after ADP activation

in vitro. Both doses blocked platelet activation by ADP, in wild type

as well as in HRG-deficient mice (Fig. 5E). We next analyzed

whether treatment with Plavix could affect platelet levels in the

circulation of wild type and HRG-deficient mice. Platelet levels

were measured by flow cytometric analysis of mouse whole blood

using a FITC-conjugated GPIX antibody. HRG-deficient mice

treated with 25 and 50 mg/ml Plavix showed a dose-dependent

increase in platelet levels in the circulation compared to untreated

mice (Fig. 5F). In contrast, Plavix induced no change in platelet

levels in wild type mice. These data support the conclusion that

Figure 2. Tumor volume is increased in RT2/HRG2/2 compared to RT2/HRG+/+ mice. Tumors were dissected and measured. Tumor volumes
were calculated by the formula ((p/6)6width26length). Each dot represents the summarized tumor volume in mm3 from one mouse at (A) 12 weeks
of age (n+/+ = 16; n2/2 = 16) and at (B) 15 weeks of age (n+/+ = 11; n2/2 = 12). Statistical analyses were performed with a two-tailed Mann-Whitney test,
vertical bars represent standard deviation, * p#0.05.
doi:10.1371/journal.pone.0014526.g002

Table 1. Mean tumor volume in RT2/HRG+/+ and RT2/HRG2/2

mice at 12 and 15 weeks.

Mean total tumor volume ± SD (mm3)

12 weeks 15 weeks

RT2/HRG+/+ 22,35614,2 72,74631,38

RT2/HRG2/2 45,69631,11 231,46182,5

Ratio (RT2/HRG2/2) vs.
(RT2/HRG+/+)

2,04 3,18

doi:10.1371/journal.pone.0014526.t001
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platelets are lost from the circulation due to increased activation in

mice lacking HRG.

Platelet depletion attenuates the pro-angiogenic
phenotype of HRG-deficient RIP1-Tag2 mice

Lack of HRG enhances the angiogenic switch [3] and, as

demonstrated here, growth of insulinoma in the RIP1-Tag2

mouse. The angiogenic switch is a prerequisite for the transition of

hyperplastic tissue into a growing tumor. To find out whether

there is a connection between the enhanced angiogenic switch and

the increased platelet activation in HRG-deficient mice, we

depleted RT2/HRG+/+ and RT2/HRG2/2 mice of platelets

using an antibody binding to the platelet adhesion molecule

GP1ba. The mice were treated during two weeks prior to analysis

of angiogenic islets at the age of seven weeks. Platelet depletion

significantly reduced the number of angiogenic islets in the RT2/

HRG2/2 group, but did not affect the number of angiogenic islets

in RT2/HRG+/+ mice (Fig. 6). When administration of the anti-

GP1ba antibody was initiated at a later stage (age nine weeks),

after the onset of the angiogenic switch, platelet depletion did not

suppress tumor growth in HRG-deficient mice (Fig. 6).

In conclusion, our data suggests that increased platelet

activation is the primary cause of the elevated angiogenic switch

in HRG-deficient RIP1-Tag2 mice.

Discussion

In the present study we describe three main findings; 1) tumor

growth is significantly increased in HRG-deficient mice, 2) platelet

activation is enhanced in mice lacking HRG and 3) the increased

platelet activation mediates the accelerated angiogenic switch seen

in HRG-deficient mice. These findings are discussed below.

The transgenic RIP1-Tag2 mouse is an orthotopic model of

multistage carcinogenesis and believed to better reflect the

stepwise process of tumor development via distinctive stages, than

conventional subcutaneous models with injected tumor cells

[19,23]. The RIP1-Tag2 mouse is well suited for studies of

angiogenesis, since one of the stages during tumor progression is

Figure 3. Proliferation and vascularization in tumors from RT2/HRG+/+ and RT2/HRG2/2 mice. (A, B) Immunohistochemical staining of
tumor tissue from HRG+/+ and HRG2/2 mice directed against Ki67 (A) and CD31 (B). (C) Quantification of immunohistochemical staining directed
against Ki67 was performed on tumor sections from RT2/HRG+/+ and RT2/HRG2/2 mice. Data are presented as percentage of Ki67 positive cells of
total cell numbers. Each dot represents the value from an individual animal (n = 4 for each group). (D–F) Stereological quantification of vascular
parameters: length, volumetric and surface densities. Each dot represents the mean value from one individual animal (n = 7 for each group). Statistical
analyses were performed with a two-tailed Mann-Whitney test, vertical bars represent standard deviation, * p#0.05. Scale bars represent 50 mm in A
and 100 mm in B.
doi:10.1371/journal.pone.0014526.g003
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characterized by induction of angiogenesis; the angiogenic switch.

We have recently reported that the angiogenic switch is

significantly elevated in HRG2/2 mice with an approximately

two times increase in the number of angiogenic islets [3]. In the

present study, HRG2/2 mice were found to have a larger tumor

volume compared to their HRG+/+ littermates. We also noted that

HRG+/2 mice have an intermediary tumor volume (data not

shown) between HRG+/+ and HRG2/2 mice, which may be re-

lated to the fact that mice with one inactivated HRG allele have

approximately half the serum concentration of HRG-protein com-

pared to HRG sufficient mice [7]. At 12 weeks of age, HRG2/2

mice have an approximately two times larger tumor volume than

HRG+/+ mice. The correlation - with the same increase in number

of angiogenic islets as the increase in tumor volume at 12 weeks –

probably reflects that the islets that have undergone the angiogenic

switch receive a headstart in the carcinoma development. The

reason why we do not see an increased number of tumors is likely

because growing islets and/or tumors fuse and become larger

tumors. The difference in tumor volume between HRG+/+ and

HRG2/2 mice was enhanced over time with a three times

increase in total tumor burden at week 15. This finding is in

agreement with the increased proliferation detected in tumor tissue

from mice lacking HRG. These data support a role of HRG as an

endogenous regulator of tumor growth.

We did not detect any significant difference between HRG+/+

and HRG2/2 mice with respect to vascularization of established

tumors. The reason for this finding is not known but might relate

to the particular tumor that is being studied. Established Rip1-

Tag2 tumors are highly vascularised in wild type mice and lack of

HRG may not be able to promote this further. In contrast, lack of

HRG significantly enhances the early onset of pathological

angiogenesis in this model [3].

HRG-deficient mice are viable and fertile, but have a

coagulation defect resulting in shorter bleeding times [7]. This is

an expected phenotype, since HRG has been implicated in

regulation of the coagulation system in a number of previous

Figure 4. Enhanced aggregation of platelets in HRG2/2 mice. (A) Collagen, thrombin and ADP-induced platelet aggregation in PRP from
HRG+/+ and HRG2/2 mice on a pure C57BL/6 (B6) or on a mixed 129/Ola, C57BL/6 (129/B6) genetic background was measured with an aggregometry
assay. Aggregation levels are represented by light transmission through PRP over time. (B–C) Flow cytometric analyses of thrombin- and ADP-
induced activation of platelets presented by mean fluorescent intensity (MFI). Ligands were added at time = 0. Each symbol (squares = HRG+/+, open
triangles = HRG2/2) represents the mean value from three independent measurements. Vertical bars represent standard deviation. (B) P-selectin after
activation with 0,01 U/ml thrombin measured at 0, 1, 3, 5 and 10 minutes. (C) Activated fibrinogen receptor (GPIIb/IIIa) after 15 minutes stimulation
with 1 or 10 mM ADP.
doi:10.1371/journal.pone.0014526.g004
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studies [4] [24]. HRG constitutes one of several examples of

molecules regulating both angiogenesis and hemostasis. The

reason for this dual function is unclear, but may reflect an

inherent requirement for strict regulation of the angiogenic process

during hemostasis. Angiogenesis must be counteracted at the early

stages of vascular injury and platelet adhesion. At a later stage,

when the clot has stabilized, angiogenesis is required for tissue

regeneration and a new vessel wall is formed from activated

endothelial cells. The different steps in this process need to be

carefully orchestrated to prevent hemorrhage [8,13].

Motivated by the reported coagulation defect in HRG-deficient

mice, we investigated their platelet activation status and found a

significantly faster in vitro-aggregation in PRP from HRG-deficient

mice compared to wild type using three established platelet-

activators: collagen, thrombin and ADP. Furthermore, the level of

circulating platelets was decreased in mice lacking HRG, a likely

consequence of activation-induced tissue arrest. The reason

behind the increased platelet activation in mice that lack HRG

is not known, but currently under investigation. Our data indicate

that the enhanced platelet aggregation is induced by a factor

outside the platelets, since their expression levels of activation

markers such as the fibrinogen receptor GPIIb/IIIa and P-selectin

were similar in wild type and HRG-deficient mice. It has been

reported that the interaction of HRG with fibrinogen delays the

conversion to fibrin [25], which could be one explanation for the

faster platelet aggregation in HRG2/2 mice. However, we

Figure 5. HRG regulates platelet levels in the circulation. (A) Platelet numbers in whole blood from RT2 positive or negative mice with
different HRG genotypes (HRG+/+ or HRG2/2). (B) Left panel; Quantification of the number of platelets/field in kidney tissue from healthy (RT2-
negative) HRG+/+ or HRG2/2 mice. Right panel; Quantification of the area percentage stained positive for the platelet marker CD41 in tumor tissue
from RT2-positive HRG+/+ and HRG2/2 mice. (C, D) Immunohistochemical staining directed against CD41 was performed on kidney from RT2-negative
mice (C) and tumor tissue from RT2-positive mice (D) from both genotypes. Arrows indicate platelets. (E) HRG+/+ and HRG2/2 mice were treated with
Plavix (25 mg/ml or 50 mg/ml in drinking water) for three days. Platelet activation in whole blood was measured after stimulation with 10 mM ADP by
flow cytometric analysis of the activated fibrinogen receptor (GPIIb/IIIa). (D) Platelet levels after Plavix treatment were measured by flow cytometric
analysis in whole blood and are presented as the percentage of GPIX positive cells. Statistical analyses were performed with a two-tailed Mann-
Whitney test, vertical bars represent standard deviation, * p#0.05, ns = non significant. Scale bars represent 50 mm in C and 100 mm in D.
doi:10.1371/journal.pone.0014526.g005
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observed increased platelet aggregation in HRG-deficient plasma

after stimulation with ADP, which most likely does not involve

fibrinogen conversion to fibrin.

Platelets have in several different experimental settings been

shown to stimulate angiogenesis [11,14,15,16,17], even though

they contain both positive and negative regulators of blood vessel

formation [16,26]. Since HRG-deficient mice display an enhanced

coagulation and increased platelet activation, we hypothesized that

there could be a connection between this phenotype and our

previous finding of an elevated angiogenic switch in these mice [3].

To test this hypothesis we rendered the mice thrombocytopenic by

intraperitoneal injections of a GP1ba antibody. This treatment

suppressed the increase in number of angiogenic islets in HRG-

deficient RIP1-Tag2 mice to wild type level, showing that an

enhanced activation of platelets mediates the increased angiogenic

switch in these mice. Interestingly, when administration of the

anti-GP1ba antibody was initiated after the onset of the

angiogenic switch, platelet depletion did not suppress tumor

growth in HRG-deficient mice. We therefore conclude that

platelets play a crucial role in the early stages of tumor

development but are of less significance once angiogenesis has

been initiated.

The mechanism behind this contribution of activated platelets to

the angiogenic switch is not clear but could involve secretion of

proangiogenic factors that stimulate angiogenesis. In addition,

platelets contain a number of proteases that upon activation and

degranulation of the platelets can increase the bioavailability of

matrix-bound growth factors, such as VEGF. Moreover, a fibrin

clot may provide a favourable matrix supporting angiogenesis.

Another possibility is that other types of blood cells, such as

monocytes/macrophages or neutrophils, form complexes with the

activated platelets, thereby facilitating their entry into the tumor

stroma. Monocytes/macrophages and neutrophils have in several

studies been demonstrated to have the capacity to stimulate tumor

vascularization and growth [27,28]. However, preliminary data

from our lab indicate that there are no differences between HRG+/+

and HRG2/2 mice with respect to the number of infiltrating

inflammatory cells into the tumor tissue. There could however still

be functional differences between these cells in the two genotypes.

We have recently shown that a proteolytic fragment of HRG,

corresponding to the antiangiogenic domain, is present in human

tissue. In addition, we show that this HRG-fragment can bind to

endothelium in the presence of activated platelets and hence exert

its antiangiogenic effect [3]. This means that the enhanced

angiogenic switch in HRG-deficient mice may have two

components; 1) increased platelet activation, due to lack of

HRG, that stimulates angiogenesis by the mechanisms mentioned

above and 2) the antiangiogenic HRG-fragment that counteracts

angiogenesis in the presence of activated platelets is missing. The

part of HRG that regulates platelet aggregation may be distinct

from the antiangiogenic fragment, which is derived from the His/

Pro-rich domain.

In summary, this study shows for the first time that tumor

growth is enhanced in mice that lack HRG. Moreover, we show

that HRG-deficient mice have increased platelet activation.

Finally, we demonstrate that the elevated platelet activation in

HRG-deficient mice accelerates the angiogenic switch in the

RIP1-Tag2 tumor model. These data further establish platelets as

regulators of angiogenesis, especially in a pathological setting.

Moreover, we can firmly establish a role for HRG as a modulator

of both hemostasis and pathological angiogenesis.
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Figure 6. Platelet depletion suppresses the increased angiogenic switch in RT2/HRG+/+ mice. RT2/HRG+/+ and RT2/HRG2/2 mice (n = 6/
group) were rendered thrombocytopenic by treatment with an anti-GP1ba antibody during two weeks before the onset of the angiogenic switch. At
7 weeks of age angiogenic islets were counted in each animal. A second group of RT2/HRG2/2 mice were treated with the anti-GP1ba antibody
during two weeks after the angiogenic switch and tumor volumes analyzed at 12 weeks of age (n = 6/group). (Data on untreated animals at 7 weeks
were originally published in [3].) Statistical analyses were performed with a two-tailed Mann-Whitney test, vertical bars represent standard deviation,
** p#0.001, ns = non significant.
doi:10.1371/journal.pone.0014526.g006
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