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Abstract

Background: Many chronic human diseases are of unclear origin, and persist long beyond any known insult or instigating
factor. These diseases may represent a structurally normal biologic network that has become trapped within the basin of an
abnormal attractor.

Methodology/Principal Findings: We used the Hopfield net as the archetypical example of a dynamic biological network.
By progressively removing the links of fully connected Hopfield nets, we found that a designated attractor of the nets could
still be supported until only slightly more than 1 link per node remained. As the number of links approached this minimum
value, the rate of convergence to this attractor from an arbitrary starting state increased dramatically. Furthermore, with
more than about twice the minimum of links, the net became increasingly able to support a second attractor.

Conclusions/Significance: We speculate that homeostatic biological networks may have evolved to assume a degree of
connectivity that balances robustness and agility against the dangers of becoming trapped in an abnormal attractor.
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Introduction

Biological control networks share many formal similarities with

artificial neural networks [1,2,3,4,5]. In particular, the Hopfield

net is a recurrent type of neural network with a dynamic state

defined at any instant by the set of output levels at each of its nodes

This state moves around on a multi-dimensional energy landscape

having one or more local minima that act as attractors for states

located nearby. Through appropriate adjustment of the weights of

the links between the nodes (the analog of synaptic strengths

between real neurons), the Hopfield net can differentiate between

classes of initial state based on the particular attractors they

converge toward [6]. This makes the Hopfield net suited for

performing associative or content addressable memory tasks. Real

neuronal networks actually appear to have more limited

connectivity, but small world Hopfield nets can also have multiple

attractors [7,8,9,10]. The nonlinear summing junctions and

variable link weights of the Hopfield net thus embody what many

consider to be the essential information-processing elements of

networks of real biological neurons. We are concerned here,

however, with the relevance of the Hopfield net for non-neuronal

biological networks, such as those pertaining to metabolism or

gene transcription, and which have also been shown to have the

ubiquitous small world topology [11,12].

Important for the modeling of general biological networks is the

fact that the functional attributes of the Hopfield net are not

contingent upon the nonlinear characteristics of the nodes being

step functions [13]. In fact, any suitably saturating nonlinearity will

do. In particular that small-world networks based on the Hopfield

architecture can have multiple attractors when their nodal

nonlinearities conform to the Michaelis-Menten equation fre-

quently encountered in biochemical reaction kinetics [3]. Like

biological networks, Hopfield nets contain numerous excitatory

links. Thus, any real world implementation of these networks must

consume energy, which is an essential requirement for all

biological systems in order that they maintain a state far from

thermodynamic equilibrium [14,15]. Hopfield nets thus share

some key operational characteristics in common with biological

systems. Furthermore, in contrast to simple analogue control

systems that create directed restoring forces designed to return a

system to a pre-programmed set point, Hopfield nets exhibit

attractor dynamics while at the same time reflecting the

complexity of biological systems.

Here, however, we encounter an intriguing dichotomy. When

using a Hopfield net in its classic application related to content

addressable memory tasks, a key design goal is to maximize the

number of distinct attractors in the net’s energy landscape, while

keeping their basins of attraction as deep as possible. This
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combination allows optimal discrimination among distinct attrac-

tors and thereby maximizes the number of distinct entities that the

net can ‘‘remember’’ reliably [6]. By contrast, one of the

fundamental requirements for living systems is to be able to

maintain homeostasis in the face of varied and ongoing

environmental inputs, often of a noxious variety. Continued

health depends on the system’s ability to mount an appropriate

response to such inputs and, subsequently, to return toward a state

of normality regardless of what regions of the energy landscape its

state had to visit in the meantime. A functional biochemical

interaction network would thus seem to be best served by an

energy landscape consisting of a single large basin of attraction

that funnels all aberrant states toward a single attractor

corresponding to the ‘‘normal state’’ of the network. The

alternative (i.e. having more than one attractor) would seem to

pose the risk of having a biochemically normal network become

functionally entrapped in a ‘‘pathological attractor’’, should it

receive the right stimulus.

We thus face two possibilities for biological networks. One is

that multiple attractors do exist for such networks, in which case

we have to deal with the possibility of entrapment in a non-normal

attractor [3,5]. It is not clear whether or not this actually happens

in living systems, but if it does it might explain the existence of

some of the many chronic diseases currently labeled as

‘‘idiopathic’’ [3] in which the body seems to operate in an

abnormal fashion for no obvious reason. In fact, the theory of

networks as applied to the immune system is already well

developed [1], and a multiple-attractor Hopfield-type theory has

been invoked to explain the effects of vaccination on immunolog-

ical status [5]. In a similar vein, Kauffman has long posited that

the various cellular phenotypes found in the body correspond to

attractors in the landscape defined by the network of gene

interactions [4,16] and that, given sufficiently large perturbations,

cells can be moved so dramatically from their normal attractor

that cell type itself can be changed [17].

The other possibility for networks in living systems is that they

are dominated by single attractors, in which case we have to ask

how this could be. Given that multiple attractors can potentially

exist in large networks governed by the Michaelis-Menten

nonlinearity [3], the question arises as to what structural

constraints must be in place to ensure only one attractor. It is

this question that we attempt to probe herein. We present evidence

that there is a critical degree of network connectivity beyond

which multiple attractors can be supported, and suggest that the

connectivity of real biological networks may have evolved to

balance the dangers of multiple attractors against the need for

agility and robustness.

Results

We first investigated how the existence of a single attractor in a

Hopfield-type network is influenced by its connectivity. Following

the methods of Hopfield, [1] we began with several fully connected

networks with N equal to 50, 100, 200, or 400 nodes. Each

network was constructed so as to have only a single designated

attractor. We then randomly eliminated inter-nodal connections,

each time checking to see if the designated attractor remained

intact. We checked for convergence to the designated attractor

from 100 different, randomly chosen initial states. The net was

iterated 500 times from each initial state or until it converged to

either a steady state or a limit cycle up to period 4. (In eliminating

individual links, the symmetry of the initially fully connected net

was lost along with the Hopfield structure that guarantees the

existence of only fixed-point attractors, thereby allowing for the

possibility of limit cycles). If the net converged toward the

designated attractor for all initial conditions, the links were

permanently eliminated. Otherwise they were reinstated and the

elimination of a different set of links was assessed.

Figure 1 shows examples of fully pruned networks that retained

the ability to converge to their respective designated attractors.

These final configurations show some degree of variation, but in

terms of overall structure they share strong similarities. In

particular, the network configurations shown in Fig. 1 are very

sparse with few circular pathways. Indeed, while a network with N

nodes starts with N2 connection, we were able to reduce this

number to only slightly more than N while retaining the designated

attractor. Most of the nodes thus end up receiving very few

connections, ranging from 1 to 7. To characterize this connectivity

more fully, we pruned 10 different 200-node networks and found

that the final network configurations had between 201 and 207

connections in total. Furthermore, the frequency distribution of

nodes as a function of the number of connections decreased

monotonically (Fig. 2). This is reminiscent, both in shape and

magnitude, of the small world connectivity distributions that have

been widely reported for metabolic and genetic networks

[12,18,19].

By design, the final network configurations shown in Fig. 1 are

extremely fragile in the sense that elimination of even one more

link will destroy the designated attractor. In contrast, random

elimination of 95% of the original full set of links usually left the

designated attractor intact. This illustrates a powerful tradeoff

between parsimony and robustness. The cost of parsimony is more

than just fragility, however, as there is also a tradeoff against the

speed with which the network can respond to external perturba-

tions [7]. As the links were pruned from the network, the average

number of iterations they required to converge to the designated

attractor from a random starting state increased, rising dramat-

ically as the number of links neared the minimum value; Fig. 3

shows that the number of iterations increases sharply as the

average number of links per node drops below about 3. The rate of

convergence was also found to scale with the natural logarithm of

the network size (N). Thus, when the number of iterations required

for convergence is normalized by ln(N) and plotted against the

mean number of links per node, a universal curve emerges (Fig. 3).

With this empirical scaling law we can extrapolate our result to

networks of arbitrary size.

We also evaluated how changes in network connectivity

impacted the ability of the network to support a second attractor,

and identified another tradeoff that may have important

implications for chronic disease. This relates to the ability of the

network to support a second attractor. Although we set up our

networks so that each had only a single designated attractor from

the outset, a fully connected Hopfield net can support multiple

attractors if its link weights are chosen appropriately [6,13].

Indeed, the maximum storage capacity of a fully connected N-

node Hopfield net is in the order of N/ln(N) [6]. On the other

hand, the fragile networks shown in Fig. 1 are unable to sustain

any more than their single designated attractors. Therefore,

somewhere between the fully connected condition and the sparse

connectivities illustrated in Fig. 1 is the point where these nets are

able to support a second attractor.

We searched for the second attractor point by adding several

thousand links back to individual examples of fully pruned networks

(such as those shown in Fig. 1), with the weights of these new links

adjusted so that the network supported both the original designated

attractor and a second designated attractor that was orthogonal to

the first. We then randomly removed these new links without

touching the minimal set of links previously found necessary to
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support the first attractor. At each step in this process, the network

was launched from 200 random initial configurations, all of which

were required to converge to one or other of the two designated

attractors before the links were permanently deleted. As the new

links were pruned, the fraction of the runs that converged to the

second attractor decreased (Fig. 4). These results also scaled with

network size so that, regardless of N, the chance of convergence to

the second attractor became extremely small when the network was

reduced to approximately 3N connections. When fewer than about

2 connections per node remained, the second designated attractor

was no longer supported as a fixed point of the system. There thus

appears to be a range of networks connectivities between 1 to 2

connections per node that can support a single designated attractor

but not a second one. This degree of sparsity, however, comes at the

cost of both network fragility and speed, as Fig. 3 indicates a sharp

decline in convergence speed as connectivity falls below 3

connections per node.

Discussion

Biological networks are sparse, each agent communicating

directly with only a very few of its possible counterparts

[12,18,19]. Our minimal networks (Fig. 1) are also sparse, and

have connectivity distributions (e.g. Fig. 2) that decrease

monotonically, reminiscent of a number of biological networks

[12]. Our results thus suggest that a sparse small-world network is

suited to operating within a dynamic basic of attraction. This

would allow the network to always return toward normality

following the continual and varied perturbations it receives from

the environment. These networks thus accomplish homeostatic

control in a manner that resembles true biological systems more

closely than do ad hoc control models based on a pre-programmed

restoring force. One the other hand, the sparseness of these

networks obviously mitigates against robustness to damage. The

minimal networks shown in Fig. 1 are fragile to the extent that

elimination of a single link will render each of them unable to

support their designated attractor. This would seem to be a

precarious position to be in from the point of view of survival.

Biologic networks would do well to have at least some

redundancy built into their structures by having more than the

minimal set of links required to support the dynamic attractor

corresponding to health; one can imagine that minimally

connected networks would not have fared well in the contest

for natural selection. Indeed, the actual degree of sparseness seen

Figure 1. The final configurations (nodes and their directed interconnections) of randomly generated Hopfield nets having 200
(top), 100 (middle) and 50 (bottom) nodes. These nets began fully connected with their link weights chosen to define a single attractor (the
designated attractor). Links were removed until the nets were no longer able to support their designated attractors. The configurations shown are
those with the fewest connections that can support each attractor.
doi:10.1371/journal.pone.0014413.g001

Attractors and Disease

PLoS ONE | www.plosone.org 3 December 2010 | Volume 5 | Issue 12 | e14413



in naturally occurring networks has been suggested to result from

evolutionary forces construing to produce a balance between

robustness and parsimony [20].

We have identified in the present study, however, two other

aspects of sparseness that have opposing advantages, and which we

speculate have to be balanced in some way by biological networks.

Figure 2. Histogram showing frequency (the number of nodes having a given number of links both arriving and leaving) versus
number of links for a fully pruned 200-node net (average of 10 independent runs).
doi:10.1371/journal.pone.0014413.g002

Figure 3. Number of iterations of the Hopfield net required to achieve convergence to the designated attractor from an arbitrary
starting state as a function of the number of links per node in the net, for nets of N = 50, 100, 200 and 400 nodes. The vertical axis has
been normalized by ln(N).
doi:10.1371/journal.pone.0014413.g003
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One of the tradeoffs we found is illustrated in Fig. 3, which shows

that a higher density of links enables a network to return more

rapidly toward its attractor state following a perturbation. This

obviously bodes well for the ongoing maintenance of homeostasis,

and so might be considered another factor giving survival

advantage to an increase in the link density of a biologic network.

On the other hand, as the link density increases above the

minimum level required to maintain a given attractor state, there

comes a point at which it is able to support a second attractor

(Fig. 4). The requirement that a biological network be both robust

and agile may thus require a degree of connectivity that supports

the existence of aberrant or pathologic attractors. In such a

situation, an inopportune interaction with the environment could

potentially drive the network into the clutches of an abnormal

attractor.

Of course, the conclusions drawn in this study are based on an

idealized model that is highly simplified relative to real biological

systems. We have assumed, for example, that homeostasis is

characterized by a single ‘‘normal’’ attractor, and that all other

attractors are pathologic in some way. It is likely that normality in

a real biological network is defined by a cluster of attractors that

allow for flexibility in dealing with different environmental

conditions or developmental stages. If such attractors are localized

in some sense, then a pathologic attractor could likely be defined

by its distance away from the normal cluster. Furthermore, in

probing for the existence of multiple network attractors, we

experimented with random environmental perturbations (i.e.

initial states) drawn from a uniform probability distribution. In

reality, the perturbations impinging on an organism are more

likely to follow a probability distribution having some central

tendency determined by the particular environment that the

organism lives in. Such a biological network could exist

comfortably with an aberrant attractor if the vast majority of

perturbations it is likely to experience remain within the

neighborhood of the normal attractor. Finally, the behavior of

the nodes in our networks was characterized by step-functions, as

in the classic Hopfield. Such nets are straightforward to set up, and

may even be amenable to analytical investigation [21]. Of course,

actual metabolic or genetic networks almost certainly involve more

complicated nodal decision functions, the Michaelis-Menten

equation perhaps being the simplest possibility [3], so our

networks are not linked to any particular biological system but

rather are designed to embody the essential features which we

believe ought to be found in any biological network. These

important details might allow the ‘‘sweet spot’’ for network

connectivity to be somewhat larger than Fig. 4 implies. These

caveats, however, do not change the overall message of our study,

which is that the density of biological network links may be an

important evolutionary design feature that balances speed and

flexibility against stability.

We thus speculate that functional entrapment of a structurally

normal biological network in an abnormal attractor might

underlie the pathogenesis of some chronic disease states. We do

not yet know which, if any, real diseases result from this type of

process. However, if our speculation is true then it has certain

important and sobering implications. First, while there would be

clear functional evidence of disease when a biologic network

succumbs to an abnormal attractor, the structure of the network

and its individual components would remain completely normal.

Furthermore, the instigating factor that pushed the network out of

its normal basin of attraction might be long gone by the time the

disease is investigated, contributing to the mystery surrounding its

nature and origins. Trying to treat a disease of this nature might

also be problematic, as it would require applying just the right

combination of perturbations to push the network back into its

normal attractor. One approach to achieving this might be to

apply large random perturbations that, in analogy with the

numerical technique known as simulated annealing [22], could

Figure 4. Fraction of times that networks converged to a second orthogonal attractor versus the number of links per node in the
network, for nets of N = 50, 100, 200 and 400 nodes. The minimal set of links previously determined to support the first designated attractor in
each net were not affected during the link pruning process.
doi:10.1371/journal.pone.0014413.g004
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cause the system to eventually find its way back to normality by

chance. In any case, there remains much to be done to establish

the validity of this theory, which will likely require an improved

understanding of the signaling and/or metabolic pathways

involved in candidate chronic diseases. One such disease might

be idiopathic pulmonary fibrosis, which manifests as the

inappropriate progression of processes in the lung that are

normally only seen transiently in the repair of tissue injury [23].

Chronic insomnia also shares features with this disease model.

Insomnia is often precipitated by an acute event but may persist

for years after the resolution of the inciting stressor [24]. Indeed

one of the most effective treatments, sleep restriction therapy, is a

controlled form of partial sleep deprivation [25] and may be

viewed as an attempt to provide a sufficiently large perturbation in

sleep-wake dynamics so as to move the patient back into the basin

of attraction corresponding to the normal state. Certain types of

autoimmune disease and cancer might also be usefully viewed

from the perspective of entrapment in an aberrant attractor. In

any case, we believe this may be a direction worth pursuing, in

view of the number of chronic diseases that remain recalcitrant to

understanding and treatment.

Materials and Methods

The model development and computations described below

were performed using MathematicaTM (Wolfram Research Inc.,

Champaign, IL).

The Hopfield net is a recurrent type of artificial neural network

consisting of an array of nodes, each of which links directly to

every other node, and possibly also to itself [6,13]. The nodes are

nonlinear summing junctions that receive input from all other

nodes, with each input being weighted by a strength associated

with the corresponding incoming link. The links are symmetric in

the sense that the link strength from node a to node b is the same

from b to a. Also, these links may be positive (excitatory) or

negative (inhibitory). Each node has a value that marks it as is

either quiescent (value = 21) or active (value = 1) based on

whether the sum of the weighted inputs the node receives from the

other nodes exceeds a certain threshold (taken to be zero in the

present case). The network is recursively iterated by multiplying

the value of each node by the strengths of its links to the other

nodes in order to create inputs to these other nodes at the next

time step. The state of a Hopfield net, defined by the set of values

of each of its nodes, defines an energy landscape having one or

more local minima. As the net is iterated, its state will converge

from a given starting point toward a stable attractor that sits at the

bottom of the basin of attraction in which the initial state is located

[6,13]. In general, the energy landscape of a Hopfield net contains

numerous attractors that each act as collection points for states

located nearby. Importantly, the locations of the attractors in the

energy landscape are determined by the link strengths between the

nodes, and these strengths can be chosen to place the attractors at

desired locations. The Hopfield net can thus be used to

differentiate between classes of initial state on the basis of the

particular attractors the various states converge toward. This

allows the Hopfield net to function as an content addressable

memory device in which the different attractors may correspond to

particular objects of interest [6].

We began with a fully connected Hopfield networks with N

equal to 50, 100, 200 or 400 nodes. Each node had a value of

either 21 or 1 depending on whether its inputs summed to ,0 or

$0, respectively. The weights of the links were assigned according

to the algorithm described by Hopfield [13] so that there was only

a single attractor state, which we call the designated attractor. The

designated attractor of a network was specified as follows. A N-

dimensional vector s was generated by randomly assigning to each

of its component, si, a value of 21 or 1. The link strengths of the

connectivity matrix T were then chosen to make this vector the

single designated attractor of the network, following Hopfield [13],

by taking T to be the dyad product of s with itself. That is,

Tij~si � sj ð1Þ

This causes T to have a single non-zero eigenvalue associated

with the eigenvector s. Furthermore, for any vector x, the inner

product T?x is either the null vector or a vector in the direction of

s. (Note that the complement of T is also an attractor of the

network, but we will focus here only on T itself, as there is no

guarantee that its complement in a real biological system would be

physically or physiologically reachable.)

The networks were iterated as follows. Starting from a random

initial state vector x[0], the state of the system at time step n,

denoted by x[n], was generated, again following Hopfield [13], as

x½n�i~1;
X300

j~1

Tijx½n{1�j§0

~{1;
X300

j~1

Tijx½n{1�jv0

ð2Þ

The system was iterated 500 times or until it converged to a

fixed point. For networks that had been pruned and thereby lost

their initial symmetry, we also evaluated for convergence to a

stable limit cycle of period 4 or below. This process was repeated

for each of 200 randomly generated x[0], and the existence of the

designated attractor was taken as confirmed if the net converged to

this attractor for all initial conditions. We also recorded the

average number of iterations required for the system to converge

to the designated attractor. We then removed the vast majority of

connection so that on average there remained only 10 connections

per node. Connections were removed by setting the corresponding

Tij values to 0, and networks were re-tested for the persistence of

the designated attractor in the reduced configuration. Invariably,

this sharp reduction in network size did not impact the continued

existence of the single attractor state. We then randomly removed

one connection at a time. At each step in this removal process the

network was probed, starting from 200 random initial states, for

the continued existence and global stability of its designated

attractor. If one or more of the initial states failed to converge to

the designated attractor at any step, the connections that had been

removed at the previous step were reinstated and a different set of

random connections was removed. The configuration of the

network during the pruning process was saved periodically for

later evaluation. The connectivity matrix describing the minimal

set of connections necessary to preserve the functioning of the

network was denoted T*. Figure 1 demonstrates a plot of

representative examples of the T* networks that emerged from

the process using different sized starting networks. This process

was then repeated for 10, 200 node networks each with a distinct

randomly chosen designated attractor. Figure 2 demonstrates the a

histogram of network connectivity (shown as mean +/2 Standard

Error).

In order to test the ability of the network to support a second

attractor, a state vector r was randomly generated subject to the

Attractors and Disease
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constraint that it be orthogonal to s, such that r?s = 0.

Connections were added to T* so that s and r became attractors

for the network with a combined basin of attraction spanning the

whole domain. The new connectivity matrix U was constructed

through a modification of Hopfield’s original formulation as

follows:

For i,jð Þ such that T�ij=0 : Uij~ T�ij

For i,jð Þ such that T�ij~ 0 : Uij ~ si � sj zri � rj

� ��
2

Thus the connectivity matrix U differed from the original

Hopfield formulation for a network with attractors r and s, only at

the approximately N of the N squared connections inherited from

T*.

The fully connected network was tested with 1000 randomly

generated initial conditions to ensure that the network would

eventually converge to one of the two designated attractors. The

connections that had been added to the skeleton of T* were then

randomly pruned. We initially removed the vast majority of

connection so that, on average, only 15 connections per node

remained by setting the remaining Uij values to 0. Individual

connections were then randomly selected one connection at a time

for sequential deletion. At each step, we tested to ensure that both

s and r remained fixed points of the network, and we by launched

it from 200 randomly generated initial configurations to ensure

that their combined basins of attraction spanned the configuration

space. All starting configurations were required to converge to one

of the designated attractors before the links were permanently

deleted. Both the average number of iterations required for the

network to converge and the fraction of initial conditions that

converged to each of the two designated attractors was tabulated

for each configuration.

MathematicaTM codes for performing the above calculations

are included in the supporting information (Appendixes S2 and

S3). The codes are explained in Appendix S1.

Supporting Information

Appendix S1

Found at: doi:10.1371/journal.pone.0014413.s001 (0.02 MB

DOCX)

Appendix S2 Network Pruning Mathematica code

Found at: doi:10.1371/journal.pone.0014413.s002 (0.11 MB

DOCX)

Appendix S3 Dual attractor network Mathematica code

Found at: doi:10.1371/journal.pone.0014413.s003 (0.09 MB

PDF)
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