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Background: Many chronic human diseases are of unclear origin, and persist long beyond any known insult or instigating
factor. These diseases may represent a structurally normal biologic network that has become trapped within the basin of an

Methodology/Principal Findings: We used the Hopfield net as the archetypical example of a dynamic biological network.
By progressively removing the links of fully connected Hopfield nets, we found that a designated attractor of the nets could
still be supported until only slightly more than 1 link per node remained. As the number of links approached this minimum
value, the rate of convergence to this attractor from an arbitrary starting state increased dramatically. Furthermore, with
more than about twice the minimum of links, the net became increasingly able to support a second attractor.

Conclusions/Significance: We speculate that homeostatic biological networks may have evolved to assume a degree of
connectivity that balances robustness and agility against the dangers of becoming trapped in an abnormal attractor.
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Introduction

Biological control networks share many formal similarities with
artificial neural networks [1,2,3,4,5]. In particular, the Hopfield
net is a recurrent type of neural network with a dynamic state
defined at any instant by the set of output levels at each of'its nodes
This state moves around on a multi-dimensional energy landscape
having one or more local minima that act as attractors for states
located nearby. Through appropriate adjustment of the weights of
the links between the nodes (the analog of synaptic strengths
between real neurons), the Hopfield net can differentiate between
classes of initial state based on the particular attractors they
converge toward [6]. This makes the Hopfield net suited for
performing associative or content addressable memory tasks. Real
neuronal networks actually appear to have more limited
connectivity, but small world Hopfield nets can also have multiple
attractors [7,8,9,10]. The nonlinear summing junctions and
variable link weights of the Hopfield net thus embody what many
consider to be the essential information-processing elements of
networks of real biological neurons. We are concerned here,
however, with the relevance of the Hopfield net for non-neuronal
biological networks, such as those pertaining to metabolism or
gene transcription, and which have also been shown to have the
ubiquitous small world topology [11,12].
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Important for the modeling of general biological networks is the
fact that the functional attributes of the Hopfield net are not
contingent upon the nonlinear characteristics of the nodes being
step functions [13]. In fact, any suitably saturating nonlinearity will
do. In particular that small-world networks based on the Hopfield
architecture can have multiple attractors when their nodal
nonlinearities conform to the Michaelis-Menten equation fre-
quently encountered in biochemical reaction kinetics [3]. Like
biological networks, Hopfield nets contain numerous excitatory
links. Thus, any real world implementation of these networks must
consume energy, which is an essential requirement for all
biological systems in order that they maintain a state far from
thermodynamic equilibrium [14,15]. Hopfield nets thus share
some key operational characteristics in common with biological
systems. Furthermore, in contrast to simple analogue control
systems that create directed restoring forces designed to return a
system to a pre-programmed set point, Hopfield nets exhibit
attractor dynamics while at the same time reflecting the
complexity of biological systems.

Here, however, we encounter an intriguing dichotomy. When
using a Hopfield net in its classic application related to content
addressable memory tasks, a key design goal is to maximize the
number of distinct attractors in the net’s energy landscape, while
keeping their basins of attraction as deep as possible. This
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combination allows optimal discrimination among distinct attrac-
tors and thereby maximizes the number of distinct entities that the
net can ‘“‘remember” reliably [6]. By contrast, one of the
fundamental requirements for living systems is to be able to
maintain homeostasis in the face of varied and ongoing
environmental inputs, often of a noxious variety. Continued
health depends on the system’s ability to mount an appropriate
response to such inputs and, subsequently, to return toward a state
of normality regardless of what regions of the energy landscape its
state had to visit in the meantime. A functional biochemical
interaction network would thus seem to be best served by an
energy landscape consisting of a single large basin of attraction
that funnels all aberrant states toward a single attractor
corresponding to the “normal state” of the network. The
alternative (i.e. having more than one attractor) would seem to
pose the risk of having a biochemically normal network become
functionally entrapped in a “pathological attractor”, should it
receive the right stimulus.

We thus face two possibilities for biological networks. One is
that multiple attractors do exist for such networks, in which case
we have to deal with the possibility of entrapment in a non-normal
attractor [3,5]. It is not clear whether or not this actually happens
in living systems, but if it does it might explain the existence of
some of the many chronic diseases currently labeled as
“idiopathic” [3] in which the body seems to operate in an
abnormal fashion for no obvious reason. In fact, the theory of
networks as applied to the immune system is already well
developed [1], and a multiple-attractor Hopfield-type theory has
been invoked to explain the effects of vaccination on immunolog-
ical status [5]. In a similar vein, Kauffman has long posited that
the various cellular phenotypes found in the body correspond to
attractors in the landscape defined by the network of gene
interactions [4,16] and that, given sufficiently large perturbations,
cells can be moved so dramatically from their normal attractor
that cell type itself can be changed [17].

The other possibility for networks in living systems is that they
are dominated by single attractors, in which case we have to ask
how this could be. Given that multiple attractors can potentially
exist in large networks governed by the Michaelis-Menten
nonlinearity [3], the question arises as to what structural
constraints must be in place to ensure only one attractor. It is
this question that we attempt to probe herein. We present evidence
that there is a critical degree of network connectivity beyond
which multiple attractors can be supported, and suggest that the
connectivity of real biological networks may have evolved to
balance the dangers of multiple attractors against the need for
agility and robustness.

Results

We first investigated how the existence of a single attractor in a
Hopfield-type network is influenced by its connectivity. Following
the methods of Hopfield, [1] we began with several fully connected
networks with N equal to 50, 100, 200, or 400 nodes. Each
network was constructed so as to have only a single designated
attractor. We then randomly eliminated inter-nodal connections,
each time checking to see if the designated attractor remained
intact. We checked for convergence to the designated attractor
from 100 different, randomly chosen initial states. The net was
iterated 500 times from ecach initial state or until it converged to
either a steady state or a limit cycle up to period 4. (In eliminating
individual links, the symmetry of the initially fully connected net
was lost along with the Hopfield structure that guarantees the
existence of only fixed-point attractors, thereby allowing for the
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possibility of limit cycles). If the net converged toward the
designated attractor for all initial conditions, the links were
permanently eliminated. Otherwise they were reinstated and the
elimination of a different set of links was assessed.

Figure 1 shows examples of fully pruned networks that retained
the ability to converge to their respective designated attractors.
These final configurations show some degree of variation, but in
terms of overall structure they share strong similarities. In
particular, the network configurations shown in Fig. 1 are very
sparse with few circular pathways. Indeed, while a network with N
nodes starts with M connection, we were able to reduce this
number to only slightly more than /N while retaining the designated
attractor. Most of the nodes thus end up receiving very few
connections, ranging from 1 to 7. To characterize this connectivity
more fully, we pruned 10 different 200-node networks and found
that the final network configurations had between 201 and 207
connections in total. Furthermore, the frequency distribution of
nodes as a function of the number of connections decreased
monotonically (Fig. 2). This is reminiscent, both in shape and
magnitude, of the small world connectivity distributions that have
been widely reported for metabolic and genetic networks
[12,18,19].

By design, the final network configurations shown in Fig. 1 are
extremely fragile in the sense that elimination of even one more
link will destroy the designated attractor. In contrast, random
elimination of 95% of the original full set of links usually left the
designated attractor intact. This illustrates a powerful tradeoff
between parsimony and robustness. The cost of parsimony is more
than just fragility, however, as there is also a tradeofl’ against the
speed with which the network can respond to external perturba-
tions [7]. As the links were pruned from the network, the average
number of iterations they required to converge to the designated
attractor from a random starting state increased, rising dramat-
ically as the number of links neared the minimum value; Fig. 3
shows that the number of iterations increases sharply as the
average number of links per node drops below about 3. The rate of
convergence was also found to scale with the natural logarithm of
the network size (V). Thus, when the number of iterations required
for convergence is normalized by In(V) and plotted against the
mean number of links per node, a universal curve emerges (Fig. 3).
With this empirical scaling law we can extrapolate our result to
networks of arbitrary size.

We also evaluated how changes in network connectivity
impacted the ability of the network to support a second attractor,
and identified another tradeoff that may have important
mmplications for chronic disease. This relates to the ability of the
network to support a second attractor. Although we set up our
networks so that each had only a single designated attractor from
the outset, a fully connected Hopfield net can support multiple
attractors 1if its link weights are chosen appropriately [6,13].
Indeed, the maximum storage capacity of a fully connected MN-
node Hopfield net is in the order of N/In(N) [6]. On the other
hand, the fragile networks shown in Fig. 1 are unable to sustain
any more than their single designated attractors. Therefore,
somewhere between the fully connected condition and the sparse
connectivities illustrated in Fig. 1 is the point where these nets are
able to support a second attractor.

We searched for the second attractor point by adding several
thousand links back to individual examples of fully pruned networks
(such as those shown in Fig. 1), with the weights of these new links
adjusted so that the network supported both the original designated
attractor and a second designated attractor that was orthogonal to
the first. We then randomly removed these new links without
touching the minimal set of links previously found necessary to
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Figure 1. The final configurations (nodes and their directed interconnections) of randomly generated Hopfield nets having 200
(top), 100 (middle) and 50 (bottom) nodes. These nets began fully connected with their link weights chosen to define a single attractor (the
designated attractor). Links were removed until the nets were no longer able to support their designated attractors. The configurations shown are

those with the fewest connections that can support each attractor.
doi:10.1371/journal.pone.0014413.g001

support the first attractor. At each step in this process, the network
was launched from 200 random initial configurations, all of which
were required to converge to one or other of the two designated
attractors before the links were permanently deleted. As the new
links were pruned, the fraction of the runs that converged to the
second attractor decreased (Fig. 4). These results also scaled with
network size so that, regardless of N, the chance of convergence to
the second attractor became extremely small when the network was
reduced to approximately 3V connections. When fewer than about
2 connections per node remained, the second designated attractor
was no longer supported as a fixed point of the system. There thus
appears to be a range of networks connectivities between 1 to 2
connections per node that can support a single designated attractor
but not a second one. This degree of sparsity, however, comes at the
cost of both network fragility and speed, as Fig. 3 indicates a sharp
decline in convergence speed as connectivity falls below 3
connections per node.

Discussion

Biological networks are sparse, each agent communicating
directly with only a very few of its possible counterparts
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[12,18,19]. Our minimal networks (Fig. 1) are also sparse, and
have connectivity distributions (e.g. Fig. 2) that decrease
monotonically, reminiscent of a number of biological networks
[12]. Our results thus suggest that a sparse small-world network is
suited to operating within a dynamic basic of attraction. This
would allow the network to always return toward normality
following the continual and varied perturbations it receives from
the environment. These networks thus accomplish homeostatic
control in a manner that resembles true biological systems more
closely than do ad hoc control models based on a pre-programmed
restoring force. One the other hand, the sparseness of these
networks obviously mitigates against robustness to damage. The
minimal networks shown in Fig. 1 are fragile to the extent that
elimination of a single link will render each of them unable to
support their designated attractor. This would seem to be a
precarious position to be in from the point of view of survival.
Biologic networks would do well to have at least some
redundancy built into their structures by having more than the
minimal set of links required to support the dynamic attractor
corresponding to health; one can imagine that minimally
connected networks would not have fared well in the contest
for natural selection. Indeed, the actual degree of sparseness seen

December 2010 | Volume 5 | Issue 12 | e14413



Attractors and Disease

Connectivity
100
10
=
(=]
=
Q
=
o
o
[V
1
0.1 + T '
1 2 3 4 B 6 7

Number of Links

Figure 2. Histogram showing frequency (the number of nodes having a given number of links both arriving and leaving) versus
number of links for a fully pruned 200-node net (average of 10 independent runs).
doi:10.1371/journal.pone.0014413.9002

in naturally occurring networks has been suggested to result from We have identified in the present study, however, two other
evolutionary forces construing to produce a balance between aspects of sparseness that have opposing advantages, and which we
robustness and parsimony [20]. speculate have to be balanced in some way by biological networks.
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Figure 3. Number of iterations of the Hopfield net required to achieve convergence to the designated attractor from an arbitrary
starting state as a function of the number of links per node in the net, for nets of N=50, 100, 200 and 400 nodes. The vertical axis has
been normalized by In(N).
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Figure 4. Fraction of times that networks converged to a second orthogonal attractor versus the number of links per node in the
network, for nets of N=50, 100, 200 and 400 nodes. The minimal set of links previously determined to support the first designated attractor in

each net were not affected during the link pruning process.
doi:10.1371/journal.pone.0014413.9g004

One of the tradeoffs we found is illustrated in Fig. 3, which shows
that a higher density of links enables a network to return more
rapidly toward its attractor state following a perturbation. This
obviously bodes well for the ongoing maintenance of homeostasis,
and so might be considered another factor giving survival
advantage to an increase in the link density of a biologic network.
On the other hand, as the link density increases above the
minimum level required to maintain a given attractor state, there
comes a point at which it is able to support a second attractor
(Fig. 4). The requirement that a biological network be both robust
and agile may thus require a degree of connectivity that supports
the existence of aberrant or pathologic attractors. In such a
situation, an inopportune interaction with the environment could
potentially drive the network into the clutches of an abnormal
attractor.

Of course, the conclusions drawn in this study are based on an
idealized model that is highly simplified relative to real biological
systems. We have assumed, for example, that homeostasis is
characterized by a single “normal” attractor, and that all other
attractors are pathologic in some way. It is likely that normality in
a real biological network is defined by a cluster of attractors that
allow for flexibility in dealing with different environmental
conditions or developmental stages. If such attractors are localized
in some sense, then a pathologic attractor could likely be defined
by its distance away from the normal cluster. Furthermore, in
probing for the existence of multiple network attractors, we
experimented with random environmental perturbations (i.e.
initial states) drawn from a uniform probability distribution. In
reality, the perturbations impinging on an organism are more
likely to follow a probability distribution having some central
tendency determined by the particular environment that the
organism lives in. Such a biological network could exist
comfortably with an aberrant attractor if the vast majority of
perturbations it is likely to experience remain within the
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neighborhood of the normal attractor. Finally, the behavior of
the nodes in our networks was characterized by step-functions, as
in the classic Hopfield. Such nets are straightforward to set up, and
may even be amenable to analytical investigation [21]. Of course,
actual metabolic or genetic networks almost certainly involve more
complicated nodal decision functions, the Michaelis-Menten
equation perhaps being the simplest possibility [3], so our
networks are not linked to any particular biological system but
rather are designed to embody the essential features which we
believe ought to be found in any biological network. These
mmportant details might allow the “sweet spot” for network
connectivity to be somewhat larger than Fig. 4 implies. These
caveats, however, do not change the overall message of our study,
which is that the density of biological network links may be an
important evolutionary design feature that balances speed and
flexibility against stability.

We thus speculate that functional entrapment of a structurally
normal biological network in an abnormal attractor might
underlie the pathogenesis of some chronic disease states. We do
not yet know which, if any, real diseases result from this type of
process. However, if our speculation is true then it has certain
important and sobering implications. First, while there would be
clear functional evidence of disease when a biologic network
succumbs to an abnormal attractor, the structure of the network
and its individual components would remain completely normal.
Furthermore, the instigating factor that pushed the network out of
its normal basin of attraction might be long gone by the time the
disease is investigated, contributing to the mystery surrounding its
nature and origins. Trying to treat a disease of this nature might
also be problematic, as it would require applying just the right
combination of perturbations to push the network back into its
normal attractor. One approach to achieving this might be to
apply large random perturbations that, in analogy with the
numerical technique known as simulated annealing [22], could
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cause the system to eventually find its way back to normality by
chance. In any case, there remains much to be done to establish
the validity of this theory, which will likely require an improved
understanding of the signaling and/or metabolic pathways
involved in candidate chronic diseases. One such disease might
be idiopathic pulmonary fibrosis, which manifests as the
inappropriate progression of processes in the lung that are
normally only seen transiently in the repair of tissue injury [23].
Chronic insomnia also shares features with this disease model.
Insomnia is often precipitated by an acute event but may persist
for years after the resolution of the inciting stressor [24]. Indeed
one of the most effective treatments, sleep restriction therapy, is a
controlled form of partial sleep deprivation [25] and may be
viewed as an attempt to provide a sufficiently large perturbation in
sleep-wake dynamics so as to move the patient back into the basin
of attraction corresponding to the normal state. Certain types of
autoimmune disease and cancer might also be usefully viewed
from the perspective of entrapment in an aberrant attractor. In
any case, we believe this may be a direction worth pursuing, in
view of the number of chronic diseases that remain recalcitrant to
understanding and treatment.

Materials and Methods

The model development and computations described below
were performed using Mathematica™ (Wolfram Research Inc.,
Champaign, IL).

The Hopfield net is a recurrent type of artificial neural network
consisting of an array of nodes, each of which links directly to
every other node, and possibly also to itself [6,13]. The nodes are
nonlinear summing junctions that receive input from all other
nodes, with each input being weighted by a strength associated
with the corresponding incoming link. The links are symmetric in
the sense that the link strength from node «a to node 4 is the same
from b to a. Also, these links may be positive (excitatory) or
negative (inhibitory). Each node has a value that marks it as is
either quiescent (value = —1) or active (value =1) based on
whether the sum of the weighted inputs the node receives from the
other nodes exceeds a certain threshold (taken to be zero in the
present case). The network is recursively iterated by multiplying
the value of each node by the strengths of its links to the other
nodes in order to create inputs to these other nodes at the next
time step. The state of a Hopfield net, defined by the set of values
of each of its nodes, defines an energy landscape having one or
more local minima. As the net is iterated, its state will converge
from a given starting point toward a stable attractor that sits at the
bottom of the basin of attraction in which the initial state is located
[6,13]. In general, the energy landscape of a Hopfield net contains
numerous attractors that each act as collection points for states
located nearby. Importantly, the locations of the attractors in the
energy landscape are determined by the link strengths between the
nodes, and these strengths can be chosen to place the attractors at
desired locations. The Hopfield net can thus be used to
differentiate between classes of initial state on the basis of the
particular attractors the various states converge toward. This
allows the Hopfield net to function as an content addressable
memory device in which the different attractors may correspond to
particular objects of interest [6].

We began with a fully connected Hopfield networks with N
equal to 50, 100, 200 or 400 nodes. Each node had a value of
either —1 or 1 depending on whether its inputs summed to <0 or
=0, respectively. The weights of the links were assigned according
to the algorithm described by Hopfield [13] so that there was only
a single attractor state, which we call the designated attractor. The
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designated attractor of a network was specified as follows. A N-
dimensional vector s was generated by randomly assigning to each
of its component, s;, a value of —1 or 1. The link strengths of the
connectivity matrix T were then chosen to make this vector the
single designated attractor of the network, following Hopfield [13],
by taking T to be the dyad product of s with itself. That is,

T,'jIS,'*Sj (1)

This causes T to have a single non-zero eigenvalue associated
with the eigenvector s. Furthermore, for any vector x, the inner
product T x is either the null vector or a vector in the direction of
s. (Note that the complement of T is also an attractor of the
network, but we will focus here only on T itself, as there is no
guarantee that its complement in a real biological system would be
physically or physiologically reachable.)

The networks were iterated as follows. Starting from a random
initial state vector x[0], the state of the system at time step n,
denoted by x[#], was generated, again following Hopfield [13], as

300
x[n],=1; Z Tyx[n—1],>0
i=1

300
=—1; > Tyx[n—1],<0

Jj=1

The system was iterated 500 times or until it converged to a
fixed point. For networks that had been pruned and thereby lost
their initial symmetry, we also evaluated for convergence to a
stable limit cycle of period 4 or below. This process was repeated
for each of 200 randomly generated x[0], and the existence of the
designated attractor was taken as confirmed if the net converged to
this attractor for all initial conditions. We also recorded the
average number of iterations required for the system to converge
to the designated attractor. We then removed the vast majority of
connection so that on average there remained only 10 connections
per node. Connections were removed by setting the corresponding
T;; values to 0, and networks were re-tested for the persistence of
the designated attractor in the reduced configuration. Invariably,
this sharp reduction in network size did not impact the continued
existence of the single attractor state. We then randomly removed
one connection at a time. At each step in this removal process the
network was probed, starting from 200 random initial states, for
the continued existence and global stability of its designated
attractor. If one or more of the initial states failed to converge to
the designated attractor at any step, the connections that had been
removed at the previous step were reinstated and a different set of
random connections was removed. The configuration of the
network during the pruning process was saved periodically for
later evaluation. The connectivity matrix describing the minimal
set of connections necessary to preserve the functioning of the
network was denoted T". Figure 1 demonstrates a plot of
representative examples of the T* networks that emerged from
the process using different sized starting networks. This process
was then repeated for 10, 200 node networks each with a distinct
randomly chosen designated attractor. Figure 2 demonstrates the a
histogram of network connectivity (shown as mean +/— Standard
Error).

In order to test the ability of the network to support a second
attractor, a state vector r was randomly generated subject to the
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constraint that it be orthogonal to s, such that r-s=0.
Connections were added to T so that s and r became attractors
for the network with a combined basin of attraction spanning the
whole domain. The new connectivity matrix U was constructed
through a modification of Hopfield’s original formulation as
follows:

For (ij) such that T;#0: Uy= T}

For (i,j) such that Ty = 0: U = (si*sj +1i*1))/2

Thus the connectivity matrix U differed from the original
Hopfield formulation for a network with attractors r and s, only at
the approximately N of the N squared connections inherited from

%

The fully connected network was tested with 1000 randomly
generated initial conditions to ensure that the network would
eventually converge to one of the two designated attractors. The
connections that had been added to the skeleton of T* were then
randomly pruned. We initially removed the vast majority of
connection so that, on average, only 15 connections per node
remained by setting the remaining Uy values to 0. Individual
connections were then randomly selected one connection at a time
for sequential deletion. At each step, we tested to ensure that both
s and r remained fixed points of the network, and we by launched
it from 200 randomly generated initial configurations to ensure
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