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Abstract

Background: Eukaryotic transcription is accompanied by combinatorial chromatin modifications that serve as functional
epigenetic markers. Composition of chromatin modifications specifies histone codes that regulate the associated gene.
Discovering novel chromatin regulatory relationships are of general interest.

Methodology/Principal Findings: Based on the premise that the interaction of chromatin modifications is hypothesized to
influence CpG methylation, we present a closeness measure to characterize the regulatory interactions of epigenomic
features. The closeness measure is applied to genome-wide CpG methylation and histone modification datasets in human
CD4+T cells to select a subset of potential features. To uncover epigenomic and genomic patterns, CpG loci are clustered
into nine modules associated with distinct chromatin and genomic signatures based on terms of biological function. We
then performed Bayesian network inference to uncover inherent regulatory relationships from the feature selected
closeness measure profile and all nine module-specific profiles respectively. The global and module-specific network
exhibits topological proximity and modularity. We found that the regulatory patterns of chromatin modifications differ
significantly across modules and that distinct patterns are related to specific transcriptional levels and biological function.
DNA methylation and genomic features are found to have little regulatory function. The regulatory relationships were partly
validated by literature reviews. We also used partial correlation analysis in other cells to verify novel regulatory relationships.

Conclusions/Significance: The interactions among chromatin modifications and genomic elements characterized by a
closeness measure help elucidate cooperative patterns of chromatin modification in transcriptional regulation and help
decipher complex histone codes.
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Introduction

Complexity and specificity of transcriptional control has long

been the subject of intense research. Epigenetics is the study of

biological outputs that are not defined by static genome sequences

[1]. Histone modification and DNA methylation are the best

known examples of epigenetic regulation. Recently data has

helped shed light on the role of epigenetic modifications in

transcriptional regulation [2–4]. Histone modifications play a

significant role in epigenetics and can dynamically influence gene

transcription [5]. Many types of histone modification are known to

act on nucleosomes, but only a few of them have a defined

function in genomic regulation. In addition, chromatin modifica-

tions often function in a cooperative way to increase regulatory

complexity. Histone modifications have been shown previously to

be one mechanism of modulating transcription factors (TFs) and

transcriptional control [6,7].

CpG methylation is the major covalent DNA modification in

mammals and is another important epigenetic mechanism. DNA

methylation is strongly linked to particular genomic elements.

Several lines of evidence indicate that CpG islands (CGIs) generally

repel CpG methylation, which is quite different from the bulk

genome, especially genomic repeats where most CpGs are

methylated [8–10]. Promoters may not contain CGIs, even though

they may overlap significantly. Many possibilities have been

proposed to account for the role of DNA methylation in

transcription. One widely supported theme is that DNA methyla-

tion can impede TF binding to specific genomic fragments [11,12].

Covalent modifications of histone tails, such as methylation and

acetylation, contribute to the dynamic regulation of transcription
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[5,13–15]. The cis-regulation of transcription by a large number of

combinatorial histone modifications is called the histone code

[16,17]. A histone modification may colocalize with other

modifications and may even be on the same histone tail. Although

DNA methylation and histone markers are in different epigenetic

layers, and both are regulated via enzymatic mechanisms [18–20],

it is relatively straightforward to explore their interaction given

that histone modification and DNA methylation often colocalize to

influence each other. It has been suggested that TF cooperativity is

dependent upon chromatin modifications [21], which prompted us

to investigate cooperative signatures of epigenomic and genomic

elements.

Several experimental studies have confirmed chromatin inter-

actions [22–24]. Generally, these studies have suffered from being

small scale and limited in the number of specific genomic loci

examined. For example, a recent study identified a novel

mechanism of DNA methylation in gene activation [25], quite

different from the general repression mechanism. In addition,

advances in experimental approaches have enabled high-through-

put sequencing and genome wide studies to identify epigenetically

regulated patterns [26–32]. The genome-wide characterization of

epigenomic marks and genome-epigenome cooperativity by

chromatin immunoprecipitation followed by massively parallel

sequencing is therefore feasible. The resolution and genome-wide

scale of these data enable the comprehensive investigation of

regulatory patterns beyond CGIs and promoters, and more

towards uncharacterized regions. In particular, the available data

facilitates investigation of the chromatin modification landscape in

functionally unknown regions and consequently can provide a

more comprehensive view of biological interactions.

Bayesian network inference can identify regulatory networks.

Edges in a Bayesian network can represent causal relationships. In

this study, we used the WinMine package to infer chromatin

regulatory relationships, as the algorithm in the package improves

the original Bayesian network algorithm to distinguish compelled

from reversible edges. Previous studies have demonstrated the

usefulness of Bayesian networks for reconstructing regulatory

networks [33,34]. Yu et al. inferred the first epigenetic regulatory

map of histone modifications and gene expression [34]. In their

study, a Bayesian network proved to be an ideal tool for inferring

regulatory relationships at 1.2, 2 and 4 kb size windows from ChIP

data. Although we also use a Bayesian network, our approach is

fundamentally different. We discovered regulatory chromatin

modification relationships from derived feature modules using a

Bayesian network based on a novel profile-based measure, called

the closeness measure (CM). The CM is designed to capture

influential effects of specific chromatin domains on CpG

methylation. Computationally, the CM measure is based on the

premise that cooperativity among epigenomic elements can affect

the local methylation status at a specified, and nearby CpG loci if

they overlap in terms of genomic position. To consider the

genome-epigenome interaction, we selected CGIs, DNA repeats,

and promoters, as representative of genomic elements together

with other chromatin elements to construct a Bayesian network.

DNA methylation was considered as the phenotype to infer the

cooperativity among chromatin modifications. Intuitively, the

closer a cytosine (within a putative chromatin domain) is around

the center of the domain, the more influence the domain imposes

on the cytosine, potentially cooperating with other epigenomic

elements to influence DNA methylation. Therefore, the assump-

tion is that chromatin interaction can be inferred from the

methylation influences. We observed DNA methylation to have

very limited regulatory roles. For clarity, we assume that CpGs are

considered to be influenced by chromatin features and any

features have not influences upon CpGs. Both ‘‘closeness’’ and

‘‘distance’’ can be used to characterize the interaction of chromatin

modifications upon CpG loci, where the distance is proportional to

the closeness. Given the contrasting genomic resolution of

chromatin domains and single CpG loci, the CM is more suitable

for quantifying their relationship than the distance measure.

In this study, high-throughput DNA methylation and chromatin

modification data processed by the proposed CM were assembled

to profile 31,237 loci. To reduce the false positives, only features

significantly associated with methylation as characterized by the

CM regression model were kept. To find regulatory networks that

associated with distinct chromatin patterns, we performed an

unsupervised homogeneity based cluster analysis to obtain nine

functional feature modules. Further investigation revealed that

these modules were associated with distinct levels of gene

expression and dominant biological functions. In the regulatory

networks of the nine modules, DNA methylation and genomic

elements are present only in specific modules, implying that they

are not necessarily common regulatory initiators. Frequent

interactions are considered consistent regulatory patterns. Our

studies find many regulatory and cooperative chromatin modifi-

cations that have not been characterized experimentally. Finally,

novel relationships were validated by partial correlation analysis.

Data from this study and similar efforts help establish an

epigenomic regulatory landscape and can be used as a reference

by other studies and projects, such as The Chromatin Protein

Discovery Project (CPDP). The workflow of this study is

summarized in Figure 1.

Materials and Methods

Datasets
A small number of chromatin modifications have been

confirmed to have cooperativity, and many relationships remain

to be discovered. To obtain a better understanding of the

regulatory and cooperative patterns of epigenomic and genomic

elements in CD4+ T cells, we downloaded and analyzed various

datasets. Firstly, we obtained publicly available ChIP-seq data for

chromatin modifications, including histone modification, a histone

variant H2A.Z and two transcription factor (CTCF and PolII) in

human CD4+ T cells [27,28], and transformed the number of tags

for each data to putative chromatin domains by MACS from

Zhang et al. [35]. The CpG methylation data in CD4+ T cells is

available from the Human Epigenome Project (HEP) [36], where

the direct Sanger sequencing of bisulfite-converted DNA was used

to generate a CpG methylation landscape across human

chromosome 6, 20, and 22. The methylation levels of CpG loci

were averaged by ‘variation’ identifiers, and records of technical

controls were discarded. The original genomic positions (hg17) of

CpG loci were changed to genome assembly hg18 by the

GALAXY server [37]. At last count, a data profile of 31,237

CpG loci was available (Table S1). The average methylation level

is shown as the response in the regression model and used for

linking epigenomic and genomic elements. The genomic distribu-

tion for the loci is presented in Table 1. We then linked the CpG

loci in the DNA methylation profile data with chromatin

modifications and genomic elements using the CM measure.

In addition, three genomic markers (promoters, CGIs and

repeats) were included in the CM data profile to understand the

functionality of genomic elements and further uncover genome-

epigenome interactions. The genomic features include the CGI

annotation from CpGcluster [38], the repeat feature downloaded

from UCSC (RepeatMasker feature), and the promoter feature

defined by [21k, 0.2k] around transcription start sites (TSSs).

Chromatin Regulation Analysis
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The closeness measurement for identifying cooperative
chromatin interactions

Though epigenomic interactions have only recently been

proposed, increasing evidence supports this hypothesis [39–41].

The CM is proposed to identify the interaction of epigenomic

features based on their interactions with DNA methylation. The

CM measure is based on the premise that chromatin modifications

are combinatorially linked to DNA methylation [18]. The

computational workflow of the CM is illustrated in Figure 2.

The CM is applied to all types of putative chromatin modification

domains. Conversely, the hidden interaction can be inferred from

the CM data profile by treating the methylation status as the

interaction indicator.

All 41 ChIP-seq chromatin features were processed by MACS

[35] to detect putative chromatin domains of chromatin features.

We first downloaded the ChIP-seq data sets [27,28] and then

processed them with MACS using default parameters and mfold

= 10. Thousands of putative domains were mapped to specific

chromatin modifications. Overlapping domains were combined

into a unique domain.

The closeness measure is devised as follows. Let all features be

denoted as A1 … Aj … Af-3, Af-2, Af-1, Af, where f is the feature

number (f = 44) and Af-2, Af-1, Af represent three genomic features:

promoters, CGIs and repeats, respectively. Except genomic

features, all other features were quantified as the closeness of

domain center against CpG loci by the CM measure (see reasons

below). For a specific cytosine, i, its correlation with Aj was denoted

as a vector CMi = (CMi1 … CMij … CMi(f-3)) where CMij

represents the closeness of cytosine i and feature Aj. Let the

putative chromatin domains in each feature profile j be (R1 … Rk

… RNj), the number of putative domains in each feature profile j be

(N1 … Nj … Nf-3), mj be the length of feature Rk (Equation 1) and N

to be the cytosine number (N = 31,237). The closeness measure

CM (Ci, Rk) is defined below as a piecewise function:

mk~end Rkð Þ{start Rkð Þ ð1Þ

Figure 1. Study overview.
doi:10.1371/journal.pone.0014219.g001
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CM Ci,Rkð Þ~

2start Cið Þ=mk{2start Rkð Þ=mk,

if start Rkð Þvstart Cið Þvstart Rkð Þzmk=2

2end Rkð Þ=mk{2end Cið Þ=mk,

if start Rkð Þzmk=2ƒend Cið Þƒend Rkð Þ

8>>><
>>>:

ð2Þ

where start(Rk) and end(Rk) are the start and end coordinate (0-

based) of a putative chromatin domain mapped by ChIP-seq

features and start(Ci) and end(Ci) are the start and end coordinate of

a given CpG locus, Ci. The boundary conditions in Equation 2

make the CM(Ci,Rk) = 0, if none of the putative chromatin

modification domains of Ak overlap the specific CpG loci. The

reasoning for this constraint is that CpGs beyond the outer edge of

domains are not expected to be influenced by chromatin domains.

The workflow of Equation 2 is illustrated in Figure 2. Equation 2

Table 1. Genomic distribution of CpG loci in HEP data for each chromosome.

Gene association class Number (%)

Chromosome 6 Chromosome 20 Chromosome 22 Sum

# of CpG loci (%) 9757 (31.24) 5172 (16.57) 16308 (52.21) 31237 (100)

Promoter 4856 (49.77) 519 (10.03) 5647 (34.63) 11022 (35.29)

CGIs 5962 (61.10) 1055 (20.40) 6792 (41.65) 13809 (44.21)

Repeat 220 (2.25) 134 (2.59) 475 (2.91) 829 (2.65)

TSS[-10k, -1k] 1511 (15.49) 475 (9.18) 1908 (11.70) 3894 (12.47)

TSS[-1k, 0k] 2795 (28.65) 243 (4.70) 3360 (20.60) 6398 (20.48)

59UTR 1094 (11.21) 106 (2.05) 1200 (7.36) 2400 (7.68)

Exon 3121 (31.99) 220 (4.25) 4996 (30.64) 8337 (26.69)

Intron 2797 (28.67) 1940 (37.51) 4566 (28.00) 9303 (29.78)

39UTR 62 (0.64) 39 (0.75) 551 (3.38) 652 (2.09)

TES[0k, 1k] 291 (2.98) 10 (0.19) 317 (1.94) 618 (1.98)

doi:10.1371/journal.pone.0014219.t001

Figure 2. The workflow of the proposed distance measure.
doi:10.1371/journal.pone.0014219.g002
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quantifies the relative position of a specific CpG locus around a

putative chromatin domain centre, and normalizes by domain

length (mk). The constant 2 appearing in every term of Equation 2

maps the range of closeness from [0, 0.5] to [0, 1]. This step makes

the CM value comparable to the methylation level. The Rk has to

be previously merged if overlapped, so CM(Ci,Aj) = CM(Ci,Rk), if

CM(Ci,Rk) ? 0. In Figure 2, we take four typical cytosines for

instances.

The discrete measurement for assessing the influence of
genomic elements upon CpG methylation

It is unexpected that genomic elements (promoters, CGIs and

repeats) exert closeness influences upon CpG loci. For genomic

features, discrete values were coded, where 1 represents that the

cytosine i overlaps the feature Aj at least 1 bp, and 0 represents

that the cytosine i does not overlap any domain in the profile Aj,

j = f-2 … f.

To obtain a unified notation of the final profile, CM(Ci,Aj) = 1

for overlap of Aj ( j = f-2, f-1 and f ) and Ci; likewise CM(Ci,Aj) = 0

for non-overlap of Aj ( j = f-2, f-1 and f ) and Ci. As a result, the

profile data is represented as the N by ( f+1) matrix, in which each

cell represents the CM(Ci,Aj) of cytosine i and feature j as well as a

column of methylation status Mi of cytosine i, where j,f+1

(Equation 3). The range of the profile is a 0–1 scale.

CM~

CM C1,A1ð Þ ::: CM C1,Af

� �

::: CM Ci,Aj

� �
:::

CM CN ,A1ð Þ ::: CM CN ,Af

� �
M1

Mi

MN

�������

2
64

3
75 ð3Þ

The CM profile data along with the information of the CpG loci

and methylation status is presented in Table S1.

Linear regression model and feature selection
Multiple linear regression functions in MATLAB (MathWorks,

Natick, MA) were used to construct the regression model for the

CM profile data derived by Equation (3). Coefficients b0 and bj in

Equation (4) was trained with the CM profile where the Mi column

was treated as the response variable M. The model parameter

estimation was determined by 10-fold cross-validation. In each

case, nine subsets were used for training and the remaining tenth

subset for testing. The final Pearson correlation coefficient (Pcc) is

the average of the ten cycles and is not limited to a specific subset

of CpG loci.

M~b0z
Xf

j~1

bjCM Aj

� �
ð4Þ

Informative features were determined by t-test (p = 0.001). The t

statistics are defined as Equation (5).

tj~bj=Sbj
ð5Þ

where bj is the estimation of bj and Sbj
is the standard deviation of

bj.

Module detection and follow-up analysis
The CLICK clustering algorithm in the EXPANDER package

was used to detect homogeneity based (epi)genomic modules [42].

Utilizing graph-theoretic and statistical techniques, CLICK is

generally used to cluster gene expression profiles. Here, CLICK

was used to classify CpG loci based on their CM profile.

To examine if the derived modules can be expected randomly,

the values in CM profile were randomly swapped, keeping the

same value distribution. We generated 100 such randomized

datasets. For random datasets, the module number and homoge-

neity distribution is expected to be different from the real dataset.

We next examined the expression of genes associated with loci

in these modules. The expression microarray (Affymetrix Human

Genome U133 Plus 2.0 GeneChip array) from Schones et al. [43]

provided the gene expression data from resting CD4+ T cells. The

logarithmic profile derived from raw data was used, followed by

quantile normalization (normalize quantiles function in R Affy

package). The expression values for redundant Entrez Gene IDs

were mapped by median probe values.

Specific regulatory functions are expected to group in specific

modules. To demonstrate this, the enrichment of Gene Ontology

(GO) Biological Processes (BP) terms was used to annotate the

genes in modules by DAVID [44]. A modified Fisher Exact test

proposed by DAVID identified significantly enriched GO terms

within specific modules. The resulting p-value was corrected for

false discovery rate (FDR) multiple hypothesis testing on the GO

terms tested in each module. Only terms enriched by at least 1.5

fold over the average and EASE p,0.001 are shown.

To further assess intra-module gene function similarity, the

mgeneSim function based on Wang’s method in the GOSemSim

(R package) was used to estimate semantic similarity of GO terms

[45,46]. Wang’s method determines the semantic similarity of GO

terms based on both the location of terms in the GO graph and

their relation to ancestor terms. MgeneSim computes pairwise

similarity scores for a list of genes. MgeneSim uses gene IDs as

inputs, so we mapped the CpG loci in each module to get gene IDs

(refgene_getnearestgene in the CisGenome package). MgeneSim

automatically removes genes without annotations. Finally, we

calculated the median gene similarity results together with the

standard deviation based on the output of mgeneSim.

To show the genomic distribution of CpG loci in the

methylation dataset from the HEP project, gene structures of

these loci (i.e. exon) were annotated by function using refgene_

getlocationsummary in the CisGenome package [47].

Bayesian network inference
We used the GES tool in the WinMine Toolkit (http://research.

microsoft.com/en-us/um/people/dmax/WinMine/tooldoc.htm)

to build Bayesian networks based on the CM profile. Each

chromatin feature together with its methylation status in the CM

profile was split into two classes based on equal frequency. In

principle, the Bayesian network is well illustrated in a recent paper

[34].

All together, two types of Bayesian networks were mapped. One

is a global network, which is without module partition. The other

one is a module-specific network. The global network reflects the

overall regulatory relationships and can be compared with

module-specific networks.

Network topology was analyzed by two Cytoscape plugins

(ClusterViz and RandomNetworks). First, the EAGLE algorithm

in ClusterViz was used to identify network modules, with

CliqueSizeThreshold = 3 and OutputThreshold = 2. To check

whether the real network was a random event, the RandomNet-

works plugin randomized existing networks and compared the

network features of existing networks to randomized networks.

Key parameters in RandomNetworks include Num shuffles

(Number of shuffling), set at 5000, and Rounds to Run (Number

of Randomizations to Perform), set at 5000.

Chromatin Regulation Analysis
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Using 100 random datasets generated by module randomiza-

tion, network construction was repeated 100 times for the global

network and module-specific networks to determine whether

regulatory relationships are generated by random data.

Results

21 chromatin modifications and genomic elements are
selected as informative features

The CM was used for linking chromatin modifications and

DNA methylation to generate the CM profile. We then used a

linear regression model to select potential features as candidates

that may function combinatorially in human CD4+ T cells. The

selected features are expected to have individual closeness

influence on cytosine methylation. From the estimated regression

coefficients and p-values in the trained model, including all 44

(epi)genomic features and methylation levels (response variable),

we obtained 21 features (p,0.001) that appeared to influence

methylation and selected those features for further analysis

(Table 2).

To determine whether these features are sufficient to model

CpG methylation, we created a feature reduced model (FRM)

without insignificant features. We evaluated whether features are

related to CpG methylation by determining Pearson correlation

coefficient (Pcc) between modeled and measured methylation. As a

result, there is a significant correlation (Pcc = 0.891; empirical

p,1026) in the FRM. Random perturbation datasets (1,000,000)

were generated from the CM profile, none of which yielded better

Pcc than the constructed models. Significant features generated

from the FRM and their coefficients and p-values are presented in

Table 2 and Table S2, respectively. In contrast, there is a

significant correlation (Pcc = 0.877; permutation empirical

p,1026) for models generated using all features. These results

suggest that only some chromatin modifications are significant

enough to impact the CpG methylation model. Unexpectedly,

when the repeat feature should be excluded from the FRM

(p = 0.35).

We next evaluated how the FRM performs with independent

datasets by firstly using another publicly available CD4+ T cell

methylation dataset generated using the‘‘Illumina GoldenGate

Array for Methylation’’, designed for sequencing up to 1,536 loci

[48]. After filtering, 571 loci that do not overlap with the training

data were left for validation. Though not excellent, the predicted

methylation status by the FRM correlated with the measured

status, although not as strongly (Pcc = 0.602; empirical p,1026).

A MeDIP-chip experiment is quite different from a bisulfite-

converted DNA experiment in principle, and is expensive when

used to generate genome-wide maps at a high resolution.

However, there is a MeDIP-chip genome-wide dataset containing

345,274 regions (approximately 100 bp) generated from CD4+ T

cells by Rakyan et al. [49]. We used this dataset to for our

evaluation. Since the resolution of their data is significantly lower

than the training dataset used in the FRM, we extracted centrally

located CpG as a stand-in for each region. Nearly all such CpGs

do not overlap with CpGs in the FRM training dataset, decreasing

the possibility of overstating the prediction accuracy. Unexpect-

edly, we observed a high correlation between the estimated and

observed methylation level (Pcc = 0.941). Interestingly, when we

swapped the role of training and testing datasets, we observed a

similar yet lower correlation (Pcc = 0.876). Therefore, the

classifier based on the MeDIP-chip data is less accurate than the

HEP data, most likely due to the lower resolution of MeDIP-chip

data, even though the number of regions is 10-fold more than in

the HEP dataset. We believe that predictions based on the FRM

can achieve reliable predictions even when there is a low number

of training CpG loci, based on this analysis.

We have demonstrated the effectiveness of a CM model

incorporating information from 21 features that influence DNA

methylation based on CM measure by HEP and independent

datasets. We proceeded with the variables of interest as

determined using the FRM to further explore cooperative and

regulatory relationships.

Modularity of epigenomic and genomic elements based
on functional analysis

We hypothesized that similar (epi)genomic patterns are

associated with common regulatory functions. To identify

(epi)genomic patterns in an unbiased, genome-wide approach,

we examined all loci using a feature selected CM profile to find

over-represented chromatin modification patterns. Modules were

grouped by the cluster algorithm CLICK, which does not make

prior assumptions and avoids potential biases of the relatively

limited CpG loci available here since they do not require pre-

determined seeds [42]. Using this approach, nine CpG loci pattern

modules were obtained (Figure 3).

It is useful to explore how about the hidden patterns of

(epi)genomic elements may cooperate to influence gene regulation.

Loci in different modules have quite distinct genomic distributions

(Table S3). For example, 74%, 68% and 65% of loci in Module_4,

Module 5 and Module_8, respectively, are located 1k upstream of

gene TSSs. In contrast, very few loci are located in the region for

Module_3 and Module_7. To exclude the influences of genomic

elements and to explore the effects of chromatin signatures in

transcription, we classified these modules into four meta-groups

(Figure 3). All three modules in Group I show elevated levels of

methylation and correlate with low PolII expression. Group II

contains an over-representation of CGI, promoters, H2A.Z and

H3K4me1/2/3 modifications, low levels of DNA methylation,

and intermediate PolII levels. Group III includes elevated H2A.Z

and H3K4me1/2/3 and low CTCF levels. In addition, the

proportion of loci in CGI and promoters are reversed in

Module_7 and Module_8. Group IV contains only Module_9

and shows the highest PolII level and resembles Module_8, except

that Module_8 is CGI independent. Based on the above

observations, we sought to further explore whether these modules

are functional and whether they differ in gene expression.

Table 2. Significant features in the feature-reduced model,
together with corresponding P-value.

Feature P-value* Feature P-value*

CGI 0.00 H3R2me1 0.00

Promoter 0.00 H4K20me1 0.00

CTCF 4.44E-16 PolII 1.45E-6

H2A.Z 4.25E-11 H4K91ac 4.97E-9

H2BK5me1 0.00 H2BK12ac 3.17E-11

H3K4me1 2.90E-5 H2BK20ac 6.04E-4

H3K4me2 0.00 H3K4ac 7.29E-9

H3K4me3 0.00 H3K9ac 8.94E-5

H3K36me3 0.00 H3K18ac 3.39E-6

H3K79me1 2.06E-4 H4K8ac 2.74E-12

H3K79me2 1.98E-8

*P-value indicates the significance by t test.
doi:10.1371/journal.pone.0014219.t002
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Figure 4A shows the loci number distribution across nine

modules. The homogeneity representing the within-module

pattern similarity is high in all modules, although the loci number

in different modules varies (Figure 4B). We found that changing

the order of rows in a CM profile does not alter the module

number. Random profiles can only form modules with low

homogeneity (Figure 4B) and when the module number is

significantly larger than real data (23 in average, rank sum test

p,1025). Histone acetylation markers were not shown, as it seems

that they have not module-specific signatures (data not shown).

Only a small fraction of CpG loci (195, 0.6%) is excluded by

CLICK without clustering, suggesting a limited module number

for the chromatin signatures in a CM profile and that the

(epi)genomic patterns are enumerable.

Genes possessing module-specific chromatin patterns would be

expected to have expression differences, as suggested in previous

studies [28,50]. The median probe expression of each module is

shown in Figure 4D. It is intriguing that the gene expression levels

are significantly distinct between meta-groups (Dunn’s Method,

p,0.001), but are often insignificant within meta-groups (data not

shown), implying the partition of modules is reasonable. For

random permutation datasets, no significant differences were

found between modules in terms of gene expression.

We next evaluated our approach for how effectively to

discriminate gene function. We used the GOSemSim package

from CRAN (http://cran.r-project.org) to evaluate intra-module

gene function similarity. Only ‘‘Biological Process’’ terms were

evaluated. We used the 195 loci abandoned by CLICK as the

control group. As shown in Figure 4C, the gene function

similarities for nine modules are significantly higher than control

(rank sum test p,0.01), consistent with there being similar

biological function within modules. We performed a functional

enrichment to discover the dominant gene function in different

modules. The enrichment analysis indicates that genes involved in

chromatin assembly are most enriched in Module_1 (5 terms),

Module_2 (4 terms) and Module_8 (7 terms). In addition, protein

modification processes are enriched in Module_5 (2 terms) and

Module_9 (3 terms). Genes involved in biogenesis and metabolic

processes are enriched in Module_3 (5 terms), Module_7 (1 term),

Module_8 (3 terms) and Module_9 (2 terms). Development related

terms are only enriched in Module_3 (1 term) and Module_7 (6

terms). The significant terms for each module are presented in

Figure 3. The homogeneity based clustering. Nine modules with distinct (epi)genomic patterns, involving significant features based on
regression analysis. X-axis: the significant epigenomic features from Table 1, excluding histone acetylation marks. The order of features is arbitrary. Y-
axis: the closeness of features around CpG loci as measured by CM. Symbol height represents the median CM value. Error bars represents standard
error. The number under the Module_i (I = 1, …,9) is the count of CpG loci in Module_i, The specific proportion of each module is shown in Figure 4A.
Modules are roughly classified into four meta-groups according to genomic elements and PolII patterns, as indicated by the four colors.
doi:10.1371/journal.pone.0014219.g003
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Table S4. These results indicate that the modules identified are

grouped by specific biological function and are consistent in terms

of gene expression and function.

Bayesian network inference from chromatin feature
modules

Although individual features may influence cytosine methyla-

tion, it is not clear whether and how they interact. To investigate

the regulatory relationships among features, we evaluated the

Bayesian network inference from the feature selected CM profile.

The Bayesian network approach can demonstrate the dependency

among features by maximizing joint conditional probability

distributions. We used the WinMine package because it improves

the original algorithm and keeps only compelled but not reversible

edges (compelled edges correspond to causal relationships, while

reversible edges might be merely correlated).

A global inferred network was generated as a control for

module-specific relationships, prior to generating the module-

specific inference. The regulatory network is defined by three

network groups (distinguished by three colors), including signifi-

cant features and DNA methylation (Figure 5). The figure suggests

that chromatin modifications and genomic features form a highly

connected regulatory network, and that certain features co-

function in concert with other specific features for activation or

repression. It also appears that genomic features are correlated

with chromatin modifications, such as the relationship of

Figure 4. The loci distribution and function evaluation for all modules. (A)The proportion of CpG loci in Module_i. (B) The homogeneity in
each module as reported by the CLICK algorithm in the EXPANDER package. See the EXPANDER manual for details. The colors of bars are consistent
with Figure 3. (C) The GO similarity of each module. The colors are consistent with Figure 3. Only Biological Process terms were used to calculate gene
similarity. The similarity values standard deviation of each module is indicated as error bars, with one standard deviation in each direction. (D) The
gene expression levels of 9 modules. The gene expression data is probed from resting T cells (M0 and T0 types). The bar height represents the median
Log2 values of modules. The standard deviation of the Log2 values of each module is indicated as error bars with one standard deviation in each
direction.
doi:10.1371/journal.pone.0014219.g004
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H3K4me3 with CGI [51]. Previous studies found that H3K4me3

is catalyzed by H3K4 methyltransferases that are recruited by

PolII [52]. Interestingly, PolII tends to bind at CGIs [53].

Compared to random networks, these networks demonstrate

significant resistant to perturbations (Figure 6). It is noteworthy

that the average degree distribution is essentially the same between

real and random networks, for the random network maintains the

same number of edges as the real network. Topologically, the

networks tend to be tolerant of small perturbations. In contrast,

none of the regulatory relationships were in all random datasets.

Because distinct modules reveal distinct transcriptional, gene

function and genomic signatures, we were interested in investi-

gating module-specific regulatory relationships. To this end, we

performed the Bayesian network inference for each module as

shown in Figure 7. We used 100 random datasets of each module

to perform network inference but none of the regulatory

relationships were present in all modules. Similar to the global

network, module-specific networks generally exhibit significantly

higher clustering and shorter mean shortest path than would be

expected, except for the simple networks of Module_2 and

Module_4 (data not shown).

Comparing the global and module-specific networks enables

evaluation of the relationship between DNA methylation, genomic

elements, and chromatin modifications. It is worth noting that

promoters are absent in every module and CGI are present only in

Module_3, where they initiate subsequent regulation relationships

(Figure 7). In contrast, regulatory relationships involving genomic

elements are present more in the global network (Figure 5). These

results imply that CGI provides only the baseline for chromatin

interactions. For all modules, DNA methylation is regulated by

H2A.Z, H3K4me3, H4K20me1, H3K79me2, H4K91ac,

H3K9ac and CGI. Only H2A.Z [54], H3K4me3 [55] and CGI

have been documented to be related to DNA methylation. In

addition, H3K4me3 indirectly regulates DNA methylation via

Figure 5. The global Bayesian network inferred from the complete CM profile. The red, blue and green circles represent different groups.
The node color is mapped by the color key in the left top corner, representing the coefficients of the regression model (Table S2).
doi:10.1371/journal.pone.0014219.g005
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H2A.Z (Module_1 and Module_2). We then explored the

regulatory role of DNA methylation upon other features and

found that DNA methylation has a regulatory role only in

Module_7. In contrast, DNA methylation is the regulatory

terminator in Modules_1,2,4,5,6,9. In Module_8, DNA methyl-

ation is absent. Based on these results, it is reasonable that this

work only considers DNA methylation as a stable phenotype,

which underlies the closeness measure. These studies further

suggest that (epi)genomic elements are correlated in the global and

module-specific networks. These regulatory relationships may

provide insights into the biological function of epigenomic and

genomic elements, wherein the inferred relationships could be

served as reference for further studies.

Discovery and validation of cooperative chromatin
modifications in silico

It is informative to show only undirected feature interactions in

regulatory networks when exploring genomic and chromatin

cooperativity. Cooperative relationships are also easier to detect

than regulatory relationships experimentally, for it is difficult to

distinguish causal from correlated relationships. In Figure 8, the

top panel shows the occurrence of pairwise interactions in a

Bayesian network where the recurring between-feature interac-

tions are considered robust against perturbation. Such interactions

(occurrence .1) are presented and sorted by descending order in

Table S5. Frequently occurring relationships are considered as

vital regulatory relationships. Module-specific regulatory relation-

ships are shown in yellow (Figure 8). The global network serves as

a control (Figure 8). We noted some interactions, such as

H3K4me1-H4K20me1, H3K4me3-PolII, are prevalent in nine

modules. Moreover, 40 interactions (74%) in the global network

are also present in Figure 7, suggesting the robustness of

(epi)genomic interactions. However, the interactions discovered

from each module are a little different from the global network,

suggesting many interactions are module-specific and we can

obtain module-specific interactions. In particular, most relation-

ships involving genomic elements are present only in the global

network, which is considered to have cross-module regulatory roles

that may not be discovered by module-based Bayesian networks.

Only a few prioritized between-feature interactions have been

directly or indirectly reported [23,24,52,56–61] (Table S5). The

available evidence indicates that several cooperative chromatin

modifications characterized experimentally demonstrate coopera-

tivity in our analysis, validating the use of the mining process to

identify potential cooperativity. For example, in yeast, absence of

H2A.Z is correlated with reduced H3K4me3 level [24]. In

addition, Set1, the H3K4 methylase, is recruited by PolII at the 59

ends of active mRNA coding regions in yeast [52]. The H3K79

methyltransferase Dot1L-deficient ES cells show reduced levels of

H4K20me at centromeres and telomeres [23,52]. However, many

of the relationships in the regulatory networks have not yet been

reported, generating experimentally testable hypotheses. Though

no experimental evidence has been reported for the interaction of

H4K20me1 and PolII, H4K20me1 and H2BK5me1, H3K4me2

and H2A.Z, H2BK5me1 and H3K4me1, or H2A.Z and

H3K4me3, these relationships were consistent with the inferred

regulatory network from Yu et al. [34]. This observation suggests

that our results are biologically reasonable. The inferred

cooperative interactions differ a little from Yu et al., possibly

because the histone acetylation marks and genomic elements are

cooperative and alter the regulatory network. Relationships

discovered in CD4+ T cells are supported by literature reports

in other species and tissues. Perhaps the regulatory pathways in

different cells share a degree of conservation, just as the histone

code seems consistent in diverse cells. Therefore, the pipeline we

used may also provide clues for chromatin regulatory mechanisms

in other cells.

Very few chromatin interactions have been validated so far

(particularly not genome-wide) and there is no ‘‘gold standard’’ to

estimate the performance of our approach. In addition to support

contained in the published literature, the cooperative relationships

relating to chromatin modifications are indirectly supported by

partial correlation analysis based on experimental data. We

therefore performed the partial correlation analysis of chromatin

modifications and used the ‘‘causal’’ partial correlation coefficient

to provide direct reference for novel regulatory and cooperative

relationships that may be true in vivo (see details, Table S6). To

avoid potential biases, ChIP-seq chromatin modifications from

two cell types were used (GM12878 and Hsmm). To examine if

the correlation was random, 100 random permutation tag profiles

were generated to provide a control. The results showed that all

discovered relationships involving the available histone modifica-

Figure 6. Network metrics for the Bayesian network. Network manipulations were performed in Cytoscape, and the clustering coefficient,
average degree, power exponent in degree distribution, and mean shortest path were derived by the Cytoscape Random Networks plug-in.
doi:10.1371/journal.pone.0014219.g006
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tions (Table S2) have significantly higher partial correlation

coefficients than others (Wilcoxon rank sum test, p = 0.04 for

GM12878 and p = 0.05 for Hsmm) (Table S6) and higher than

random (p,1024).

From the methodology perspective, our analysis pipeline

integrates features (most ChIP-seq) and CpG methylation data

to obtain the interactions between features and adds a powerful

and much-needed tool for examining regulatory relationships both

for well-studied features and for less-studied features. While this

analysis was performed only for human CD4+ T cells, it can be

readily extended to all cell types and conditions. The Chromatin

Protein Discovery Project that was started in 2008 aims to

generate a regulatory map for a set of candidate chromatin

proteins in Drosophila. The project should help understand

chromatin regulation by identifying dozens of novel components

and their interactions. The candidate proteins used in the project

are selected by computational prediction. We believe that our

approach and similar efforts that target candidate chromatin

components and interactions would be useful for further

elucidation of chromatin regulation. We anticipate such efforts

will be helpful for analyzing how transcriptional regulation is

encoded and re-programmed.

Discussion

To understand mechanisms of epigenetic regulation, it is

imperative to investigate the cooperative nature of chromatin

modifications and genomic elements. Here, we reported a

regulatory inference model of epigenomic and genomic interac-

tions. This model can predict many novel chromatin interac-

tions, and the module-based regulatory networks provide insights

into the relationships of (epi)genomic patterns, chromatin

interaction and genomic function. For example, genomic loci

in Module_7 are associated with development. Interestingly,

DNA methylation has regulatory roles only in Module_7.

Therefore, the results may also help identify CpG loci associated

with particular functions.

Previously, few computational approaches for studying genome-

wide epigenetic regulation have focused on the discovery of

functional chromatin regulatory relationships and cooperativity.

ChromaSig developed by Hon et al. is one algorithm that can find

recurring chromatin signatures based on histone modification

profiles [62]. Similar to our approach, ChromaSig can also find

chromatin patterns without relying explicitly on the expected

cluster number. Previous approaches such as ChromaSig overlook

Figure 7. The Bayesian network inferred from nine modules. The node color is mapped by the color key in the left top corner, representing
the coefficients of the regression model (Table S2). All node color is mapped by the color key (Figure 5).
doi:10.1371/journal.pone.0014219.g007

Figure 8. The between-feature interactions from module-specific Bayesian inference. The top panel shows the occurrence of between-
feature interactions in nine Bayesian network maps, where each cell represents one specific interaction type and the number within each cell
represents the number of occurrences in all nine modules. The yellow color marks the module-specific and significant interactions discovered at least
in two modules. The hatch marks the regulatory relationships only in the global network (Figure 5). The number in the square counts the occurrence
of between-feature interactions in nine modules. The bottom panel shows the genomic distribution of each feature.
doi:10.1371/journal.pone.0014219.g008
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the regulatory roles of CpG methylation and can only evaluate

epigenetic patterns without considering genomic elements. There-

fore, a tool that can analyze CpG methylation, genomic and

epigenomic data is still needed. The lack of such tools is partly

caused by the poor biological interpretation and partly by

inefficient bioinformatics algorithms. Previous studies carried out

window-based approach (tag count within a fixed-size window) to

model relationships among epigenomic features. Though this

approach is also applicable to deriving biological relevance [50],

the window-based measures tend to fail in two types of cases. The

first is where a tag number within a specific window is very large,

e.g. over 1000, which is often observed in large-scale datasets and

in a human histone modification database developed by Zhang et

al. [63]. However, the regression model with our proposed

measure does not bias towards such regions. Though cutoffs for

trimming large values can make up for the extreme values, it is not

biologically plausible to do so and may affect model parameter

estimation and regulatory pattern inference. The second is where

the window-based method is most suitable for intensity data

quantified in a large region, but is not suitable for analyzing CpG

methylation, although Yu et al. showed that window size changing

from 1.2 to 4 kb does not affect Bayesian network construction

[34].

The success of our proposed approach also depends on the

correct identification of chromatin domains from ChIP-seq data.

Genomic regions mapped by specific histone modifications may

fail to be sequenced by ChIP-seq or to form peaks, in which case

they would be overlooked by peak calling tools. To estimate the

reliability of chromatin domain calling tools, we compared a list of

true histone modification domains by different ChIP-seq peak

finding algorithms. As a result, there is a significant overlap among

different algorithms, though it is noteworthy that some other

algorithms bias towards longer or shorter regions [64]. In fact,

MACS is a balancing algorithm with detection sensitivity and

specificity (data not shown). However, if specific genomic loci are

free of any histone modifications, the analysis based on the

chromatin modification profile would not work for the CM

measure and even the window-based approaches. Specially,

neither H3K9 nor H3K27 methylation marks are included in

the FRM. It is possible that few CpG loci selected for methylation

sequencing are proximal to any H3K9 or K27 enriched marks and

even more possible that these repressive methylation marks

cooperate with other unanticipated markers to influence DNA

methylation. Therefore, it is possible that some expected yet

missing interactions may represent an underestimate by the not so

much data.

Previous studies have identified the common histone-modifying

enzymes for acetylation marks on histone tails [65,66]. There is

substantial data indicating that histone acetylation marks directly

influence DNA methylation [67]. All coefficients of acetylation

marks are close to 0.05, though their interactions are significant

(Table S2). In Figure 7, the direct regulatory relationships of DNA

methylation and acetylation marks occur only in Module_4 and

Module_5. Therefore, their interactions are implied as a local

process, and histone acetyltransferases may not interact with DNA

methylation directly but be correlated via other factors.

Though there are 31,237 distinct CpG loci with high-

throughput DNA methylation and chromatin modification data

in the CM profile used for model construction and regulatory

relationship inference, it is not quite enough for generating robust

results. The testing MeDIP-chip dataset containing more CpGs

show that the HEP methylation data is well correlated with histone

modifications. The chromatin regulatory relationships were

supported by literature and experimental data. The relatively

small amount of data does not bias the results. However, it is

helpful to use larger scale data to test if the conclusions still hold

when such data is available.

We defined a set of potentially influential methylation features

by regression analysis. For simplicity, only significant features in

the FRM are considered to contribute to the regulatory network

and cooperativity of epigenomic marks. Further studies should

extend this work to consider the insignificant features directly

associated with significant features, but not influential in DNA

methylation. It may also be useful to consider TFs as an important

factor to account for transcriptional regulation, and ultimately

have a more comprehensive regulation map.
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