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Abstract

The 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) enzymes catalyze
sequential metabolic reactions in the folate biosynthetic pathway of bacteria and lower eukaryotes. Both enzymes represent
validated targets for the development of novel anti-microbial therapies. We report herein that the genes which encode
FtHPPK and FtDHPS from the biowarfare agent Francisella tularensis are fused into a single polypeptide. The potential of
simultaneously targeting both modules with pterin binding inhibitors prompted us to characterize the molecular details of
the multifunctional complex. Our high resolution crystallographic analyses reveal the structural organization between
FtHPPK and FtDHPS which are tethered together by a short linker. Additional structural analyses of substrate complexes
reveal that the active sites of each module are virtually indistinguishable from those of the monofunctional enzymes. The
fused bifunctional enzyme therefore represents an excellent vehicle for finding inhibitors that engage the pterin binding
pockets of both modules that have entirely different architectures. To demonstrate that this approach has the potential of
producing novel two-hit inhibitors of the folate pathway, we identify and structurally characterize a fragment-like molecule
that simultaneously engages both active sites. Our study provides a molecular framework to study the enzyme mechanisms
of HPPK and DHPS, and to design novel and much needed therapeutic compounds to treat infectious diseases.
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Introduction

Tetrahydrofolate is an essential cofactor required for metabolic

reactions involving one-carbon transfer. Most notably, it is

required for the synthesis of the nucleic acid precursors purines

and thymidine, the amino acids methionine and glycine, and

pantothenate [1]. Higher organisms derive folate from their diet

[2] and lack the necessary enzymes for folate synthesis, but almost

all eubacteria and a number of lower eukaryotes including the

pathogens Plasmodium falciparum and Pneumocystis carinii (jirovecii)

synthesize tetrahydrofolate. The folate pathway is therefore an

ideal target for anti-infectives. The sulfonamide drugs, which

target the enzyme dihydropteroate synthase (DHPS) in the

pathway, have remained important clinical agents since they were

first discovered in the 1930s [3]. The folic acid pathway is also an

important target for cancer therapy because the enzyme

dihydrofolate reductase (DHFR) is the final enzyme in the

pathway and is present in higher organisms to process dietary

folate and to recycle oxidized forms of tetrahydrofolate. DHFR

inhibitors such as methotrexate are potent anti-cancer agents that

block nucleic acid synthesis in cancer cells [4]. Inhibiting two steps

in a metabolic pathway is a particularly effective therapeutic

strategy that provides a synergistic double hit, and sulfonamides in

conjunction with the bacterial selective DHFR inhibitor trimeth-

oprim have proven to be a potent and broad spectrum

antibacterial cocktail that is commonly prescribed [5].

DHPS acts at a crucial convergence point in the folate pathway,

and catalyzes the condensation of p-aminobenzoic acid (pABA)

and 6-hydroxymethyl-7,8–dihydropterin-pyrophosphate (DHPPP)

to form the intermediate dihydropteroate (Fig. 1). The sulfon-

amides act by mimicking pABA, but their efficacy has been

severely impacted by drug resistance which began to emerge

shortly after they were first introduced into the clinic [6,7,8].

However, these orally bioavailable drugs remain useful against a

number of pathogenic organisms, most notably, methicillin

resistant Stapholoccus aureus (MRSA) and Pneumocystis carinii (jirovecii)
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[9,10]. To address the problem of resistance and to continue

taking advantage of this valuable broad spectrum antibacterial

drug target, we are investigating a new class of DHPS inhibitors

that specifically bind within the pterin-binding pocket of the active

site that is structurally distinct from the pABA-binding site.

Our focus is on the enzymes from three category A biowarfare

agents: Bacillus anthracis (anthrax), Francisella tularensis (tularemia)

and Yersinia pestis (plague). We described the structure of the B.

anthracis enzyme several years ago [11] and recently reported a

series of pterin-based inhibitors of the enzyme [12]. Here, we

report the structure of the F. tularensis enzyme and show that it is

fused to 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase

(FtHPPK) which catalyzes the previous step in the pathway (Fig. 1).

This was initially revealed by searching the F. tularensis genome for

the DHPS gene and identifying it within an open reading frame

that includes the HPPK gene. The structure reveals the molecular

organization of the resulting bifunctional enzyme, and we also

demonstrate that each active site binds substrate in the same

manner observed in the monofunctional forms. However, we also

show that the distinct pterin-binding pockets of each module can

each accommodate one of the pterin-based inhibitors that we have

previously identified [12]. This has two important consequences

for our drug discovery efforts. First, HPPK is revealed as a valid

additional target for developing pterin-based folate inhibitors that

can potentially block two sequential steps in the pathway. Second,

the F. tularensis FtHPPK-DHPS bifunctional enzyme provides a

convenient vehicle for identifying and developing such agents.

Results

Discovery of the fused gene encoding FtHPPK-DHPS
When this project was initiated, the F. tularensis LVS genome was

incomplete and unannotated, and the partially sequenced genome

was received in the form of 37 contigs from the Swedish Defense

Research Agency. The complete sequence has since been

published [13]. The sequences were analyzed using a combination

of programs within the GCG software suite (Accelrys Software Inc.

San Diego, CA), EMBOSS (The Sanger Center, Hinxton, UK),

and NCBI (Bethesda, MD). Synteny was identified through

alignment with the DHPS enzyme from B. anthracis which revealed

the F. tularensis DHPS gene on the antisense strand. Analysis of the

open reading frame revealed that the FtDHPS gene is considerably

longer than the typical prokaryotic DHPS gene, and that a 59

extension encodes the FtHPPK gene. Multiple alignments showed

that the two sequences are well conserved compared to those of

the monofunctional enzymes, particularly in the regions of the

active and substrate-binding sites (Fig. 2). However, the C-terminal

residues of the FtDHPS module corresponding to the final a-helix

of the TIM-barrel structure is missing, and it was of particular

interest to understand how the structure would accommodate this

missing a-helix and whether it had any functional consequences.

FtHPPK-DHPS Apo Structure
FtHPPK-DHPS crystallized in space group P1 with two

molecules in the unit cell, and the structure was determined to

2.2 Å using molecular replacement methods (Table 1; Protein

Data Bank accession code 3MCM). Size-exclusion chromatogra-

phy suggested that the enzyme is a monomer in solution (data not

shown) and that the crystallographic dimer is unlikely to have any

functional significance. To confirm this, we further characterized

the protein in solution by analytical ultracentrifugation, specifically

using sedimentation velocity and equilibrium analysis assays. Both

experiments showed that FtHPPK-DHPS exists mainly as a

monomer in solution (Fig. 3), and there are no dimers observed

in the c(s) distribution profile (Fig. 3a) at the concentration used.

The standard sedimentation coefficient (s20,w) obtained from the

analysis (3.41S) corresponds to a molar mass of 53,000 Da, close to

the theoretical monomer molecular mass of 50,509 Da for this

protein. The weight-average frictional ratio value (f/f0)w obtained

from the analysis (1.39) reflects a slightly elongated globular

Figure 1. Schematic of the pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) catalyzed reactions within the folate
biosynthetic pathway. The HPPK module first uses ATP to convert 6-hydroxymethyl-7,8–dihydropterin (DHP) to 6-hydroxymethyl-7,8–
dihydropterin-pyrophosphate (DHPPP) with the release of AMP, and the DHPS module then combines DHPPP with p-aminobenzoic acid (pABA) to
generate dihydropteroate (DHPteroate) with the release of pyrophosphate. The pterin-ring atoms are labeled on the DHP substrate.
doi:10.1371/journal.pone.0014165.g001
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protein, consistent with the three-dimensional structure described

below. It was possible to detect a weak monomer-dimer

association in solution that may explain the dimer observed in

the crystal structure. The dissociation equilibrium constant (KD) of

the monomer-dimer self-association model determined from the

equilibrium data was 2.7 mM (Fig. 3b).

An overview of the structure is shown in Figure 4A. The N-

terminal FtHPPK module is connected to the C-terminal FtDHPS

Figure 2. The primary structure of the HPPK-DHPS bifunctional enzyme from Francisella tularensis and its homology to other HPPK
and DHPS enzymes. The organisms shown are Francisella tularensis (Ft), Saccharomyces cerevisiae (Sc), Yersinia pestis (Yp), Escherichia coli (Ec) and
Bacillus anthracis (Ba), and numbering is with respect to the Ft enzyme. Secondary structure elements and key structural regions are labeled
according to Fig. 3A. Strictly conserved regions are blocked in red, and conserved regions are boxed. Important loop regions are highlighted and
labeled according to their domain association. (A) Multiple sequence alignment of the HPPK module. Residues that contribute to substrate binding
are shown as blue triangles. The conserved motif that binds Mg2+ is shown as gray circles within blue triangles. (B) Alignment of the DHPS module.
The inter-domain linker regions of F. tularensis and S. cerevisiae are highlighted in green and the corresponding b-hairpin of monofunctional DHPS is
highlighted in orange. Residues that interact with substrates are indicated as purple triangles. Residues known to contribute to sulfonamide drug
resistance are indicated by red circles. The missing Da8 helix at the C-terminus is highlighted in purple. Sequence alignments were performed using
ClustalW [39] and analyzed using ESPript2.2 [54].
doi:10.1371/journal.pone.0014165.g002

Table 1. Data Collection and Refinement Statistics.

Apoenzyme Substrate Complex Compound 1 Complex

Data collection

Space group P1 P1 P1

Cell dimensions

a, b, c (Å) 43.0, 58.1, 105.7 42.5, 58.5, 109.3 42.9, 58.2, 105.1

a, b, c (u) 91.3, 99.3, 111.6 82.0, 81.0, 68.1 91.0, 80.1, 68.3

Resolution (Å) 38.622.2 (2.2822.2)* 39.222.3 (2.3822.3)* 46.122.2 (2.2822.2)*

Rmerge 0.13 (0.28) 0.13 (0.30) 0.11 (0.33)

Completeness (%) 94.4 (80.1) 96.3 (84.9) 93.3 (76.4)

Redundancy 3.5 (2.9) 3.5 (2.8) 3.6 (2.8)

I/sI 23.6 (5.3) 24.8 (4.4) 21.7 (4.6)

Refinement

Total reflections 155,578 143,185 157,212

Unique reflections
Resolution (Å)

44,083
38.622.2

41,099
39.222.3

43,519
46.122.2

Rwork/Rfree(%)a 20.6/25.6 26.2/30.8 21.3/25.9

No. of atoms
Protein
Water
Mg
AMPcPP
DHP
Compound 1

Average B-factor (Å2)

6,043
102
1
–
–
–

6,327
42
4
62
56
–

5,976
120
3
–
–
22

Protein 47.8 43.7 46.6

Water 35.8 31.5 35.2

Mg2+ 60.2 30.8 51.5

AMPcPP – 27.3 –

DHP – 27.6 –

Compound 1 – – 53.0

Ramachandran (%)

Favored 97.4 96.2 96.2

Allowed 2.6 3.8 3.8

Outliers 0 0 0

Rmsd

Bond lengths (Å) 0.01 0.01 0.01

Bond angles (u) 0.9 0.96 0.74

*Data were collected from a single crystal. Values in parentheses are for the highest-resolution shell.
aRfree was calculated using 5% of the reflections.
doi:10.1371/journal.pone.0014165.t001

Folate Enzyme of F. tularensis

PLoS ONE | www.plosone.org 4 November 2010 | Volume 5 | Issue 11 | e14165



module by a structured linker region, and the structures of each

module are very similar to those of the monofunctional enzymes. A

multiple sequence alignment using representative HPPK and

DHPS primary structures confirms the high degree of sequence

conservation within each module (Fig. 2). The two molecules in the

asymmetric unit are very similar (RMSD of 0.4 Å on a-carbons)

and differ only in the flexible loop regions. Regions missing in the

final model due to disorder are residues 44–56 and 89–98 within the
FtHPPK module, and residues 213–224, 304–318 and 354 within

the FtDHPS. In addition, there was no observable electron density

for the N-terminal 20 residues that correspond to the His6-tag. In

the descriptions of the modules, secondary structures are numbered

according to the monofunctional enzymes with prefixes H and D for

HPPK and DHPS, respectively (Fig. 2).

The core of the FtHPPK module adopts the canonical aba fold

that has previously been described [14,15,16] and comprises a

central, 4-stranded antiparallel b-sheet (Hb2-Hb3-Hb1-Hb4)

flanked by four a-helices (Ha1-Ha2-Ha3-Ha4). Helices Ha1 and

Ha2 pack against the surface of one side of the b-sheet, and Ha3

and Ha4 pack onto the other surface. The C-termini of related

monofunctional HPPKs typically end following Ha4 but the
FtHPPK module terminates in a well-ordered 10-residue inter-

domain linker that directly tethers it to FtDHPS. The linker contains

a short, 4-residue b-strand that associates with the b-sheet of
FtHPPK. The TIM-barrel fold of the FtDHPS module [11,17,18,19]

contains the typical 8-stranded b-barrel (Db1-Db2-Db3-Db4-Db5-

Db6-Db7-Db8). However, as anticipated from the sequence

alignment (Fig. 2), only seven of the eight surrounding a-helices

are present (Da1-Da2-Da3-Da4-Da5-Da6-Da7) with the carboxy-

terminal Da8 helix missing. The gap in the TIM barrel is partly

filled by Lys421 and Ile422 that follow Db8 at the C-terminus, and

by the flanking helices Da1 and Da7 that move slightly inwards to

fill the space, but there remains a significant cleft on the surface of

the TIM-barrel structure (Fig. 4B). In the E. coli and B. anthracis

DHPS structures, there is an N-terminal b-hairpin that caps the N-

terminal end of the TIM-barrel, but this is not present in the F.

tularensis structure. The FtHPPK domain partially performs this role,

but is shifted by approximately 30u from where the b-hairpin would

typically be positioned.

FtHPPK-DHPS in Complex with HPPK Substrates
The crystal structure of FtHPPK-DHPS in complex with the

non-hydrolyzable ATP analog (AMPcPP) and 6-hydroxymethyl-

7,8-dihydropterin (DHP) was determined at 2.3 Å resolution

(Table 1; Protein Data Bank accession code 3MCO). An a-carbon

superposition shows that the overall fold of the substrate complex

closely resembles that of the apo form with an RMSD of 0.6 Å.

The mode of interaction of the two substrates within the FtHPPK

active site (Fig. 5A) is virtually identical to that of previously

determined HPPK complexes [15,16,20,21,22]. Difference elec-

tron density maps clearly showed both substrates bound to the
FtHPPK module, and two large spheres of density within the ATP

binding pocket were interpreted and successfully refined as Mg2+

ions (Fig. 5B). The HPPK mechanism involves three flexible loops,

HLp1, HLp2 and HLp3 in our structure, that undergo large

conformational changes and adopt more stable structures in the

presence of the two substrates [20,23,24,25]. Lys44, Ala45 and

Val46 within HLp2 and Arg88, Trp95 and Arg98 within HLp3

make key stabilizing interactions with the two substrates.

The adenosine ring of AMPcPP packs into a cleft formed by

Leu76, Lys80, Ile104, Leu117, Thr118 and His121, and the

triphosphate moiety is coordinated by the two Mg2+ ions bridged

between two absolutely conserved aspartate residues, Asp101 and

Asp103. In addition, there are key electrostatic interactions between

the b- and c-phosphates and Lys80, Arg88, Arg98, His121, and

Arg127 that are also highly conserved. In one of the molecules of the

asymmetric unit in the apo structure, one Mg2+ ion remains

coordinated between the side chains of Asp101 and Asp103 in the

absence of substrate, but the relatively high B factors of the ion and

its coordinating oxygen atoms suggest that it is weakly bound. The

ribose moiety mostly points towards solvent, although the 29-

hydroxyl is hydrogen bonded to the main-chain oxygen atom of

Lys116. The DHP substrate binds within an adjacent pocket formed

by Ser43, Val46, Asn61 and Trp95, and the pterin ring -stacks

Figure 3. Analytical ultracentrifugation of the HPPK-DHPS bifunctional enzyme from Francisella tularensis. (A) The sedimentation
velocity profiles (fringe displacement) were fitted to a continuous sedimentation coefficient distribution model c(s). The experiment was conducted
at a loading protein concentration of 0.69 mg/ml in at 20uC and at a rotor speed of 60,000 rpm. (B) Absorbance scans at 280 nm at equilibrium are
plotted versus the distance from the axis of rotation. The protein was centrifuged at 4uC for at least 24 h at each rotor speed of 15 k (red), 22 k (blue)
and 27 k (black) rpm. The solid lines represent the global nonlinear least squares best-fit of all the data sets to a monomer-dimer self-association
model with a very weak KD (2.7 mM). The loading protein concentration was 20 mM and the r.m.s. deviation for this fit was 0.0037 absorbance units.
doi:10.1371/journal.pone.0014165.g003
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between two highly conserved aromatic residues, Phe59 and

Phe129. The OG oxygen of Ser43, together with the mainchain

of residues 44 and 46, provide a hydrogen bond ‘zipper’ that

specifically recognizes the ‘nitrogen face’ of the pterin ring (positions

1, 2, and 8 as defined in Fig. 1), and the side chain of Asn61 forms

hydrogen bonds to the nitrogen and carbonyl-oxygen substituents at

positions 3 and 4. Within this pocket, the 6-hydroxymethyl group of

DHP is coordinated by one of the Mg2+ ions and appropriately

oriented towards the pyrophosphate moiety of AMPcPP for in-line

phosphoryl transfer (Fig. 5B).

We recently showed that DHP can engage the pterin-binding

pocket of the monofunctional B. anthracis enzyme and act as an

effective inhibitor [12]. It was therefore not surprising that a

second molecule of DHP was present in the pterin-binding pocket

of the DHPS module (Fig. 5C). The electron density for this

second DHP is unequivocal (Fig. 5D). We have extensively

characterized the pterin-binding pocket of DHPS and described

how the pterin ring is recognized [11,12,26], and the key residues

are conserved in the F. tularensis enzyme. These residues include

Asp210, Thr216, Asp255, Asn277, Val279, Val299, Ile301,

Asp346, Phe349, Phe351, Gly379, Lys383 and Arg418, within

the core of the TIM-barrel, which provide specific van der Waals,

hydrogen-bond and -stacking interactions. A key structural water

molecule (W2) is also present.

The Structures of the Active Site Loops in the DHPS
Module

Loops D1 and D2 in the FtDHPS module that link the first two

ab units of the TIM barrel are highly conserved, contain sites of

sulfonamide resistance (Fig. 2) and clearly have important but

poorly defined functional roles [11]. In both molecules in the

asymmetric unit, D1 (residues 180 to 193) is folded into an

extended b-ribbon and makes a crystal contact with a neighboring

molecule via Phe189 (Fig. 5C). A similar conformation is present

in our B. anthracis DHPS structure which precludes a prediction of

its role at the active site, although a conserved aspartic acid that

has been implicated in catalysis [19] is present (Asp186). In

contrast, D2 is relatively well ordered adjacent to the active site,

and completely visible in molecule ‘B’ in the presence of DHP

substrate (Fig. 5C). Lys217, typically an arginine residue in other

DHPS enzymes, can potentially interact with the carboxyl group

of pABA or contribute to the anion-binding pocket that engages

the b-phosphate of the DHPPP substrate. This location for D2

adjacent the pABA binding site is consistent with the presence of

sulfonamide resistance mutations within this loop region. Finally,

in other DHPS structures, the loop connecting Db7 and Da7

typically contains a short two-turn a-helix, a-Loop D7, that we

have shown interacts with the carboxyl group of pABA in our B.

anthracis structure bound to pteroic acid [11]. This helix is limited

to a single turn in the F. tularensis DHPS module and terminated by

Pro384, but Lys383 and Ser385 remain well positioned to stabilize

the binding of the pABA moiety like their counterparts in B.

anthracis.

FtHPPK-DHPS bound to a DHPS inhibitor
We recently reported a series of DHPS inhibitors that target the

pterin-binding pocket using a virtual screening approach based on

our structural studies of the B. anthracis enzyme [12,26]. The goal

of these studies is to develop new antibacterial compounds that

bypass the problems of resistance associated with the sulfonamides

which target the pABA binding site of the enzyme. One of the

compounds, 2-(7-amino-1-methyl-4,5-dioxo-1,4,5,6-tetrahydorpyri-

mido[4,5-c]pyridazin-3-yl)propanoic acid (Compound 1, Fig. 6A), is a

low molecular weight fragment-like molecule that is well suited for

elaboration and further development, and it was of interest to

evaluate its binding within the F. tularensis enzyme. The crystal

structure of FtHPPK-DHPS in complex with Compound 1 was

successfully resolved and refined to 2.2 Å resolution (Table 1;

Protein Data Bank accession code 3MCN). The small molecule

binds within the pterin pocket in exactly the same way as the B.

anthracis enzyme (Fig. 6B), engaging the pterin recognition residues

Asp255, Asn277, Asp346, and Lys383 and a structural water

molecule in hydrogen bonding and electrostatic interactions, and

the guanidinium moiety of Arg418 in a -stacking interaction.

Intriguingly, Compound 1 was also found within the pterin

pocket of the FtHPPK module (Fig. 7A). Similar to the HPPK

Figure 4. The overall structure of the HPPK-DHPS bifunctional enzyme from Francisella tularensis. (A) A stereo view of the overall fold and
domain organization showing the secondary structure elements within each module. Each element is labeled with the prefixes ‘H’ and ‘D’ to reflect
their locations in the HPPK (blue) and DHPS (purple) domains, respectively. The N- and C-termini and the linker region (green) are labeled. Note that
helix Da8 in the canonical DHPS TIM-barrel is missing. (B) A surface representation of the view shown in (A) that highlights the position of the domain
linker and the cleft within the DHPS module corresponding to the missing Da8 TIM-barrel a-helix.
doi:10.1371/journal.pone.0014165.g004
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Figure 5. The FtHPPK and FtDHPS modules bound to substrates. (A) Stereo view of the FtHPPK module showing the detailed interactions with
AMPcPP and DHP. Both substrates are covered with transparent molecular surfaces and gray dashed lines indicate putative hydrogen-bond
interactions. Residues that contribute to substrate binding are labeled and shown in blue sticks. The inter-domain linker is colored green and a
dashed line indicates the position of the carboxy-terminal FtDHPS module. (B) Electron densities for the nucleotide analog AMPcPP (purple) and DHP
(yellow) bound to the HPPK module. Two Mg2+ ions (gray spheres labeled Mg1 and Mg2), and an active site water (red sphere labeled W1) are also
shown. The arrow indicates how the 6-hydroxymethyl group of DHP is appropriately oriented towards the pyrophosphate moiety of AMPcPP for in-
line phosphoryl transfer. (C) Stereo view of the interactions between DHP and the FtDHPS module. DHP is bound within the TIM-barrel (light pink, b-
barrel), and the residues that mediate the interaction are labeled and shown in pink sticks. Three structural water molecules are shown as red spheres
and are labeled W2, W3 and W4. The location of the FtHPPK module is indicated by a dashed line that extends from the inter-domain linker (green).
(D) Electron density for the molecule of DHP (yellow) which bound in the pterin pocket of the FtDHPS module. In (B) and (D), the Fo-Fc simulated-
annealing omit electron densities are contoured at 3.5 s.
doi:10.1371/journal.pone.0014165.g005

Figure 6. Interaction of the FtDHPS module with Compound 1. (A) Schematic comparison between the scaffolds of Compound 1 and DHP-PP.
Compound 1 comprises a pterin-like core and is missing half of the B-ring as highlighted in orange. (B) Stereo view of Compound 1 (orange) bound
within the pterin pocket of the TIM-barrel. Residues that make van der Waals and hydrogen-bond contacts are labeled and shown as pink sticks. The
Fo-Fc simulated-annealing omit electron density for Compound 1 is shown as a blue mesh contoured at 3.5 s.
doi:10.1371/journal.pone.0014165.g006

Folate Enzyme of F. tularensis
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substrate and consistent with its pterin-like structure, the molecule

stacks between the conserved phenylalanine side-chains (Phe59

and Phe129) and forms a hydrogen bonding interaction with

Asn61. However, comparing the ‘nitrogen faces’ of Compound 1

and DHP that dictate their similar binding to the DHP pocket, a

rotation of ,40u is revealed which orients the nitro moiety

proximal to the Mg2+ ion within the divalent metal binding site

(Fig. 7B). To accommodate the molecule, the Mg2+ ion is shifted

nearly 4 Å, presumably to coordinate the partial negative charge

associated with the nitro group. A consequence of this rotation is

that the ‘nitrogen face’ does not directly engage residues 43–47 but

instead interacts with loop H2 via a water molecule that occupies

this void. Also, the side chain of Asp101 can engage Compound 1

via two equally populated orientations. Finally, in the absence of

AMPcPP, residues 89–96 in loop H3 remain disordered, and

Trp95 does not enclose the pterin pocket. Thus, while Compound

1 closely mimics the binding of substrate in the FtDHPS module, it

only partially mimics substrate binding in the FtHPPK module.

Discussion

Comparison with monofunctional HPPK and DHPS
enzymes

To date, the structures of HPPK and DHPS from eubacteria

have revealed monofunctional enzymes, and our discovery that the

two activities are fused into a single polypeptide in F. tularensis is

therefore somewhat surprising. Nevertheless, a comparison of the

fused enzyme with its monofunctional counterparts reveals close

similarities and common active sites. The structure of HPPK has

been determined to very high resolution in its substrate-bound

form [21], and the catalytic mechanism is well understood and

supported by extensive kinetic and mutagenesis data

[22,27,28,29,30]. The canonical aba fold of the FtHPPK module

is particularly well conserved and incorporates three conserved

loop regions, HLp1, HLp2 and HLp3, which are centrally

involved in substrate binding (Fig. 5A). In the substrate-bound

state, where these active site loops are well structured, the FtHPPK

core can be superimposed on the E. coli and Y. pestis enzymes with

,1.5 Å RMSD. A total of 13 residues were identified as being

absolutely conserved for structural and catalytic reasons [20] and

two of these are aromatic residues that clamp the pterin ring of the

DHP substrate. HLp2 is slightly larger in FtHPPK and locally

organized by Trp55 that spatially replaces Gln50 of the E. coli

enzyme. Similar to other HPPKs, the three loops help to stabilize

the interaction of substrates via an intricate hydrogen-bonding

network, and two essential catalytic Mg2+ ions coordinate the

phosphate groups of ATP and the nucleophilic hydroxyl group of

DHP. The most significant difference in the FtHPPK module

occurs at the C-terminus that contains the linker region to the
FtDHPS module.

The TIM-barrel fold of the FtDHPS module is also structurally

well conserved, and can be superimposed (a-carbon) on our B.

anthracis DHPS structure with an RMSD of 1.9 Å. Although the

DHPS catalytic mechanism has yet to be fully elucidated, the key

catalytic and substrate binding residues that have been identified

[11] are all present. These include residues that define the pterin-

binding pocket and others within the two flexible loops DLp1 and

DLp2 that are proposed to close over the active site locale [11].

However, there are several significant differences. Most notable is

the absence of the eighth TIM-barrel a-helix located at the C-

terminus. This is curious because the deletion creates a cleft in the
FtDHPS module that would be predicted to destabilize the TIM-

barrel. Functionally, the missing a-helix is unimportant, but it is

part of the dimer interface of the monofunctional counterparts

[11]. We have unequivocally shown that the bifunctional FtHPPK-

DHPS enzyme is monomeric, and the deletion of the a-helix may

therefore preclude dimer formation. The FtDHPS module also

lacks an N-terminal b-ribbon that would block the interface with
FtHPPK, and its absence is apparently structural. Finally, the non-

TIM-barrel a-helix, a-loop D7, that points toward the active site is

much shorter in the FtDHPS module, although a serine and lysine

residue that are required to interact with pABA and pterin

substrates are present [11].

A Putative Alternate Conformation
The fusion of metabolic pathway enzymes is commonly

observed in higher organisms and is exemplified by the fatty acid

synthase complex [31,32] that essentially comprises fused

eubacterial enzymes [33]. Although absent in higher eukaryotes,

the folate pathway is present in some lower eukaryotes where the

Figure 7. The FtHPPK module bound to Compound 1. (A) Stereo view showing the interactions of Compound 1 (Cmpd 1) within the DHP
binding pocket. The orientation is the same as that shown in Fig. 5A. Putative hydrogen-bonds are indicated as gray dashes. Two water molecules
(W1 and W2) are shown as red spheres bridging between Compound 1 and loop H2. Note that the side chain of Asp101 is 50:50 in two orientations,
both of which engage Compound 1. Compound 1 is enclosed by the Fo-Fc simulated-annealing omit electron density contoured at 2.5 s (grey mesh)
and 5.0 s (royal blue). The latter indicates the most probable location of the electron-rich nitro-moiety which dictated the fit. (B) Comparison
between the binding orientations of DHP (yellow) and Compound 1. As measured with respect to their ‘nitrogen faces’, the two compounds are
rotated by ,40u. The magnesium ions in the substrate complex at the first and second positions are labeled Mg1 and Mg2, respectively, and
interaction with Compound 1 causes Mg2 to bind in a new location as indicated by the arrow.
doi:10.1371/journal.pone.0014165.g007
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enzymes can be fused, as exemplified by the trifunctional DHNA-

HPPK-DHPS enzymes that have been characterized in many

fungi. The structure of the ScHPPK-DHPS region from Saccharo-

myces cerevisiae has been determined [34], and although it is similar

to our FtHPPK-DHPS structure, the linker region is much longer

(50 residues versus 13 residues) and the HPPK modules are rotated

with respect to the DHPS module by some 60u. The fusion of

modules presumably increases pathway efficiency, either by locally

concentrating sequential intermediates or, as exemplified by the

fatty acid synthase complex, directly channeling intermediates

from one active site to the next. In both the F. tularensis and S.

cerevisiae HPPK-DHPS structures, the active sites are on opposite

sides of the fused molecule and not appropriately positioned to

channel substrates. This observation is consistent with kinetic data

from a plant mitochondrial HPPK/DHPS fused enzyme which

suggest that substrate channeling does not occur although the

individual reactions are coupled [35].

However, our structure does suggest an alternate and more

stable conformation, consistent with the analytical ultracentrifu-

gation data, in which the linker region engages the cleft on the
FtDHPS module generated by the missing a-helix. If this is the

case, why are both molecules in the asymmetric unit in the same

extended conformation? Inspection of the crystal packing reveals

that the extended DLp1 loops of both FtDHPS modules in the

asymmetric unit interact with the inter-module interfaces of their

neighbors in a very similar fashion, essentially stabilizing the

extended conformation. Without this crystal contact, the FtHPPK-

DHPS interface is relatively small (,485 Å2 as determined by

AREAIMOL [36]). We intend to truncate loop DLp1 to

investigate new crystal forms of the enzyme that lack this crystal

contact and which might allow this putative alternate conforma-

tion to be visualized.

Pterin Pocket Inhibitors
We have recently demonstrated that the pterin pocket of DHPS

can bind an array of pterin-like molecules and represents an

attractive target for anti-folate drug discovery [12]. We have

observed the HPPK substrate DHP in the pterin pocket of the B.

anthracis enzyme and measured the IC50 at 58.4 mM [12], and our

observation that DHP can also bind within the pterin pocket of
FtDHPS is therefore not surprising. Using a linked assay in which

the active FtHPPK module generates the unstable DHPS substrate

DHPPP from DHP, we have not been able to measure the
FtDHPS activity, and this is probably a result of the inhibition by

excess DHP. We have no reason to believe that the FtDHPS

module is non-functional. The active and substrate-binding sites

are both intact and there is no other folP gene encoding a second

DHPS isozyme in the organism. Furthermore, a primary structure

alignment of FtHPPK-DHPS from various F. tularensis strains

reveals a wild type sequence, and no detrimental mutations have

been acquired in the attenuated LVS strain we are using.

In contrast, the presence of the DHPS inhibitor in the pterin

pocket of FtHPPK is very surprising and has important

implications for drug discovery. The inhibitor was specifically

identified using the DHPS pterin pocket as the target and it was

not anticipated to engage the HPPK pocket which has a very

different architecture. HPPK has long been recognized as a

potentially useful target for the development of new antibacterials

which prompted the original crystallographic analyses [14,15,16],

and we will now pursue this possibility using our panel of DHPS

pterin-like inhibitors [12]. Moreover, the F. tularensis enzyme and

its structure will facilitate studies to identify molecules that

simultaneously bind to both pockets. Antifolate cocktails such as

sulfamethoxazole/trimethoprim that inhibit DHPS and DHFR in

the folate pathway are potent and widely-used antibacterial agents.

It has been noted that a cocktail or a single agent that inhibits the

HPPK and DHPS activities could be similarly efficacious [15].

HPPK and DHPS use ordered enzyme mechanisms in which the

ATP cleft of the former or the pterin pocket of the latter is first

occupied, followed by the binding of DHP or pABA, respectively,

and both enzymes use loop conformational changes to assemble

the active site. We have shown that the flexible loops and pABA

are not required for the binding of pterin pocket inhibitors in

DHPS [12] and we now show that the same is true for HPPK with

respect to its flexible loops and ATP. This will facilitate future drug

discovery efforts with this enzyme.

Materials and Methods

Ethics Statement
N/A

Protein expression and purification
The 50 kDa, FtHPPK-DHPS enzyme from F. tularensis LVS was

cloned and expressed using the pET28a vector containing an N-

terminal His6-tag, grown at 37uC in BL21 Escherichia coli cells,

induced with 0.5 mM IPTG at 18uC and harvested after 4 hours.

Cells were lysed and centrifuged, and the supernatant containing

soluble His6-tagged protein was passed over a nickel-nitrilotriacetic

acid (NTA) HisTrap HP affinity column (GE Healthcare).

Following elution using a linear gradient of 20 mM Tris

(pH 7.6), 500 mM NaCl, and 500 mM imidazole, relevant

fractions were verified by SDS-PAGE, pooled, and treated with

2 mM EDTA and 15 mM dithiothreitol (DTT). For crystallization

purposes, the His6-tag was left fused to FtHPPK-DHPS. Fractions

were concentrated, filtered (0.45 mm), and further purified to

homogeneity using a Superdex 75 size exclusion column (GE

Healthcare) equilibrated with 20 mM HEPES (pH 7.5), 100 mM

NaCl, 1 mM EDTA and 0.5 mM DTT. Purified FtHPPK-DHPS

was concentrated to 26 mg/ml, filtered (0.22 mm), aliquoted, flash

frozen in liquid nitrogen and stored at 280uC.

Crystallization and structure determination
Crystals of the apo-enzyme form of FtHPPK-DHPS were grown

using the sitting-drop vapor diffusion method. Prior to crystalli-

zation, FtHPPK-DHPS was diluted to 10 mg/ml in a solution that

contained 20 mM HEPES (pH 7.5), 100 mM NaCl, 1 mM

EDTA, 1 mM DTT and 50 mM MgCl2. Initial crystals were

found by screening against the JCSG Core I-IV suites (Qiagen)

using a Phoenix robot system (Art Robbins Instruments). Further

optimization yielded diffraction quality crystals and were obtained

by mixing equal volumes of the FtHPPK-DHPS mixture and a

precipitant solution containing 90 mM Tris (pH 8.0), 190 mM

Sodium acetate, 24% (w/v) polyethylene glycol (PEG) 4000, 17%

glycerol, and allowed to equilibrate at 18uC. Crystals appeared in

approximately 3 days and reached maximum size in about 1 week.

The presence of 17% glycerol in the reservoir solution served as a

cryo-protectant, and crystals were frozen by direct immersion in

liquid nitrogen. Substrate (1) and inhibitor (2) complexes were

obtained by soaking pre-grown crystals in (1) excess 6-hydox-

ymethyl-7,8-dihydropterin powder (DHP, Schircks Laboratories)

and 50 mM a,b-methyleneadenosine 59-triphosphate (AMPcPP,

Sigma), and (2) 2-(7-amino-1-methyl-4,5-dioxo-1,4,5,6-tetrahydorpyri-

mido[4,5-c]pyridazin-3-yl)propanoic acid (Compound 1) as a crystalline

powder due to solubility problems.

Diffraction data were collected on the SER-CAT beamline 22-

ID at the Advanced Photon Source (APS) at Argonne National

Laboratory, and processed using HKL2000 [37] (Table 1). The
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apo-structure was solved by maximum-likelihood molecular

replacement (MR) using the program Phaser [38], and the

coordinates of HPPK from Y. pestis (PDB ID 2QX0) and DHPS

from B. anthracis (PDB ID 1TWW) were used as search models.

Significant editing of both models was required. The alignment of

sequences was performed using ClustalW [39], and the program

CHAINSAW [40] was used to prune non-conserved residues to

the last common atom. Homology modeling using the SWISS-

MODEL server [41] coupled with alignments of known structures

guided the strategic removal of flexible loops and helped define a

reasonable subdomain division between the FtHPPK and FtDHPS

modules. The bifunctional enzyme was divided into its individual
FtHPPK and FtDHPS subdomains, searching first for the FtDHPS

module, and the appropriate positioning of the two modules

relative to the intra-domain linkage validated our eventual MR

solution. Iterative structure refinement was carried out using a

combination of CNS1.2 [42] and REFMAC5 [43] for simulated

annealing, sigma A weighted composite omit electron density

calculations, and restrained maximum likelihood refinement. The

initial model was manually rebuilt using COOT [44]. The final

models of the apo-enzyme form, the ternary complex bound to

AMPcPP and DHP substrates, and FtHPPK-DHPS inhibited by

Compound 1 were fully refined using restrained options within

REFMAC5 and the PHENIX software suite [45]. The data

statistics for refinement are summarized in Table 1. The molecular

coordinates and topologies of the ligands AMPcPP, DHP, and

Compound 1 were generated using either the HIcUP or

PRODRG2 [46] servers. The quality of each crystal structure

was determined using MOLPROBITY [47], and the Ramachan-

dran statistics are reported in Table 1. AREAIMOL [36] was used

to identify surface residues that interact with substrate and

inhibitor through either hydrophobic or polar contacts. Other

electrostatic and surface calculations were performed using APBS

Tools [48] and CASTp [49], respectively.

Analytical Ultracentrifugation
Experiments were carried out in a ProteomeLab XL-I analytical

ultracentrifuge with a four-hole rotor (Beckman An-60Ti) and cells

containing sapphire or quartz windows and charcoal-filled Epon

double-sector centre pieces (Beckman Coulter, Fullerton, CA).

The density and viscosity of the ultracentrifugation buffer, 20 mM

HEPES pH 7.5, 100 mM NaCl, 1 mM EDTA and 1 mM DTT

at 4 and 20uC were calculated from its composition. The partial

specific volume at 4 and 20uC and the molecular weight of the

protein was calculated based on its amino acid composition using

the software SEDNTERP [50]. All samples were dialysed against

the ultracentrifugation buffer and the dialysate was used as an

optical reference. For the sedimentation velocity experiment the

loading volume of 400 ml was identical for the reference and

sample chambers of the double-sector centrepiece. Fringe

displacement data at time intervals of 1.0 min were collected with

the Rayleigh interference system for 10 hours at a rotor speed of

60,000 rpm and analysed with SEDFIT software (www.analytica

lultracentrifugation.com) using the model for continuous sedimen-

tation coefficient distribution c(s) with deconvolution of diffusional

effects [51,52]. The sedimentation coefficient distribution c(s) was

calculated with maximum entropy regularization at a confidence

level of p = 0.68 and at a resolution of sedimentation coefficients of

n = 100. The positions of the meniscus and bottom, as well as time-

invariant and radial noises, were fitted. Sedimentation equilibrium

was attained at 24 h at a rotor temperature of 4uC at increasing

speeds of 15, 22 & 27 k rpm [53]. Protein at a concentration of

20 mM (120 mL) was loaded into double-sector centrepieces and

absorbance distributions recorded at 280 nm in 0.001 cm radial

intervals with 20 replicates for each point. Global least squares

modelling were performed at multiple rotor speeds with the

software SEDPHAT (www.analyticalultracentrifugation.com) us-

ing a reversible monomer-dimer self-association model as well as

the single species model [53].
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