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Abstract

Multicellular tumor spheroids are an important in vitro model of the pre-vascular phase of solid tumors, for sizes well below
the diagnostic limit: therefore a biophysical model of spheroids has the ability to shed light on the internal workings and
organization of tumors at a critical phase of their development. To this end, we have developed a computer program that
integrates the behavior of individual cells and their interactions with other cells and the surrounding environment. It is
based on a quantitative description of metabolism, growth, proliferation and death of single tumor cells, and on equations
that model biochemical and mechanical cell-cell and cell-environment interactions. The program reproduces existing
experimental data on spheroids, and yields unique views of their microenvironment. Simulations show complex internal
flows and motions of nutrients, metabolites and cells, that are otherwise unobservable with current experimental
techniques, and give novel clues on tumor development and strong hints for future therapies.
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Introduction

Multicellular tumor spheroids (MTS) stand out as the most

important in vitro model of pre-vascular solid tumors [1–8]. MTS

often have a regular, almost spherical structure, and their apparent

simplicity has led to repeated attempts to capture their features

with neat mathematical models. However, the absence of

vascularization and the near sphericity hide an internal complexity

which is not easy to tame either with analytic mathematical models

[9–12], or with numerical models based on rough simplifications

of the biological settings such as cellular automata or other lattice-

based models [13–16]. Moreover the presence of a growing

necrotic core [1] and of an extracellular matrix [17], the

appearance of convective cell motions [18], and the heterogeneous

response to chemotherapics [19], point to the importance of MTS

as an in vitro model of tumors, and most of all to their relevance to

understand tumor heterogeneity, but they also point to the

difficulties of producing a useful, predictive model of MTS.

The appearance of widely different resistance phenomena to

antitumor therapies in similarly grown, isolated MTS of the same

cell type [19] indicates that random fluctuation phenomena play

an all-important role in the growth kinetics of MTS. It is well-

known that the discrete events at the single-cell level (like

transitions from one cell-cycle phase to the next, mitosis, cell

death, etc.) do display some randomness, and one can pinpoint the

source of large-scale variability on these fluctuations, as they are

amplified and propagated by cell-cell and cell-environment

interactions. Thus, the complexity of MTS development can only

be captured by a fine-grained, multiscale model, and we need a

mathematical description at the single-cell level. Since cells

communicate with other cells and the environment, the other

actors of this complex play are the concentration gradients of

important molecular species that depend on the structure of the

extracellular space and of the facilitated transport processes into

and out of individual cells, and the mechanical forces that push

and pull cells as they proliferate with repeated mitoses and then

shrink after death [20]. These processes mix with complex

nonlinear interactions between the biochemical and the mechan-

ical part, and this highlights again the importance of an effective

model at the single-cell level.

On the basis of such motivations, we have developed a

numerical model of MTS that incorporates a working model of

single cells [21,22]. We have first put forward a broad outline of its

structure in reference [23], and it differs from other models

developed in the past [9–16] because it captures at the same time

both the basic features of cell metabolism, growth, proliferation

and death, and provides a true lattice-free calculation of cell

motions, as they are pushed and pulled by the forces exerted by

dividing cells, by the growth of other cells, and by the shrinking of

dead cells. We also wish to stress that the model parameters are

either derived from experiment or are deduced from reasonable

theoretical arguments, so that, essentially, there are no free

parameters – there can only be some residual variability in

biophysically meaningful ranges – the model is truly predictive,

and the results are not merely qualitative but quantitative as well.

Here we illustrate in broad terms the structure of the program

and report the results of the first simulations of single spheroids

(technical implementation details are relegated to Text S1). We

find that the simulations agree quite well with experimental

measurements on real spheroids, and show unexpected and
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important internal patterns. Moreover, we wish to stress that the

methods delineated in this paper represent very general practical

solutions to problems that are common to any simulation of cell

clusters, and they are just as important.

Biochemical behavior of individual cells
The elementary building blocks in this model of MTS are the

individual tumor cells that behave as partly stochastic automata

[21,22]. Figure 1 summarizes the biochemical pathways that are

included in the single-cell model: cell metabolism is driven by

oxygen, glucose and glutamine, and transforms these substances

into energy molecules, molecular building blocks and waste

products, following the well-known biochemical reaction chains

[24]. Further details can be found in the original papers [21,22]

and in Text S1, which also includes important upgrades to the

original model [21,22].

In the present version of the program, the stochasticity is mostly

concentrated in the discrete events: for instance, mitochondria are

partitioned at random between daughter cells at mitosis, and cells

can die because of metabolite accretion, according to a Poissonian

cytotoxicity model (see Text S1).

We remark that in this approach glutamine also stands for the

wider class of aminoacids, and lactate is the paradigm of all

metabolites: we use the concentrations of glutamine and lactate to

represent these two classes of substances in phenomenological

parameterizations wherever needed. Similarly we use the number

of mitochondria and ATP content to model the dynamics of cell

volume; the single-cell model also contains representative

members of the cyclin protein class to compute the passage of

checkpoints and entry into the different cell phases [21,22,25,26],

and finally into mitosis (see also figure S1 for a sketch of the cell

cycle in the simulation program).

The complete map of the biochemical pathways included in the

simulation program is shown in figure S2. This map comprises

only the most basic pathways, however we cannot afford to

introduce a more complex network at this stage of program

development. Indeed, our final aim is the simulation of MTS with

a volume as large as 1 mm3, which corresponds to more than one

million cells, so that simulation results overlap actual experimental

measurements [19,27,28]. Since the differential system involves 19

independent biochemical variables per cell, we must eventually

integrate at least 19 million coupled nonlinear differential

equations for the biochemical cell variables alone (this grows to

at least 25 million equations when we include the position and

velocity variables), and thus even this minimal single-cell model

leads to a daunting computational task (see Text S1 for further

details on the algorithmic complexity of the program).

Reaction-diffusion processes and the environment
Substances like oxygen are transported into and out of cells by

normal diffusion while molecules like glucose require facilitated

diffusion processes. This means that cell membranes play an

important role for substances like glucose, and that in this case the

diffusion of each such molecular species towards cells in the inside

of a spheroid needs the free volume in the extracellular space to

proceed, and that we must model this space as well as the cells to

obtain a realistic simulation. We have shown how to do this in

reference [29], where we have also discussed ways to tame the

Figure 1. Rough sketch of the biochemical pathways incorporated in the model of single cells. We take into account the main metabolic
pathways (glycolysis, oxidative phosphorylation through the TCA cycle and gluconeogenesis), including the role of mitochondria in the production of
ATP. The model also includes protein and DNA synthesis, and checkpoints controlled by representative members of the cyclin family. The single-cell
model has two spatial compartments (the inside of the cell and its immediate neighborhood, the extracellular space that surrounds it) and transport
of substances between these compartments is regulated by transporters on the cell membrane that are also included in the model. The extracellular
space of each cell communicates by simple diffusion with the neighboring extracellular spaces and with the environment. The complete map of the
biochemical pathways is shown in figure S2.
doi:10.1371/journal.pone.0013942.g001
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exceedingly high stiffness of the very large set of reaction-diffusion

and transport equations that arise in this context (see also Text S1).

The external environment itself is included in these equations, and

evolves in time as well. In the present model, each cell contributes

15 internal variables and 4 extracellular variables: these extracel-

lular variables are the masses of oxygen, glucose, glutamine and

lactate in the extracellular volume surrounding the cell. Because of

its smallness, the extracellular space has an extremely short

characteristic filling time, which can be as fast as few tens of

microseconds. On the other hand, the macroscopic features of

MTS evolve over times as long as months (i.e., times of the order

of 107s), and thus the numerical integrator must be able to handle

phenomena that span 12 orders of magnitude in time [29]. The

internal biochemical reactions included in the numerical model

are much slower and their fastest characteristic times are only as

low as 0:1s, much longer than the diffusion times [29,30]. The

topology of diffusion in the extracellular spaces is obviously

dictated by the cells themselves, and the program uses the network

of cells centers as the scaffolding for the corresponding discretized

diffusion problem. The links between the cells’ centers – i.e., the

proximity relations – are provided by a Delaunay triangulation

[31,32], which is computed repeatedly [33] as the cluster of cells

grows and rearranges itself under the pushes and pulls of volume

growth, mitosis, and the shrinking of dead cells (see also figure S3).

Moreover, the proliferation of cells means that both the number of

cells and the total number of links steadily grow, and that the

differential system of equations that model metabolism, transport

and diffusion changes all the time, and becomes increasingly

complex. The 3D Delaunay triangulation itself is not an

exceedingly heavy computational burden for the program, as it

turns out that efficient algorithms can compute it, on average, with

O(N) time computational complexity [33–35], so that this

algorithm is indeed feasible for very large clusters of cells.

Biomechanical evolution of the simulated MTS
Real cells have passive viscoelastic mechanical features, but they

also move actively under the pushes of their own cytoskeleton, and

to the best of our knowledge there is no comprehensive model of

cellular biomechanics [36,37]. Thus, we resort once again to

phenomenological simplifications, and the first and foremost is

that our cells are stretchable spheres, characterized by their radius,

and a few other parameters that specify their viscoelastic

properties (see Text S1 for a more detailed description and the

list of parameters). We also specify a pairwise interaction force

between cells, repulsive when a cell pushes against a neighbor, and

attractive when we try to detach it from its neighbor. For small

deviations from the equilibrium distance, we assume that the

interaction force is described by the Hertz model (explained in

Text S1), while for large deformations due to compression we set

the force to a fixed saturation value, and for large distances the

attractive force decays to zero (see figure S4). The description of

the interaction forces is tuned to hold also during mitosis (see Text

S1 and figure S5). Even though this is a rough approximation of

the overall mechanical behavior of cells, there are many details

that must be managed to make it work, and they are all described

in Text S1.

Here the Delaunay triangulation that we use as the scaffolding

for the diffusion problem turns out to be useful once again: the

same cell-cell links also define the set of neighbors of each cell, and

therefore the global problem of computing the pairwise interac-

tions between cells can be reduced to a single loop over all cells

and the small limited number of their immediate neighbors, so

that this operation has an O(N) computational complexity only –

and it does not grow when we include the cost of the Delaunay

triangulation [35] – instead of the O(N2) complexity of generic

pairwise interactions.

Results

The first and most obvious result is the outstanding match of the

growth curves of simulated spheroids with those of real spheroids:

figure 2 shows a few stages of the growth of a simulated spheroid (a

real spheroid is shown for comparison in figure 3), while figure 4

compares the growth curve of a single simulated spheroid with the

growth curves of real spheroids grown in vitro. Here we see that the

growth curves are very much alike, and we found that simulation

runs with different parameters – in the biophysically meaningful

ranges – produce very similar growth curves, in spite of structural

internal changes: the growth curves are thus rather robust with

respect to parameter changes.

Several experiments [37–42] have yielded many accurate

measurements of oxygen and glucose concentrations and other

quantities vs. spheroid radius; these values are part of the output of

our simulation program as well (see figure 5 and figure 6), and a

comparison with the experimental data is shown in table 1. On the

whole the agreement of simulation data of single spheroids with

the experimental values is quite good, and we wish to stress that

this is not the result of a fit a posteriori, but rather of the a priori

choice of model features and parameters. These results qualify as

true predictions of the numerical model.

The necrotic core of spheroids is another important feature that

is well reproduced in the simulations, and it is clearly visible in

central slices of the simulated spheroid in figure 2. The simulations

also provide detailed, quantitative snapshots of the necrotic core

dynamics; the left column of figure 7 shows the percentage of dead

cells vs. distance from the centroid of a simulated spheroid at

different times. In these snapshots we can clearly observe the

formation of the sharp step that marks the edge of the necrotic

core.

These results indicate that the simulation program is reliable

and robust and reproduces – both quantitatively and qualitatively

– known experimental results. However, it yields much more than

just successful comparisons: figure 8 shows two views of the

spheroid microenvironment that at present would be unobtainable

by other means at this level of resolution. The left panel of figure 8

is a plot of the flow of glucose in the extracellular spaces of a

mature spheroid, superposed on a density plot of extracellular

glucose concentration, and it shows – rather unexpectedly – that

there is an outward flow of extracellular glucose from the central

necrotic region. In the external, viable rim the flow is inward

bound, and there is a spherical shell where the flow is stationary.

The right panel of figure 8 shows the corresponding plot of cell

velocities in the same central slice, and we see that the velocity

vectors point outward in the viable rim, while there are well-

formed vortices in the central region, and the region in-between

displays distinctive chaotic motions: these three regions closely

match the three regions in the left panel. The right column in

figure 7 shows radial velocity vs. distance from the centroid of the

simulated spheroid, and sheds some more light on the nature of

this structure: as more and more cells die and the necrotic core

forms, the dead cells shrink and the core contracts. The

contraction of the necrotic core expels the residual glucose in

the extracellular spaces and produces the observed outward flow.

We found that this behavior is strongly dependent on the

particular value of the diffusion coefficient and on the metabolic

activity of cells. In some simulations – where we used a lower value

for the effective diffusion coefficient of oxygen – we observed a

similar structure with oxygen as well. We remark that in the case
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of lactate we found no such structure, and we obtained a pH value

– derived from the distribution of lactate inside the spheroid – that

is very close to experimental measurements: this indicates that the

discretized reaction-diffusion scheme used in the simulation

program performs correctly, and that the observed flows are not

algorithmic artifacts.

Discussion

Although the program described in this paper is based on a

model of individual cells that includes only the basic cell functions,

Figure 3. Photograph of a spheroid grown in vitro from HeLa
cells in agar. The spheroid is colored with trypan blue to mark dead
cells, where the necrotic core is clearly visible. The agar contains the
spheroid and helps in obtaining a better spherical shape with HeLa
cells, but also stifles spheroid growth because it reduces the effective
diffusion coefficients in the nourishing medium, so that it cannot be
directly compared to the simulated spheroid in the second column of
figure 2 (which has the same size), while it is similar to the larger
spheroid in third column.
doi:10.1371/journal.pone.0013942.g003

Figure 4. Growth curve of a simulated tumor spheroid (solid
line). The run parameters used in this case are listed in Text S1. The
symbols denote data points taken in different in vitro experiments:
squares = FSA cells (methylcholantrene-transformed mouse fibroblasts)
[45]; diamonds = MCF7 cells (human breast carcinoma) [19]; circles = 9L
cells (rat glioblastoma) [27].
doi:10.1371/journal.pone.0013942.g004

Figure 2. Snapshots of one simulated spheroid taken at different times. As the spheroid grows, a necrotic core develops in its central
region, just as it happens in real spheroids. The size of the necrotic core and of the viable cell rim match real measurements.
doi:10.1371/journal.pone.0013942.g002
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the simulation results compare very well with experimental

measurements, and give strong hints on the sources of individual

spheroid variability. Moreover, the images obtained in single runs

reveal unexpected and interesting correlations and an elaborate

structure of the tumor microenvironment that could never be

observed before. This unexpected, complex microstructure – the

formation of different regions, and the flows that characterize

them, along with the complex velocity field – can be discerned in

the flows of the other substances, though not all of them, according

to their effective diffusion coefficient and their metabolism: the

figures of these flows are shown at full-size as supporting

information. Thus if we suppose that, in a more complete

description, there are N substances that characterize the spheroid

microenvironment, and assume that the spherical shell that divides

the two main regions lies in the same position for all of these

substances and that their effective diffusion coefficients are

uncorrelated, then 2N different spheroid structures are determined

by diffusion alone. The variation of some critical parameter (e.g., a

slight change in the metabolic activity due to local fluctuations in

the number of dead cells, and thus a change in the effective

diffusion coefficients) can potentially act as a switch and determine

widely different fates for similar spheroids. This variability cannot

be discerned from growth experiments: the simulations that we

have performed to date indicate that the growth curve alone is not

enough to distinguish between such different states, because it does

not change much even when important substances, like oxygen,

diffuse in markedly different ways. These different states represent

different biochemical configurations of tumor microenvironment,

that might exert distinct selective pressures on cells during tumor

evolution.

The spheroid microstructure that is well evidenced in figure 8,

and in figures S8, S9, S10, S11, S12, S13, S14, S15, S16, S17,

S18, S19, S20, S21 and in Movies S1, S2, S3, shows highly

correlated fluctuations that produce, e.g., islets of proliferating cells

in the sea of dead cells of the core, and cell and mass flows that

follow preferential channels. There is a sort of spheroid-specific

self-organization of the internal structure due to these correlated

fluctuations. Similar cell flows have been observed in the lab and a

recent review has stressed the great significance of such findings

[43]: the simulations suggest that the whole topic of cell flows and

extracellular diffusion should be investigated further. On the basis

of the simulation results, we also conjecture that the flow of

therapeutic drugs may be diverted as well, and let some viable,

proliferating tumor cells escape treatment. This means that the

simulation program could eventually become an important tool to

design novel treatment schedules, and possibly validate the effects

of anti-tumor drugs.

Certainly the model is far from complete, and we plan to add

soon several new features, like a basic model of intracellular

acidity, now accounted for by a simple phenomenological

parameterization, and the effects of pH and salt concentration

on diffusion. However, already in its present form, we believe that

this numerical model is a true testbed of biological complexity and

a real virtual laboratory, and also a source of important biomedical

clues.

Methods

The simulation program is written in ANSI C++: this

programming language was a natural choice from the very start

for distinct reasons:

N C++ is an object-oriented language, and in a simulation such

as this, it is very natural to define objects that have a clear-cut

biological meaning;

N at present, C++ programming is supported by a vast array of

scientific libraries, and this helps reducing program develop-

ment time;

N the availability of the flexible and powerful C++ library CGAL

[33] that handles the computational geometry structures

utilized by the program (convex hulls, Delaunay triangulations

and alpha shapes);

N the availability of powerful development tools and highly

optimized compilers.

The structure of the program reflects the organization explained

in the paper: a layout is shown in figure 9. The functional blocks

work as follows:

Initialization
At start, the environmental concentrations are set at their

standard levels (see Text S1), and internal variables of all cells are

set at approximate standard values (see Text S1 for the cells’

variables and the physical values that are hard-coded in the

program). During initialization, cells are allowed to grow and

proliferate freely in an environment that is held fixed. The number

of cells is also kept constant, and when a mitosis occurs one of the

daughter cells is discarded. In this initial phase cells can have large

oscillations of their metabolic parameters, and can occasionally

step in parameter regions that would normally spell death: this

does not occur here. Initialization lasts until the oscillations of

Figure 6. Plots of the normalized average intracellular
concentration of lactate (green), glucose (blue), and ATP
(red). These plots have been obtained in the same simulation and at
the same time step as the plots of figure 5, and each concentration is
normalized to its peak value. These plots indicate that cell death in the
central region is due both to the accumulation of metabolites (lactate)
and to metabolic stress (starvation).
doi:10.1371/journal.pone.0013942.g006

Figure 5. Concentrations in the simulated spheroid. The color coded figures on the left show the partial pressure of oxygen, the
concentrations of glucose and lactate in the extracellular spaces, and the pH of the extracellular environment (high values = red, low values = blue).
The corresponding plots in the right column show the average values of these quantities vs. the distance from the centroid of the tumor spheroid.
The small oscillations in the plots close to the spheroid surface are due to fluctuations in the averaging procedure, because the spheroid is slightly
nonspherical.
doi:10.1371/journal.pone.0013942.g005
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metabolic parameters die out. We have determined the duration of

the initialization phase observing the desynchronization of a

population of initially synchronized cells: when oscillations of the

relative fractions of cells in each cell-cycle phase become

undetectable we estimate that cells have reached a stable state.

It turns out that a simulated time of 3:106s (i.e. about 35 days of

simulated time) is sufficient for initialization of cell with a period of

about 20 hours. Usually the starting number of cells is quite small

(normally just one cell to seed the growth of a single spheroid), and

initialization executes in very short real time (a few seconds).

Metabolism, diffusion, transport, and growth
This part of the program solves the combined differential system

of equations that describe internal cell metabolism and diffusion in

the extracellular spaces (described in detail in Text S1), using the

implicit Euler method. This leads to a system of nonlinear

equations, that are solved in turn with a variant of the Newton-

Raphson method. The functional scheme of this important part of

the program is shown in figure 10. We wish to stress that although

the number of variables can be quite large (more than 107 loop

variables), convergence is reasonably fast, because the initial

concentration values are invariably very close to the final ones.

Cell motion
Cell motion is also regulated by differential equations and the

solution uses a strategy based on a semi-implicit method (described

in detail in Text S1). Volume growth is regulated by the part that

handles metabolism and diffusion, therefore it is loosely coupled to

cell motion. However we have implemented an updating

mechanism that effectively decouples the two parts of the program:

this means that the program can use multithreading with shared

memory and exploit the features of multicore processors.

Cellular events
This part of the program handles discrete events, like cell-cycle

transitions, mitosis and cell death. In case of mitosis it also

initializes the daughter cells – using the metabolic variables of the

mother cell – and allocates memory for the new cells.

Geometry and topology of cell cluster
Geometrical and topological informations are updated here,

using calls to CGAL methods [33] that compute the convex hull of

the cluster of cells, the Delaunay triangulation of cell centers, and

the alpha shape of the cluster – with an alpha parameter [33]

equal to (2r0)2 where r0 is the average cell radius. This part of the

Table 1. Comparisons with experimental parameters.

Parameter Simulation Experiments 7 Cell type Ref.

1Glucose uptake (kg s{1 m{3) 1:44:10{3 5:4{12:6:10{3 Rat-T1, MR1 [37]

1Lactate release (kg s{1 m{3) 1:35:10{3 5:4{9:10{3 Rat-T1, MR1 [37]

2pO2 (mmHg) 7 0–20 Rat-T1 [37]

0–40 MR1 [37]

20–60 EMT6/Ro [38]

3pH 6.7 6.6 C6, H35 [39]

6.96–6.99 U118-MG, HTh7 [40]

4DpH 0.77 0.41 U118-MG [40]

0.49+0.08 HTh7 [40]

5Viable cell rim thickness (mm) 155 200 EMT6/Ro [38]

142+16 HTh7 [40]

310+28 U118-MG [40]

198+27 Col12 [41]

225+26 HT29 [41]

6Hypoxic rim thickness (mm) 98 44+52 Col12 [41]

44+52 HT29 [41]

Cell cycle distribution (%) G0/G1 = 57.3 G0/G1 = 58+4 BMG-1 [42]

S = 21.6 S = 19+1

G2/M = 21.1 G2/M = 23+1

Metabolic and histologic parameters in spheroids of approximately 500 mm diameter: comparison between a single, large simulation, carried out with the parameters
listed in Text S1, and experimental data.
Notes:
1Rate of glucose uptake or lactate release per viable spheroid volume (see [37]).
2Central pO2 tension (experiments) or estimated in the centroid (simulations).
3pH has been determined in the central region of the spheroids. This corresponds to a sphere of radius &100mm about the centroid of the spheroid.
4Difference between environmental pH and pH 200 mm below the spheroid surface.
5In our simulations the viable cell rim thickness corresponds to the distance between the spheroid surface and the inner shell where only 5% of the cells are still alive.
Experimental values have been determined by histology.

6These values corresponds to the radius of the necrotic core.
7Cell types are as follows: Rat-T1 = T24Ha-ras-transfected Rat1 cells (Rat1 = spontaneously immortalized rat embryo fibroblasts); MR1 = myc/ T24Ha-ras-cotransfected rat
embryo fibroblasts; EMT6/Ro = mouse mammary tumor cells; C6 = rat glioma cells; H35 = rat hepatoma cells; U118-MG = human glioblastoma cells; HTh7 = human
tyroid carcinoma cells; Col12 = moderately differentiated human colon adenocarcinoma ; HT29 = poorly differentiated human colon adenocarcinoma; BMG-1 = human
glioma cells.

doi:10.1371/journal.pone.0013942.t001
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Figure 7. Fraction of dead cells (left column) and average radial velocity (right column) at different times. As the spheroid grows, the
necrotic core becomes increasingly well defined, and as dead cells shrink, the radial velocity changes sign and a marked inward motion characterizes
the central region.
doi:10.1371/journal.pone.0013942.g007
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Figure 8. Two views of the microstructure of a simulated spheroid, with about 500mm diameter and 296264 cells (183893 live cells+112371
dead cells). (Left panel): flow of extracellular glucose along a central section of the tumor spheroid (yellow arrows) superposed on the plot of glucose
concentration. The length of the arrows is proportional to the glucose flow intensity projected on the plane of the section. At this stage, the necrotic core is
contracting as dead cells gradually shrink, and this leads to a slow outward flow of the glucose stored in the extracellular spaces in this central region. We observe
that such a behavior depends on the effective diffusion coefficient of glucose, and it disappears completely when the diffusion coefficient is high enough. This
also suggests that the flow of glucose and other substances, like therapeutic drugs, is strongly dependent on the biochemistry and structure of extracellular
spaces, and even small changes can lead to markedly different internal spheroid morphologies. (Right panel): individual cell velocities in the simulated spheroid.
This is the same central section as in the left panel, and the velocity vectors are projected on the plane of the section. The length of each vector is proportional to
the projected speed. The velocities in the viable rim show a coherent outward motion, while the velocities in the necrotic core show a rather orderly inward
motion, with some vortices due to local residual cell proliferation. The region in-between is somewhat chaotic and the global structure of this plot mirrors that of
the glucose flow shown on the left. The supporting information includes higher-quality versions of these figures and those of other flows.
doi:10.1371/journal.pone.0013942.g008

Figure 9. Functional blocks of the simulation program. Program
initialization is followed by a loop that performs biochemical and
biomechanical calculations. This is followed by a check of the status of
individual cells – this is where we decide whether a cell advances in the cell
cycle, undergoes mitosis, or dies. Next the program computes the
geometry and the topology of the cell cluster, and finally it outputs
intermediate statistics and results. The loop continues until a user-defined
stop condition is met. Some parts of the program can proceed in parallel
(like metabolism and cell motion), and we can use multithreaded code.
doi:10.1371/journal.pone.0013942.g009

Figure 10. Functional blocks of the C++ method that computes
metabolic and extracellular variables. This part performs a loop
that computes the solution of the nonlinear equations found in the
implicit Euler integration step [29] (see also Text S1). Although the
number of variables can be quite large (more than 107 variables),
convergence is fast, because the initial concentration values are
invariably very close to the final ones.
doi:10.1371/journal.pone.0013942.g010
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program uses this basic information to set all relevant geometrical

and topological variables in the program.

Summary statistics and dump on file
The last step in the loop computes several statistics and outputs

them on summary files. It also writes periodically the whole

configuration of cells on file for further processing.

Program termination
The program repeats the loop until one of the stop conditions is

met: either all cells are dead, or the program executed the required

number of steps. Text S1 contains additional considerations on

algorithmic complexity and on measured performance (see also

figure S6 and figure S7).

Additional processing to extract useful informations from the

simulation data is performed with several standard tools, like

Mathematica [44].

Supporting Information

Text S1 Including tables and additional references.

Found at: doi:10.1371/journal.pone.0013942.s001 (0.89 MB

DOC)

Figure S1 Sketch of the cell phases included in the simulation

program. The arrow lengths suggest the relative duration of each

phase. Phase G1 is divided in two parts: an initial subphase where

cells are sensitive to variations in the environmental nutrient

concentration (G1m) and a later subphase where cells are

insensitive to deprivation of nutrients (G1p); in between these

subphases there is an energetic checkpoint [1–3].

Found at: doi:10.1371/journal.pone.0013942.s002 (0.19 MB TIF)

Figure S2 Sketch of the metabolic network. Variables within

circles represent molecular species and are expressed in units of

concentration or mass. Non-obvious symbols are as follows (the

suffixes ext and int denote, respectively, extracellular and

intracellular variables): G = glucose, G6P = glucose-6-phosphate,

STORE = glucose stored in the form of glycogen, AL = lactic acid,

A = glutamine, ATPp = pool of ATP molecules, DNA = nuclear

mass of DNA (normalized to 1 for the whole genome),

mtDNA = mitochondrial DNA. Rates are represented by squares.

The red circuit represents the oxygen sensor, whereas the green

circuit represents the ATP sensor [1,2]. ‘‘Cell cycle checkpoints’’

denotes the molecular circuit of cell cycle control that has been

modeled on the basis of previous studies on the dynamics of the

allosteric effect [19,20]. The biological foundations of this

simplified metabolic network have been given in references 1

and 2. Recent improvements with respect to our previous model

include: internalization rates of glucose, glutamine and lactate are

sensitive to extracellular pH and this dependence is now described

by smoothed functions (see the text for details); synthesis of cellular

proteins, nuclear DNA and mitochondrial DNA are now

described by double-substrate Michaelis-Menten chemical reac-

tions to take into account the dependence of protein and nucleic

acid biosynthesis on glutamine (which stands phenomenologically

for the wider class of aminoacids) and ATP availability.

Found at: doi:10.1371/journal.pone.0013942.s003 (0.77 MB TIF)

Figure S3 The geometry and topology of diffusion. a) Most

substances are carried into and out of the cell by facilitated

diffusion and there is an active mass exchange between cell and

extracellular space. Each cell in the simulation program has its

own extracellular space. b) Extracellular spaces are interconnected

and there is a diffusion flow through the network of connections. c)

The network of interconnected spaces is defined by a Delaunay

triangulation. In this 2D representation, for any red dot we can

define a Voronoy cell, i.e., the set of points in the plane that are

closer to the given dot than to any other dot in the set. The dual

structure is the Delaunay triangulation (Voronoy cells are black

and Delaunay links are green). There is a Delaunay link between

any two dots only if the respective Voronoy cells touch each other,

therefore we can use the Delaunay triangulation to define

proximity. This enables us to set up a discretized version of

diffusion between extracellular spaces, like in b). In addition to the

topology of contacts between cells we also keep into account

geometry: gab in part b) is a geometric factor that modulates

diffusion. d) The actual simulation is in 3D: here the Delaunay

triangulation of a small cluster of cell centers shows up in

transparency.

Found at: doi:10.1371/journal.pone.0013942.s004 (1.37 MB TIF)

Figure S4 Pictorial representation of the interaction force

between two cells. The solid curve shows qualitatively the behavior

of the interaction force, while the insects depict the corresponding

situations (A. cells are compressed against each other, force is

repulsive; B. cells are in contact, the total force vanishes; C. cell

centers are slightly apart, force is attractive because of adhesive

molecules on the cells’ membranes; D. cells are no longer in

contact, the total force vanishes again). The inset on the right

corner shows the definitions of the basic geometric variables.

Found at: doi:10.1371/journal.pone.0013942.s005 (0.36 MB TIF)

Figure S5 The geometry of mitosis. R0 is the radius of the initial

cells, while R1 and R2 are the radii of the daughter cells: because of

random asymmetries during mitosis, the daughter cells usually

have different sizes. The program places the two daughter cells

inside the region initially occupied by the mother, and the axis

connecting the centers points in a random direction. This forces

the two cells to push one against the other, and as cells separate the

axis rotates, so that the new configuration fits the positions of

neighboring cells. The cells’ centers are separated by a distance

which is roughly 0.4 R0.

Found at: doi:10.1371/journal.pone.0013942.s006 (0.16 MB TIF)

Figure S6 CPU time needed to simulate 1 hour, vs. the number

of cells in the spheroid. In this run, the precision of the solution of

the global diffusion transport and metabolism problem is fixed at

1% and the timestep is 50 s (so that tCPU is actually the CPU time

needed to simulate 72 elementary timesteps). The solid curve

shows the fit (S.69) in Text S1.

Found at: doi:10.1371/journal.pone.0013942.s007 (0.15 MB TIF)

Figure S7 Total CPU time vs. N. This figure shows the total

CPU time vs. N in the same run as figure S6. The solid curve is a

simple fit with a quadratic polynomial function.

Found at: doi:10.1371/journal.pone.0013942.s008 (0.14 MB TIF)

Figure S8 Oxygen concentration and flow at simulated

time = 14 days. Cells are coloured to show the oxygen concentra-

tion (color mapping, blue = low concentration, red = high concen-

tration), while the yellow arrows show the oxygen flow (arrow

length proportional to flow intensity).

Found at: doi:10.1371/journal.pone.0013942.s009 (2.06 MB TIF)

Figure S9 Oxygen concentration and flow at simulated

time = 16 days. Cells are coloured to show the oxygen concentra-

tion (color mapping, blue = low concentration, red = high concen-

tration), while the yellow arrows show the oxygen flow (arrow

length proportional to flow intensity).

Found at: doi:10.1371/journal.pone.0013942.s010 (1.14 MB TIF)

Figure S10 Oxygen concentration and flow at simulated

time = 17 days. Cells are coloured to show the oxygen concentra-
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tion (color mapping, blue = low concentration, red = high concen-

tration), while the yellow arrows show the oxygen flow (arrow

length proportional to flow intensity).

Found at: doi:10.1371/journal.pone.0013942.s011 (4.88 MB TIF)

Figure S11 Extracellular glucose concentration and flow at

simulated time = 14 days. Cells are coloured to show the

concentration of extracellular glucose (color mapping, blue = low

concentration, red = high concentration), while the yellow arrows

show the flow of extracellular glucose (arrow length proportional

to flow intensity).

Found at: doi:10.1371/journal.pone.0013942.s012 (2.05 MB TIF)

Figure S12 Extracellular glucose concentration and flow at

simulated time = 15 days. Cells are coloured to show the

concentration of extracellular glucose (color mapping, blue = low

concentration, red = high concentration), while the yellow arrows

show the flow of extracellular glucose (arrow length proportional

to flow intensity).

Found at: doi:10.1371/journal.pone.0013942.s013 (2.88 MB TIF)

Figure S13 Extracellular glucose concentration and flow at

simulated time = 16 days. Cells are coloured to show the

concentration of extracellular glucose (color mapping, blue = low

concentration, red = high concentration), while the yellow arrows

show the flow of extracellular glucose (arrow length proportional

to flow intensity).

Found at: doi:10.1371/journal.pone.0013942.s014 (1.15 MB TIF)

Figure S14 Extracellular glucose concentration and flow at

simulated time = 17 days. Cells are coloured to show the

concentration of extracellular glucose (color mapping, blue = low

concentration, red = high concentration), while the yellow arrows

show the flow of extracellular glucose (arrow length proportional

to flow intensity).

Found at: doi:10.1371/journal.pone.0013942.s015 (4.97 MB TIF)

Figure S15 Extracellular glutamine concentration and flow at

simulated time = 14 days. Cells are coloured to show the

concentration of extracellular glutamine (color mapping, blue =

low concentration, red = high concentration), while the yellow

arrows show the flow of extracellular glutamine (arrow length

proportional to flow intensity).

Found at: doi:10.1371/journal.pone.0013942.s016 (2.06 MB TIF)

Figure S16 Extracellular glutamine concentration and flow at

simulated time = 17 days. Cells are coloured to show the

concentration of extracellular glutamine (color mapping, blue =

low concentration, red = high concentration), while the yellow

arrows show the flow of extracellular glutamine (arrow length

proportional to flow intensity).

Found at: doi:10.1371/journal.pone.0013942.s017 (4.94 MB TIF)

Figure S17 Extracellular glutamine concentration and flow at

simulated time = 18 days. Cells are coloured to show the

concentration of extracellular glutamine (color mapping, blue =

low concentration, red = high concentration), while the yellow

arrows show the flow of extracellular glutamine (arrow length

proportional to flow intensity).

Found at: doi:10.1371/journal.pone.0013942.s018 (6.11 MB TIF)

Figure S18 Extracellular lactate concentration and flow at

simulated time = 18 days. Cells are coloured to show the

concentration of extracellular lactate (color mapping, blue = low

concentration, red = high concentration), while the yellow arrows

show the flow of extracellular lactate (arrow length proportional to

flow intensity). Lactate always flows outward in the simulation: this

is a single snapshot taken after both glucose and glutamine have

developed their split flow regime.

Found at: doi:10.1371/journal.pone.0013942.s019 (6.07 MB TIF)

Figure S19 Velocity vectors projected on the plane of the slice at

simulated time = 14 days. The vectors show the cells’ motions in

the plane of the slice (yellow arrows, arrow length proportional to

flow intensity). Cells in the core perform complex looping motions,

while cells in the viable rim always push outward.

Found at: doi:10.1371/journal.pone.0013942.s020 (1.62 MB TIF)

Figure S20 Velocity vectors projected on the plane of the slice at

simulated time = 16 days. The vectors show the cells’ motions in

the plane of the slice (yellow arrows, arrow length proportional to

flow intensity). Cells in the core perform complex looping motions,

while cells in the viable rim always push outward.

Found at: doi:10.1371/journal.pone.0013942.s021 (3.08 MB TIF)

Figure S21 Velocity vectors projected on the plane of the slice at

simulated time = 18 days. The vectors show the cells’ motions in

the plane of the slice (yellow arrows, arrow length proportional to

flow intensity). Cells in the core perform complex looping motions,

while cells in the viable rim always push outward.

Found at: doi:10.1371/journal.pone.0013942.s022 (5.00 MB TIF)

Movie S1 Movie of a central slice of a simulated tumor spheroid

showing the development of the necrotic core (red = live cells,

black = dead cells).

Found at: doi:10.1371/journal.pone.0013942.s023 (5.99 MB

MOV)

Movie S2 Movie of a central slice of a simulated tumor spheroid

showing the flow of extracellular glucose (same coding as figures

S11, S12, S13, S14).

Found at: doi:10.1371/journal.pone.0013942.s024 (21.18 MB

MOV)

Movie S3 Movie of a central slice of a simulated tumor spheroid

showing the map of projected cell velocities (same coding as figures

S19, S20, S21).

Found at: doi:10.1371/journal.pone.0013942.s025 (28.40 MB

MOV)
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