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Abstract

Background: Although transcription in mammalian genomes can initiate from various genomic positions (e.g., 39UTR,
coding exons, etc.), most locations on genomes are not prone to transcription initiation. It is of practical and theoretical
interest to be able to estimate such collections of non-TSS locations (NTLs). The identification of large portions of NTLs can
contribute to better focusing the search for TSS locations and thus contribute to promoter and gene finding. It can help in
the assessment of 59 completeness of expressed sequences, contribute to more successful experimental designs, as well as
more accurate gene annotation.

Methodology: Using comprehensive collections of Cap Analysis of Gene Expression (CAGE) and other transcript data from
mouse and human genomes, we developed a methodology that allows us, by performing computational TSS prediction
with very high sensitivity, to annotate, with a high accuracy in a strand specific manner, locations of mammalian genomes
that are highly unlikely to harbor transcription start sites (TSSs). The properties of the immediate genomic neighborhood of
98,682 accurately determined mouse and 113,814 human TSSs are used to determine features that distinguish genomic
transcription initiation locations from those that are not likely to initiate transcription. In our algorithm we utilize various
constraining properties of features identified in the upstream and downstream regions around TSSs, as well as statistical
analyses of these surrounding regions.

Conclusions: Our analysis of human chromosomes 4, 21 and 22 estimates ,46%, ,41% and ,27% of these chromosomes,
respectively, as being NTLs. This suggests that on average more than 40% of the human genome can be expected to be
highly unlikely to initiate transcription. Our method represents the first one that utilizes high-sensitivity TSS prediction to
identify, with high accuracy, large portions of mammalian genomes as NTLs. The server with our algorithm implemented is
available at http://cbrc.kaust.edu.sa/ddm/.
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Introduction

The annotation of mammalian genomes is far from complete.

Sequencing of full-length cDNA libraries, generation of thousands

of ESTs, and later tag approaches like CAGE [1] and GIS [2] or

SAGE [3,4] have provided us with information on transcripts and

their transcription start site (TSS) locations. Although transcription

in mammalian genomes can initiate at various positions (e.g.

coding exons, 39UTR, etc.) [5,6], it does not initiate randomly.

Large segments of genomes are not prone to transcription

initiation, while the remaining parts seem to make a more suitable

environment for such events. A detailed analysis of the TSS

neighborhood [7] shows that there are a lot of regularities in the

regions immediately surrounding TSSs. It is also known that many

regions in mammalian genomes are considered to be gene deserts

[8,9] (i.e. regions highly depleted of genes), while, at the same time,

many other segments of the genome are rich with genes, such as

for example human chromosome 22 [10,11]. A traditional way to

interpret these gene dense and gene desert regions is in the

convenient terms of GC-richness of isochores on the mammalian

genomes [12].

The efforts of the scientific community have provided a large

amount of transcript data that has allowed the very precise

determination of a large number of TSSs in mouse and human

genomes [1,2,13,14]. We observed, based on the analysis of the

upstream and downstream properties of the TSS surroundings [7]

that TSS locations in both mouse and human follow certain rules

that confine these TSSs to particular genomic regions. We utilized
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this idea and extended it further with the aim to develop the

Dragon TSS Desert Masker (DDM), an algorithm that can, with

high accuracy, demarcate in a strand specific manner, positions on

mammalian (mouse and human) genomes as those that can initiate

transcription (transcription initiation active regions, TIARs) and

those that are not likely to do so (non-TSS locations, NTLs). In

practice, DDM operates as a TSS finding algorithm tuned to

,100% sensitivity. Thus, the genomic locations which DDM does

not predict as TSS represent NTLs. The remaining regions

indicate TIARs that are likely to harbor the vast majority of

genuine TSSs. The reliable estimation of NTLs can support a

more precise RACE primer design, and can help in estimating the

completeness of 59 ends of ESTs. Consequently, NTLs can

complement the annotation of promoter regions in mammalian

genomes. Moreover, such information can support promoter and

gene finding and help to keep more focus on regions of particular

interest. For the sake of completeness, we compared DDM with

several existing promoter prediction systems with regard to their

ability to estimate NTLs. We show that DDM outperforms the

existing TSS prediction systems in this specific task. Consequently

we find DDM to be the only tool currently available to reliably

identify NTL.

Results

We define NTLs as the set of all strand-specific genomic

locations that cannot initiate transcription. Regrettably, since it

must be assumed that not all genuine TSS locations are known for

any mammalian genome, only estimates of NTLs can be made at

this point. For simplicity we will refer to these estimates as NTLs in

the remainder of the text.

TIARs represent a set of genomic locations that contains the

vast majority of all known TSS locations, as well as all locations

that were falsely recognized as potential TSSs by DDM. In order

to be able to estimate NTL we need a TSS recognition system that

operates at or very near 100% sensitivity. At this level of sensitivity

we can expect that the areas labeled as NTLs are indeed almost

completely devoid of TSSs because all or nearly all predicted NTL

locations by the system will be true non-TSS. We have developed

an algorithm that is capable of achieving this.

Algorithm
Based on Fantom3 CAGE data [5] and at least one other piece

of evidence for the existence of transcripts (see Methods section)

we have compiled two highly accurate sets of TSS locations

consisting of 98,682 TSSs for mouse and 113,814 TSSs for

human. Using these sets, we analyzed compositional properties of

single-stranded DNA segments covering [2100,+100] nt regions

relative to the TSS. Based on these properties we designed

different methods for filtering out those DNA locations that are

unlikely to represent genuine TSS positions. We combined these

filtering methods in a multi-staged daisy-chain algorithm that

consists of four different classification phases (see Figure 1, for

further details see Methods section.)

The algorithm returns a classification value for each examined

DNA segment. This output classification value reflects the

algorithm’s prediction whether the segment contains a TSS at its

centre or not. A threshold value is applied and the center

(nucleotide at position +1) of the examined [2100, +100] sequence

is demarcated as NTL if the classification value is below this

threshold. The threshold value is usually chosen in such a way that

no genuine TSS is falsely classified, but it can be modified to

examine the algorithms behavior at various settings (see Methods

section).

Performance
The algorithm was applied to mouse and human data sets. All

genuine TSSs from our data were used as positive samples, while

an equal amount of random DNA from the respective species

served as negative samples. The performance is reported for two

cases (Figure 2 and Table 1). In a 4-fold cross-validation we used a

quarter of the sequences selected randomly for testing, while three

quarters were used for training. Finally, we utilized the entire

available data sets and the resulting models are implemented on

our web-server (http://cbrc.kaust.edu.sa/ddm/).

Figure 1. Algorithm layout. Layout of daisy-chain algorithm, performance estimates after each step in parenthesis.
doi:10.1371/journal.pone.0013934.g001

Estimate Where TSS Can’t Occur
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We observe that, with the models implemented on our web

server, by choosing 100% sensitivity our system is able to

recognize about 45% of the mouse and human random non-

TSS DNA sequences correctly as those that should not initiate

transcription, while with the DDM’s sensitivity of 99.22%

(99.53%) we are able to demarcate a remarkable proportion of

81.75% (78.45%) of the mouse (human) random non-TSS DNA

sequences as those that are unlikely to initiate transcription. DDM

sensitivity of 99.22% means that we are not able to recognize only

0.78% of the real TSSs from our TSS set. When DDM is

recognizing 95.44% (95.33%) of TSSs from our set, at the same

time it annotates 95.63% (93.58%) of the random mouse (human)

sequences as unlikely to initiate transcription. When 84.76%

(80.74%) of the TSSs from our set are recognized as positions

likely to initiate transcription, 99.16% (98.83%) of the random

non-TSS mouse (human) sequences are annotated as NTLs. For

the estimates of NTLs the performance of the algorithm at very

high sensitivity levels (100%) is most relevant. This is because only

when the false-negative rate is equal to or very near to 0% one can

meaningfully speak of the areas that were recognized as unlikely to

initiate transcription to be NTLs.

Comparison with existing promoter predictors
DDM utilizes TSS prediction as a means to estimate NTLs.

Many promoter predictors have been developed with the general

aim to predict TSSs with certain levels of precision and positional

accuracy [15]. However, none of these programs aims to identify

NTLs. They are designed for different purposes [15,16].

One could argue that the same goal that DDM is designed for

can be achieved using existing promoter predictors. In principle,

any promoter predictor that provides a very high sensitivity level

(close to 100%) and predicts positionally accurate TSS locations

can serve the purpose of estimating NTLs. To test if this is possible

with the currently available promoter predictors, we evaluated

several promoter prediction programs in their ability to accurately

determine NTLs (i.e. how well they perform at or very near 100%

sensitivity) and compared their performance to the NTL

determination performance of DDM.

Figure 2. Performance curve. Sensitivity vs. Specificity trade-off curve for human and mouse average CV performance (blue and red), and
performance on the whole data sets (black and green).
doi:10.1371/journal.pone.0013934.g002
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To make this comparison as fair as possible, we have created an

independent test set that contains two subsets, HTSScompare and

RNDMcompare. HTSScompare contains 1000 randomly selected

TSSs from the human TSS data. We also used 1000 random

human DNA sequences, RNDMcompare (see Materials and

Methods). We then retrained DDM with the remaining human

TSS sequences and the remaining random DNA sequences.

Consequently, the test set data (HTSScompare and RNDMcompare)

was completely independent of the training set for DDM for this

comparison analysis.

We evaluated programs from [15,16], which we believe reflect a

representative sample of current promoter predictors. We

analyzed the performance of Promoter2.0 [17], NNPP2.2 [18],

First Exon Finder [19], Eponine [20] and Fprom [21]. URLs for

the online version of these tools can be found in the supporting

information Document S1. N-SCAN [22] and McPromoter [23]

do unfortunately only allow very limited online submission and

thus were not included in our comparison experiment, while

CpGProD [24], Dragon Promoter Finder [25,26] and Dragon

Gene Start Finder [27,28] have specific design constraints that

make them unsuitable for this comparison. The results of the

comparison are summarized and discussed in the supporting

information Document S1.

Based on the obtained comparison results, we observe that none

of the promoter predictors described above achieves a perfor-

mance that can match that of DDM regarding the ability to

pinpoint NTLs. Details of the sensitivity and specificity levels

achieved by the tested systems can be found in the supporting

information Document S1.

Application of DDM to estimate NTLs on showcase
chromosomes

We applied the DDM algorithm to the forward and reverse

strands of the human chromosomes 21, 22 and 4, which reflect an

average, high and low GC-content with regard to the whole

human genome. It was our aim to estimate what portion of the

human genome can be regarded as certain NTLs and what

portion of the genome would be estimated to contain 95% of all

genuine TSSs. To estimate these two portions, we used two

different threshold settings, 0.0 (produces ,95% sensitivity on the

training data) and 22.5 (produces 100% sensitivity on the training

data). Firstly we observe that the number of NTLs is in correlation

with the GC-richness of the chromosomes, as well as with the

number of known genes [13] on these chromosomes. This means

that the higher the GC-content of a chromosome or the reported

gene density on a chromosome, the lower is the proportion of the

chromosome estimated as NTLs and vice versa. However, one

should note that in spite of this correlation, the NTLs estimated by

our system are not confined to GC-poor regions and can also be

found within GC-rich areas.

Chromosome 21 can be regarded as a showcase example,

because it has approximately an average GC-content in

comparison with the entire human genome. At threshold 22.5,

41.1% of the chromosome is demarcated as NTL. This allows us

to estimate (based on currently available data) that roughly 40%

of the human genome are completely or nearly completely devoid

of TSSs. At threshold 0.0, we can demarcate 91.53% of human

chromosome 21 as NTL. We showed that the remaining 8.47%

of human chromosome 21 contains ,92% of all genuine TSS we

have in our dataset. Based on this we can hypothesize that

roughly 10% of the human genome is home to 90% of all

genuine TSSs. Also at threshold 0.0 we can annotate on human

chromosome 22 (chromosome 4) 21.82% (4.13%) of the

chromosome as TIAR and these TIAR regions contain 93.8%

(83.6%) of all the genuine TSSs from our data on these

chromosomes. The NTL and TIAR portions of the three

chromosomes investigated at the two thresholds are shown in

Table 2.

Table 1. Sensitivity and Specificity values for mouse and human test and training cases.

Mouse whole set Mouse CV Human whole set Human CV

threshold Sensitivity Specificity threshold Sensitivity Specificity threshold Sensitivity Specificity threshold Sensitivity Specificity

22.50 100.00% 45.45% 22.50 96.10% 45.01% 22.50 100.00% 44.77% 22.50 96.36% 44.51%

22.00 99.99% 45.95% 22.00 96.07% 45.55% 22.00 100.00% 44.97% 22.00 96.36% 44.74%

21.50 99.91% 55.03% 21.50 95.72% 54.82% 21.50 99.98% 49.47% 21.50 96.20% 49.34%

21.00 99.22% 81.75% 21.00 94.30% 78.40% 21.00 99.53% 78.45% 21.00 94.62% 73.73%

20.50 97.47% 92.03% 20.50 92.49% 89.16% 20.50 97.59% 89.92% 20.50 92.46% 86.71%

20.25 96.50% 94.05% 20.25 91.41% 92.10% 20.25 96.42% 91.96% 20.25 91.47% 89.69%

0.00 95.44% 95.63% 0.00 90.21% 94.11% 0.00 95.33% 93.58% 0.00 90.29% 91.91%

0.25 94.33% 96.86% 0.25 88.80% 95.52% 0.25 94.23% 94.94% 0.25 88.91% 93.41%

0.50 92.98% 97.81% 0.50 86.98% 96.68% 0.50 92.98% 96.17% 0.50 87.12% 94.74%

0.75 91.50% 98.51% 0.75 84.52% 97.66% 0.75 91.46% 97.29% 0.75 83.42% 95.91%

1.00 84.76% 99.16% 1.00 77.36% 98.40% 1.00 80.74% 98.83% 1.00 70.95% 97.22%

1.25 47.32% 99.65% 1.25 46.08% 99.09% 1.25 34.57% 99.76% 1.25 33.19% 98.91%

doi:10.1371/journal.pone.0013934.t001

Table 2. NTL and TIAR of three showcase human
chromosomes.

Chromosome 21 Chromosome 22 Chromosome 4

Threshold NTL TIAR NTL TIAR NTL TIAR

0.0 91.53% 8.47% 78.18% 21.82% 95.87% 4.13%

22.5 41.1% 58.9% 27.2% 72.8% 46.84% 53.16%

doi:10.1371/journal.pone.0013934.t002
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Example: DDM explains failed amplification by 59-RACE
To illustrate the usefulness of our tool for verifying whether

transcripts derived by high-throughput experiments are 59

complete, we considered the case of the CAGE tags between

alternative TSSs in the gene Oprm1 in mouse (opioid receptor,

mu 1; coordinates: chr10, negative strand 3308332..3557942;

EntrezGene ID: 18390). DDM marks two major TIAR sections in

the area. The larger one is about 3000 nt in size and contains the

59 end of the gene (Figure 3). A smaller one is found about 60 Knt

upstream of the gene and suggests the existence of an alternative

TSS. DDM also marks numerous other positions as potential TSSs

(not shown in Figure 3). A TSS at position 3557930 is supported

by one CAGE tag (Fantom3 representative tag ID

122BA39P0901, undefined tissue library) and this TSS is within

TIAR. This TSS was confirmed by 59-RACE experiments in 4 out

of 6 tissue samples supporting our prediction (primer

T10F0065AF50) (for full details on 59-RACE experiments see

Online Supporting Materials for [5]). Contrary to this, a false

positive TSS at position 3580940 indicated by one CAGE tag

(Fantom3 representative tag ID 119BA53D1906, macrophage

tissue library) could not be confirmed by 59-RACE in any of the 6

tissues. RACE experiments with two different primers

(T10F006553E1 and T10F006553F9) were conducted. Interest-

ingly, this false-positive TSS is characterized as a NTL by DDM

suggesting it is not likely to promote transcription. The NTLs

surrounding these two CAGE tags are shown in the supporting

information Document S1. Which positions are estimated to be

NTLs and which positions are likely to initiate transcription in

these surrounding areas is also indicated in the supporting

information Document S1.

Because DDM operates with a resolution of a single nucleotide,

NTLs and TIARs are sometimes small and clustered. For reasons

of image resolution we therefore cannot show the complete NTLs

and TIARs in Figure 3. However the exact demarcation around

the CAGE tags from Figure 3 is shown in the supporting

information Document S1.

Furthermore we have examined another 5 genomic positions

where transcription is indicated by the existence of a single CAGE tag

(Fantom3 representative tag IDs 120BA49K1606, 081AA66D1203,

069AE29I1002, 097AA30J2305 and 112BA90K2006). These CAGE

tags are derived from adipose, liver, lung, macrophage and

embryonic tissues, respectively. The existence of a transcript could

not be confirmed by 59-RACE for any of these positions. DDM

places all but one of these positions within NTLs. The one which falls

outside of an NTL region corresponds to the CAGE tag

112BA90K2006, which is marked as a potential TSS. We believe

this is likely to indicate a false positive prediction by DDM, although it

could be also a problem with the RACE experiment.

To illustrate NTLs and TIARs on a wider scale we have

annotated the complete sequence of human chromosome 21 with

DDM. The annotated sequence is shown in the supporting

information Document S1.

Discussion

We have developed a tool that enables us to very accurately

determine the part of genomic locations that is highly unlikely to

promote transcription initiation. While TSS prediction is a well-

studied problem for which many tools exist, DDM constitutes the

first tool that applies TSS prediction to estimate NTLs. We used

this tool to make an initial annotation of NTLs in the human

genome by processing three exemplary chromosomes. Our results

suggest that over 40% of a mammalian genome consists of NTLs.

The remaining portion of the genome (TIARs) should be

understood to contain the vast majority of genuine TSS locations.

It also contains those locations that were incorrectly labeled by our

tool as potential TSSs.

In developing the algorithm we have exploited compositional

properties of regions immediately surrounding genuine TSS

locations. As we have determined our set of genuine TSS locations

using at least two independent pieces of experimental evidence,

our TSS sets for human and mouse can be considered very

accurate. Moreover, since our TSS sets contain 113,814 human

and 98,682 mouse TSS locations, these sets represent to the best of

our knowledge the most comprehensive set of TSS locations

derived in this way. The two sets contain many alternative TSSs

for a large number of genes. In spite of the richness of our TSS

data sets, we are aware that they cannot be considered ultimately

complete.

Based on the large collections of transcription data available

today, we have shown that transcription in mammals does not

initiate randomly over the entire genome. Instead, only a small

portion of the genome is likely to initiate transcription for a vast

majority of transcripts. For Homo sapiens we estimate that no more

than 10% of the genome is responsible for more than 90% of

transcription initiation. Consequently, our results and tool can be

used to demarcate in advance regions of greater interest for studies

of transcription in mammals.

Figure 3. Application example. Illustration of DDM explaining failed amplification of 59- RACE; true and false TSSs for mouse gene Oprm1
recognized by DDM.
doi:10.1371/journal.pone.0013934.g003
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We hope that the DDM program is useful for researchers

working on several types of problems, such as promoter

identification, transcript and gene annotation, data curation from

high-throughput experiments, wet-lab experiment designs and

assessment of 59 completeness of expressed sequences. All these

aspects are of broader interest. Promoter identification, although

considerably advanced [15,29], still suffers from positional

inaccuracy of prediction of actual TSS locations. The problem is

circular to the accuracy of the dataset on which these systems are

trained. This leads us to the second problem of a more accurate

annotation of transcripts. Most frequently used methods for full-

length cDNAs are Cap-trapper [30,31] and Oligo capping [32].

Due to the specificity of sequences around mammalian TSSs

(generally high GC% and strong secondary structures), under

optimal conditions, over 90% of full-length cDNA can be

generated with the rest of cDNAs being non-full-length [33].

Our system can help with the remaining problem of determining

which cDNAs are in fact full-length and which ones are not. We

see one of the main applications of DDM in the checking for 59

completeness of transcripts generated in high-throughput

experiments.

Bioinformatics approaches, microarray experiments, as well as

other high-throughput data are prone to false-positives. The

genuine TSS locations have to be confirmed through wet lab

experiments (Northern hybridization, RACE, RT- or quantitative

PCR) and possibly by multiple pieces of evidence. Most of low-

throughput but high-confidence experimental techniques require a

priori knowledge of specific genomic regions for probe or

oligonucleotide primer design. The design of more accurate

probes, by applying DDM before experimental validation, would

thus be of advantage. The examples on 59 RACE that we provided

above illustrate this point. The novelty in using DDM for this

purpose is that a NTL characterization by DDM is highly reliable,

because at or very near 100% TSS prediction sensitivity the

system produces no or very few false-negatives, while at the same

time the false-positive rate of DDM is superior to other tested

promoter predictors at this level of sensitivity.

Conclusions
We presented a new method for estimating locations that are

unlikely to initiate transcription in mammalian genomes. This

method applies TSS prediction at very high sensitivity levels. The

algorithm’s ability to demarcate a significant portion of the

genome as containing only a minimal fraction of genuine TSS

locations while retaining the vast majority of genuine TSSs in the

remaining regions, allows the focusing of research attention to

narrow segments of the genome that could otherwise be difficult to

identify. The great advantage of our algorithm is that it can

identify locations not likely to initiate transcription at the

resolution of a single nucleotide. The server with our algorithm

is freely accessible at http://cbrc.kaust.edu.sa/ddm/.

Materials and Methods

Transcription Start Sites
Two highly accurate TSS sets for mouse (genome built mm8)

and human (genome built hg18) and their respective surrounding

sequences covering [2100,+100] relative to these TSSs were

compiled. If the first 59 nucleotide of the CAGE tag (FANTOM3)

exactly coincided with the first 59 nucleotide of at least one flcDNA

(UCSC and Fantom3), or at least one mRNA (UCSC), the TSS

determined by this tag is selected as ‘genuine’. Thus, all TSS

locations selected in this way are supported by at least two

independent pieces of evidence. No minimum distance between

neighboring TSSs was enforced as long as two pieces of evidence

were present at a location with no mismatch allowed. Webelieve

that the resulting sets of TSSs have an extremely high accuracy.

Sequences that contained ambiguous characters (‘N’) were

excluded. In this way we compiled a mouse reference TSS set

containing 98,682 sequences (MTSS) and a human reference TSS

set containing 113,814 sequences (HTSS). We have split the

HTSS set into two disjoint parts, HTSStc and HTSScompare.

HTSScompare is obtained by randomly selecting from the HTSS set

a subset of 1,000 TSS locations. For these TSS locations we have

extracted the sequences covering [2800, +800] relative to the TSS

location. HTSScompare is used for comparison of different

promoter predictors.

It has been established by [34] and [35] that within promoter

regions there exist many alternative TSSs that are often located

within a few nucleotides from each other. Here we regard these

TSS as separate, even if they are residing on neighboring

nucleotides. Although TSSs that are located very close to each

other are likely to transcribe the same transcriptional unit, even

the most minimal difference in the location of the TSS leads to the

production of a slightly different transcript. Since we are aiming to

pinpoint the exact location of TSS and not only the approximate

location of a core promoter, we therefore regard these transcrip-

tion events as separate. Furthermore even a small positional

difference between two TSSs causes the surrounding area of the

TSS to be different, with features of this area residing at different

locations with regard to the TSS. While this approach has the

effect that NTLs and TIARs in some cases appear in a clustered

fashion on the chromosomal sequence, we believe that this could

reflect the actual biological situation with regard to transcription

initiation.

Other sequences
A set of randomly selected DNA sequences from human and

mouse was compiled for the reference ‘negative’ set. These DNA

sequences were of 200 nt length selected randomly from all human

and mouse chromosomes with the number of sequences

proportional to the length of the chromosomes. Sequences that

contained ambiguous characters (‘N’) were discarded. If the 59 end

of a CAGE tags fell within [210, +10] relative to the center of the

sequences, the sequence was also discarded. In total we selected

110,000 random human DNA sequences (RNDM) and 100,000

random mouse DNA sequences. In the same manner we extracted

additional 1,000 human DNA sequences of length 1600 nt to be

used as a negative set for comparison with promoter predictors.

This set was called RNDMcompare. This means that RNDMcompare

and the negative set (RNDM) used for training of DDM are

disjoint.

Algorithm
To achieve the highest possible accuracy, the presented

algorithm utilizes a four-stage daisy-chained filtering method.

Sequences of length 200 are examined and have to be classified by

all four stages as a potential TSS in order not to be NTL. Using a

different filtering method at each stage we are able to exploit

different compositional features of the sequence under examina-

tion. Thus, the overall method achieves the very high discrimi-

nation between locations likely and locations not likely to initiate

transcription.

All steps are performed either on the entire available data sets or

on the training part of the data during the 4-fold CV.

Boundaries of k-mer distribution and frequencies of k-

mers. We considered a total number of 1,364 k-mers of length

1–5 (Table 3). We determined the number of occurrences u of
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each k-mer K in the upstream segment [2100, 21], as well the

number of occurrences d of K in the downstream segment

[+1,+100] and recorded these two numbers. Both values u and d

are from the interval [0, 100+1-k] where k denotes the length of k-

mer K. For every sequence in MTSS and HTSS with an upstream

occurrence u of k-mer K we determined the minimum, min(d),

and maximum, max(d), occurrence of K downstream of TSS. For

every sequence in MTSS and HTSS with an downstream

occurrence d of k-mer K we determined the minimum, min(u),

and maximum, max(u), occurrence of K upstream of TSS. For

every k-mer K, the collection of all points defined by (min(d),u)

and (max(d),u), as well as (d,min(u)) and (d,max(u)), define

boundaries of the region that contains all TSS locations.

(Example Figure 4, region of all TSS shown in grey). A

particular TSS characterized by (u1,d1) for k-mer K will be

recognized, if for u1 we get min(d) #d1# max(d), and for d1 we

obtain min(u) #u1# max(u). A sequence is considered to contain a

TSS on position +1 if for all 1,364 k-mers it satisfies all above

constraint conditions.

[210,+10] PWM thresholding. The sets MTSS and HTSS

are divided into 16 subsets characterized by different dinucleotides

at positions [21,+1]. For each of these subsets, we extracted all

sequences of length 20 nt covering the region [210,+10], and for

each of the 16 such subsets we constructed a position weight

matrix (PWM) following [36]. The PWM of a given subset is

subsequently used to determine the PWM scores ss of all

[210,+10] sequences in the subset. Out of these scores the

minimum score smin is selected. A sample is considered to contain

a TSS on position +1 if its associated PWM score ss$smin in the

respective subset.

LDF 40. MTSS and HTSS are divided into 16 subsets, as

described above. The complete TSS region [2100,+100] for all

TSSs in a given subset is divided in 40 consecutive non-

overlapping sections of length 5 nt. For each of these 40 sections

we determined a PWM as previously described, using all

sequences from a given subset of HTSS and MTSS respectively.

For each of the sequences from all 16 subsets of HTSS and MTSS

we determine a feature vector comprising of 40 PWM scores. Each

score was determined using all 40 sections of the sequence and the

corresponding PWM. This way we produced 16 sets of ‘positive’

data with one 40-element feature vector for each sample. We

Table 3. Statistics on k-mers used in development of the
algorithm.

k-mer length Number of k-mers
Cumulative number of
features used

1 4 4

2 16 20

3 64 84

4 256 340

5 1024 1364

doi:10.1371/journal.pone.0013934.t003

Figure 4. Constraining sequence properties (nt C). Constraining boundaries for occurrences of 1-mer ‘C’.
doi:10.1371/journal.pone.0013934.g004
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processed the ‘negative’ data with the same PWMs derived from

the MTSS and HTSS subsets to create 16 sets of ‘negative’ data

with one 40-element feature vector for each sample.

Linear discriminant analysis [37] is used on these sets of ‘positive’

and ‘negative’ data to determine 16 linear discriminant functions

(LDFs), one for each of the 16 subsets. An LDF value is calculated

using 40 coefficients ci, i = 1,2, …,40, plus one constant c0. All

sequences in HTSS and MTSS are subjected to the LDF that

corresponds to the dinucleotide at positions [21;+1] and the score

sLDF is calculated for each sequence (sLDF = c1x1+…+c40x40+cconst,

where xi are the corresponding scores of the respective PWMs). A

threshold value is determined for each of the 16 subsets in MTSS

and HTSS by selecting LDFmin so as to preserve 100% sensitivity in

the recognition of real TSSs.

A sample is considered to contain a TSS on position +1 if

LDFsample $ LDFmin for the respective subset. Otherwise, the

sample is classified as not containing a TSS on +1.
SVM. The sets MTSS and HTSS and the ‘negative sets’ are

processed as described above to produce positive and negative

data containing 40 values for each sample. A support vector

machine (SVM light: http://svmlight.joachims.org/) with a radial

basis kernel function is trained as a classifier. The radial basis

gamma value 1.28 delivered the highest accuracy for our data.

The class for sequences containing a genuine TSS is labeled 1, the

class for random non-TSS DNA sequences is labeled 21. The two

resulting models MHS and MMM are derived.

A threshold value tSVM is then applied. A sample is considered

to contain a TSS at position +1 if the SVM score sSVM.tSVM.

The threshold tSVM is the only adjustable input parameter to the

tool implemented on our web server. It can be used to manipulate

the sensitivity/specificity behavior of the algorithm (See Results

and Discussion section for details). All other parameters of the

algorithm are fixed at a level that experimentally provided

maximum sensitivity. In particular, the threshold values for

[+10, 210] PWM and for LDF40 functions were fixed at levels

that allow us to retain 100% of true TSSs. Although it is possible to

use these thresholds to manipulate the sensitivity/specificity

behavior of the algorithm, we have experimentally determined

the SVM to be the step that allows the most beneficial trade-offs,

and moreover, contribute to the simplicity of the parameter

adjustment process. Because the SVM classification of sequences is

also computationally the most time consuming, it is beneficial for

the overall speed of the algorithm to place it at the end of the daisy

chain.
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Document S1 Supplementary materials for manuscript.

Found at: doi:10.1371/journal.pone.0013934.s001 (0.08 MB

DOC)
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