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Abstract

Background: Anthrax toxin is comprised of protective antigen (PA), lethal factor (LF), and edema factor (EF). These proteins
are individually nontoxic; however, when PA assembles with LF and EF, it produces lethal toxin and edema toxin,
respectively. Assembly occurs either on cell surfaces or in plasma. In each milieu, PA assembles into a mixture of heptameric
and octameric complexes that bind LF and EF. While octameric PA is the predominant form identified in plasma under
physiological conditions (pH 7.4, 37uC), heptameric PA is more prevalent on cell surfaces. The difference between these two
environments is that the anthrax toxin receptor (ANTXR) binds to PA on cell surfaces. It is known that the extracellular
ANTXR domain serves to stabilize toxin complexes containing the PA heptamer by preventing premature PA channel
formation—a process that inactivates the toxin. The role of ANTXR in PA oligomerization and in the stabilization of toxin
complexes containing octameric PA are not understood.

Methodology: Using a fluorescence assembly assay, we show that the extracellular ANTXR domain drives PA
oligomerization. Moreover, a dimeric ANTXR construct increases the extent of and accelerates the rate of PA assembly
relative to a monomeric ANTXR construct. Mass spectrometry analysis shows that heptameric and octameric PA oligomers
bind a full stoichiometric complement of ANTXR domains. Electron microscopy and circular dichroism studies reveal that
the two different PA oligomers are equally stabilized by ANTXR interactions.

Conclusions: We propose that PA oligomerization is driven by dimeric ANTXR complexes on cell surfaces. Through their
interaction with the ANTXR, toxin complexes containing heptameric and octameric PA oligomers are similarly stabilized.
Considering both the relative instability of the PA heptamer and extracellular assembly pathway identified in plasma, we
propose a means to regulate the development of toxin gradients around sites of infection during anthrax pathogenesis.
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Introduction

Anthrax toxin (Atx) [1] is a key virulence factor produced by

pathogenic strains of Bacillus anthracis. Atx consists of three

nontoxic protein components: protective antigen (PA) is an 83-

kDa, cell-binding component of Atx that ultimately forms an

oligomeric translocase channel, which delivers the two enzyme

components, lethal factor (LF) and edema factor (EF), into the

cytosol of a host cell [2,3,4]. LF is a 90-kDa, zinc-dependent

protease [5,6,7], which cleaves host-cell mitogen-activated

protein kinase kinases [5,6]. While PA and LF are individually

nontoxic, the combination of LF and PA creates lethal toxin

(LT), which can alter cellular physiology and cause death [8].

EF is a 89-kDa, Ca2+/calmodulin-activated adenylyl cyclase

[9,10,11]. Analogously, PA and EF combine to form edema

toxin (ET), which induces tissue swelling and may also cause

death [8,12].

To achieve cytotoxicity, PA, LF, and EF must first self-assemble

into holotoxin complexes. There are two different types of

assembly pathways: (i) a cell-surface pathway and (ii) a plasma-

based/extracellular pathway. In the former mechanism, PA forms

complexes on the surface of host cells in a receptor-dependent

manner. PA first binds to one of two known Atx receptors

(ANTXR): ANTXR1 [13] and ANTXR2 [14]. The PA-ANTXR

interaction [15] is stable and dissociates with a half-life measured

in days [16]; the interaction involves domains 2 and 4 in PA, such

that the latter domain coordinates the receptor’ Ca2+ or Mg2+

metal ion adhesion site [15,16,17,18]. Receptor-bound PA is then

cleaved by a furin-type protease to make the proteolytically-

activated form, called nPA. After a 20-kDa portion of nPA (PA20)

dissociates, the remaining 63-kDa (PA63), receptor-bound portion

assembles into a mixture of ring-shaped heptameric (PA7)

[17,19,20] and octameric (PA8) [21,22] oligomers. The complexes

are endocytosed [23] and brought to an acidic compartment [24].
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Under acidic pH conditions, the PA oligomers form translocase

channels [25,26], allowing the passage of LF and EF into the

cytosol.

In a second assembly mechanism, PA, LF, and EF form LT and

ET complexes in the blood. In vivo studies of anthrax infection

measured high concentrations of toxin components in the blood of

infected animals [2,3]. At the later stages of anthrax, PA and LF

concentrations reach up to 100 mg/mL and 20 mg/mL, respec-

tively [27]. Analysis of the circulating toxin components revealed

that the majority of detectable PA exists as the proteolytically-

processed PA63 form, which is either assembled or capable of

assembling with LF in a manner analogous to what is observed on

cell surfaces [27,28,29]. In vitro bovine-plasma assembly experi-

ments reveal that PA oligomers and LT complexes may form

efficiently from full-length PA and LF, where the resulting

oligomers contain mixtures of PA7 and PA8 complexes [21,22].

PA7 complexes have a strong propensity for aggregation under

physiological conditions (due to their premature conversion to the

channel state), suggesting that the toxin requires additional

stabilization mechanisms to remain efficacious during infection

[21,22,30]. Since PA8 complexes are more stable in plasma under

physiological conditions (pH 7.4, 37uC), it has been proposed [22]

that the soluble fraction of LT circulating in bloodstream of

infected animals [28] may contain an enriched population of the

PA8 oligomer.

While it is clear that PA8 functions as a stable complex in

plasma, it is unknown whether PA7 and PA8 complexes are

stabilized differentially on cell surfaces. When the PA heptamer

binds to its cellular receptor, ANTXR, the interaction inhibits

channel formation, significantly stabilizing PA complexes by ,2

pH units [15,17]. Previous studies have also shown that ANTXR2

dimerization leads to an increase in the formation of PA8 in vitro,

presumably by populating dimeric intermediates along the

assembly pathway [21]. Here we explore the role of the ANTXR

in the PA assembly pathway and determine the degree of

stabilization the receptor imparts on the two different PA

oligomers produced during assembly.

Results

PA oligomerization is accelerated in the presence of
ANTXR2 dimers

While ANTXR2 dimerization enhances the formation of PA8

[21], it is not known whether the rate and extent of PA

oligomerization are influenced by a dimeric ANTXR2 complex

(dsANTXR2). A previous study indicates that LF’s PA binding

domain (LFN, the first 263 residues of LF) can increase the rate of

PA oligomerization, while soluble monomeric ANTXR2 extracel-

lular domain (msANTXR2) did not appear to influence assembly

greatly [16]. To ask whether ANTXR2 dimerization affects the rate

of PA oligomerization, we produced a soluble extracellular

dsANTXR2 construct, which contains an amino-terminal fusion

of glutathione S-transferase (GST) and the extracellular domain of

ANTXR2. The GST domain forms tight homodimers [31] with an

equilibrium dissociation constant of less than 1 nM [32]. We

previously verified that this construct is fully homodimeric by mass

spectrometry [21]. Structurally, the amino-termini of adjacent

ANTXR2 extracellular domains in the crystal structure of the

PA7(ANTXR2)7 structure [17] are ,55 Å apart (Fig. 1A). This

distance is similar to the distance between the carboxy-termini

(,44 Å) in the crystal structure of the GST dimer [31], and we infer

that the 6-amino acid linkers positioned between the GST domains

and the ANTXR2 domains can span this 11-Å differential. Finally,

as our model in Figure 1A indicates, the amino terminus of the

ANTXR2 points away from the PA-ANTXR interface, and there

are no steric constraints, which would prevent the ANTXR2 dimer

from forming via the GST interaction either in a PA dimer or

higher-order PA7/PA8 oligomer complex. Thus this dimeric fusion

construct could in principle stabilize the formation of productive

dimeric PA intermediates during assembly.

Figure 1. ANTXR2 dimerization stimulates PA assembly. (A) A manually constructed model of dsANTXR2 bound to two adjacent PA63

subunits in a PA7 oligomer. The surface rendering is colored according to the legend on the right. The model is based upon the crystal structures of
GST (PDB 5GST[31]) and PA7(msANTXR2)7 (PDB 1TZN[17]). A flexible linker is shown in black that links the carboxy-terminus of GST to the amino-
terminus of msANTXR2. (B) FRET-probed PA-assembly kinetics at pH 7.4. A 1:1 mixture of nPA K563C*AF555 and nPA K563C*AF647 monomers (100 nM
total monomer) was either allowed to assemble on its own (black &) or mixed with 100 nM of the following assembly co-factors, dsANTXR2 (blue .),
msANTXR2 (green m), or LFN (red N), and allowed to assemble. To track the time course of PA assembly, the ratio of acceptor to donor fluorescence
(F668/F566) was measured every five minutes for one hour at room temperature. The resulting records are normalized to the largest signal obtained for
the dsANTXR co-assembly reaction. Solid lines are best-fit lines obtained using a second-order rate model (Eq. 1). The rate constants, k, are 0.19
(60.01) s21 for dsANTXR2, 0.031 (60.003) s21 for LFN, and 0.05 (60.03) s21 for msANTXR2, and the amplitudes, A, are 21.12 (60.02) for dsANTXR2,
21.29 (60.04) for LFN, and 20.15 (60.02) for msANTXR2. Note due to the lack of an observable change in FRET signal, no kinetic parameters were
obtained for the assembly of nPA alone, and the data were fit to a straight line.
doi:10.1371/journal.pone.0013888.g001
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We measure the rate of PA oligomerization using Förster

resonance energy transfer (FRET). AlexaFluor 555 and 647

reactive maleimides are conjugated to PA monomers via sulfhydryl

modification of the unique Cys residue introduced by the K563C

mutation, forming PA K563C*AF555 and PA K563C*AF647,

respectively. These residues are sufficiently close together in the

PA oligomer to allow FRET between adjacent monomers [16].

We monitor PA assembly using a 1:1 mixture of AF555-donor-and

AF647-acceptor-labeled nicked-PA (nPA) monomers (50 nM each)

and the ratio of the fluorescence emission intensities at 668 and

566 nm (F668/F566). As shown in previous studies [16], we also

find the extent of nPA oligomerization in the absence of co-

assembly factors is slight over the time course of one hour (Fig. 1B).

Consistent with previous studies [16], the presence of msANTXR2

does not stimulate PA assembly appreciably; rather it modestly

increases the extent of assembly when compared to the nPA

control. We fit the resulting FRET, F, vs time (t) data with a

second-order rate model [16]

F tð Þ~A= 1zktð Þzconstant ð1Þ

For msANTXR2 stimulated assembly, we estimate that the

observed rate constant, k, is 0.05 (60.03) s21 with an amplitude, A,

of 20.15 (60.02). Both LFN and dsANTXR2 greatly stimulate the

extent of PA assembly, A values of 21.12 (60.02) and 21.29

(60.04), respectively (Fig. 1B), where the relative extent of

assembly over msANTXR2 stimulated assembly is increased ,7

and 9-fold, respectively. We find that, relative to msANTXR,

dsANTXR2, with a k of 0.19 (60.01) s21, accelerates the rate of

oligomerization ,4-fold (Fig. 1B). Thus we conclude that

ANTXR2 dimerization stimulates both the rate and extent of

PA assembly.

Mass spectrometry analysis of PA7(LFN)3 and PA8(LFN)4

co-complexes with msANTXR2
Quantitative fluorescence [16] and X-ray crystallographic

studies [17] similarly report that PA7 binds 7 msANTXR2

domains. Using mass spectrometry (MS), we can also determine

the stoichiometry of anthrax toxin complexes. Previous studies

reported that nPA and LFN form PA-LFN complexes containing

PA7 and PA8 [21]. Here we find that when this mixture of PA-LFN

complexes is liganded by an excess of msANTXR2, two high-

molecular mass species of 677,125 (670) Da and 791,823 (6128)

are formed. These masses are consistent with the theoretical

molecular masses of the PA7(LFN)3(msANTXR2)7 and

PA8(LFN)4(msANTXR2)8 complexes, respectively (Fig. 2,

Table 1). (Note, for simplicity, we refer to these complexes as

PA7-msANTXR2 and PA8-msANTXR2, respectively.) Also

present at slightly lower relative abundances are the assembly

intermediates, PA2LFN(msANTXR2)2 and PA4(LFN)2(ms

ANTXR2)4 (Fig. 2). Finally, the free monomers, msANTXR,

PA20 and LFN, are observed in the range m/z 1000–3500 (Fig. 2).

Thus we conclude that the PA oligomer architecture does not

preclude the binding of a complete stoichiometric complement of

ANTXR domains.

EM analysis of the stability of PA7 and PA8 co-complexes
with msANTXR2

Using electron microscopy (EM), we measure the relative pH-

dependent stabilities of the two different PA oligomers. Here we

equate complex stability with the ability of the complex to remain

soluble. Prior studies show that insoluble toxin complexes are also

inactive [22]. To examine the stability of these complexes, we

briefly incubate the oligomeric mixture of PA-msANTXR2

complexes (78% PA7, 22% PA8) for 5 min at 37uC under a range

of pH conditions, and then we analyze the composition of the

resulting soluble complexes by EM (Fig. 3). At pH 8.0, we observe

Figure 2. Nanoelectrospray mass spectrometry analysis of PA-LFN-msANTXR2 oligomer complexes. Nanoelectrospray MS of sANTXR-
PA-LFN complexes (,2 mM) in 200 mM ammonium acetate, 2 mM ammonium bicarbonate, 0.2 mM magnesium acetate, pH 7.8. The y-axis is scaled
106 in the range m/z 6000–13,000, and the x-axis is expanded in the range m/z 10,000–13,000 to aid viewing low relative abundance and closely
spaced peaks in these regions. See also Table 1 for the respective molecular mass values for each complex.
doi:10.1371/journal.pone.0013888.g002
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mainly distinct axially-oriented oligomeric particles, but at pH 5.0,

we largely observe indiscernible aggregates (Fig. 3A). We find that

the number of soluble PA-msANTXR2 prechannel co-complex

particles per micrograph decreases as a function of pH with a pH

midpoint of 5.8 (Fig. 3B, Table 2). The sharp decrease in the

average number of soluble prechannel co-complex particles per

micrograph also coincides with the appearance of large aggregates

(Fig. 3A). The appearance of the latter is indicative of premature

formation of the PA channel [22]. Data from a similar study of

ANTXR-free PA oligomer particles [22] show a different result,

where the pH-dependent transition was biphasic with two different

pH midpoints, corresponding to the PA7 and PA8 oligomers

(Fig. 3B) [22]. We conclude that when PA7 and PA8 complexes

bind to msANTXR2 they are stabilized similarly and their

solubility as a function of pH reveals a coincident sigmoidal pH

dependence.

We then asked if the monophasic sigmoidal transition in the

number of soluble PA-msANTXR2 prechannel co-complex

particles resulted from the two different PA oligomers having

identical pH dependencies for channel formation (and aggrega-

tion). To address this question, we measured the relative

proportions of the PA7-msANTXR2 and PA8-msANTXR2

complexes at each pH. From the negative-stain electron

micrographs taken at each pH value, we apply a reference-based

alignment, classification, and averaging analysis of all distinct

soluble particles (Fig. 3A, inset) [21]. This analysis, which

generates average images of the ring-shaped particles, shows that

the percentages of PA7 and PA8 are constant over the range of

pH 8 to 6 (Fig. 3B, Table 2). The constant percentages observed

for these msANTXR2-bound oligomer complexes are in stark

contrast to what is observed with msANTXR-free PA oligomer

complexes (Fig. 3B). Thus, when in complex with the msANTXR2

domain, PA7 and PA8 have identical pH dependent stabilities and

tend to aggregate with identical pH midpoints of 5.8.

Circular dichroism changes in PA7-msANTXR2 and
PA8-msANTXR2 complexes

Circular dichroism (CD) spectroscopy studies provide a

structural probe for PA’s transition from the prechannel state to

the channel state. This pH-dependent structural transition likely

explains the decrease in complex stability and solubility observed,

since PA channels tend to aggregate in solution [22]. The

secondary structure increases reported by CD signals have been

associated with channel formation because the pH-dependent CD-

signal change occurs at similar pH values as observed with other

probes for channel formation, including EM, MS, and SDS-PAGE

[22]. Using the CD signal at 222 nm (CD222nm), we can measure

the pH-dependent conformational changes in purified PA7-

msANTXR2 and PA8-msANTXR2 complexes (Fig. 4A, B). These

purified samples also contain full complements of LFN, but they

are highly enriched .90% in either the PA7 or PA8 oligomer [21].

Records of the pH-dependent CD222nm signal change of the PA

oligomer-msANTXR2 complexes at 37uC (Fig. 4A) show

equivalent results for either PA oligomer from pH 4.0 to 8.0

(Fig. 4B). The pH-dependent CD222nm signal changes for the PA7-

msANTXR2 and PA8-msANTXR2 complexes coincide, such that

the prechannel-to-channel transition midpoint is pH 5.8 (Fig. 4B).

Relative to the PA oligomers assayed under similar conditions in

the absence of msANTXR [22], this pH 5.8 midpoint is stabilized

by ,1.8 and ,1.2 pH units for the PA7 and PA8 oligomers,

respectively.

The pH-dependence of PA7-msANTXR2 channel
formation is temperature-independent

PA7 channel formation is both temperature-dependent as well

as pH-dependent [22,25]. However, while PA7 forms SDS-

resistant aggregates upon channel formation, PA8 apparently does

not [22]. We investigated the temperature-dependence of PA7-

msANTXR2 channel formation using the SDS-resistance assay

(Fig. 5). PA7-msANTXR2 complexes were incubated at 25uC or

37uC for 1 hour at pH conditions from pH 8.0 to pH 5.0. Using

SDS-PAGE, we can monitor the formation of a low-mobility SDS-

resistant form, which is likely an aggregated form of the

heptameric PA channel [22]. In the absence of msANTXR2,

PA7 forms an SDS-resistant species at pH 7.4 and 7.0, at 25uC
and 37uC, respectively [22]. However, here we show, in the

presence of msANTXR2, that the SDS-resistant species first

appeared at pH 5.5 at 25uC and also at 37uC (Fig. 5). Therefore,

we conclude that the pH-dependence of PA7-msANTXR2

channel formation is temperature-independent.

Discussion

PA assembles on cell surfaces once it is proteolytically nicked

by a cell-surface furin-type protease [33] after the RKKR

sequence within a solvent accessible loop in domain 1 [20]. This

solvent accessible loop is also recognized by an unknown serum

protease found in various types of mammalian plasma [28]. The

resulting products of the cleavage by either type of protease are

the amino-terminal 20-kDa fragment, PA20, and the carboxy-

terminal, 63-kDa fragment, PA63 [34]. The PA63 portion self-

assembles into either a heptameric [17,19,20,21] or octameric

[21] ring-shaped oligomer, which can maximally bind up to three

or four LF or EF molecules, respectively. Since assembly is

initially limited by this proteolytic activation step, then Atx

assembly can occur in two distinct environments, i.e., either (i) on

cell surfaces or (ii) free in solution in extracellular environments

such as plasma.

The cell-surface pathway is proposed to begin once secreted PA

monomers bind to cell-surface ANTXRs [13,14]. Furin-type

Table 1. Measureda and theoreticalb molecular masses for msANTXR-PA-LFN complexes.

Sample Measured molecular massa (Da) Theoretical molecular massb (Da) Deviation (%)

msANTXR8(PA)8(LFN)4 791,823 (6128) 790,609 0.15

msANTXR7(PA)7(LFN)3 677,125 (670) 676,327 0.12

msANTXR4(PA)4(LFN)2 395,722 (633) 395,305 0.11

msANTXR2(PA)2LFN 197,815 (619) 197,652 0.08

aMolecular masses are measured using nanoelectrospray MS according to the method described in Kintzer et al. [21].
bTheoretical molecular masses are derived using the amino acid sequences of msANTXR, PA63, and LFN.
doi:10.1371/journal.pone.0013888.t001
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proteases then activate PA, allowing toxin assembly and

internalization to ensue. A complementary model has also been

proposed based on predominantly in vivo results; the model

suggests that PA monomers are proteolyzed in the host

bloodstream [28], assembling into toxin complexes prior to

reaching cell-surfaces [29]. We recently proposed that the

octameric toxin stably circulates in plasma, while the heptameric

toxin is unstable, forming aggregates of the prematurely formed

channel state [21,22]. Toxin aggregates have also been observed

in vivo, although their oligomeric composition is unknown [28].

While the cell-surface assembly model and plasma-based assembly

model are not mutually exclusive [21,22], future in vivo studies are

needed to distinguish the relative importance of the two assembly

pathways during anthrax infection. Here we provide evidence that

cell-surface assembly is likely driven by receptor dimerization;

however, unique from plasma-based assembly, the two different

Figure 3. EM analysis of the stability of PA7-msANTXR2 and PA8-msANTXR2 complexes from pH 8.0 to 5.0. (A) Representative
micrographs (49,0006) of PA-msANTXR2 complexes following a 5-minute exposure to 37uC at either pH 8.0 (left) or pH 5.0 (right). A 20-nm scale bar
is shown in white for either micrograph. (inset on left) Class-average images of PA7-msANTXR2 and PA8-msANTXR2 complexes; a 5-nm scale bar is
shown. (B) Quantitative analysis of the number of soluble PA oligomers and the relative proportions of PA7 and PA8, identified from electron
micrographs at each pH. (left) A plot of the average number of soluble prechannels versus pH for both free PA complexes (%, data taken from [22])
and msANTXR2-bound PA complexes (&) complexes. Error bars are propagated from the standard deviations of the mean number of particles
obtained from at least 10 micrographs for each pH. (right) A plot of the relative proportions of PA7 (black &) and PA8 (red N) complexes determined
using class-average image analysis for both PA-LFN (open symbols, data taken from [22]) and PA-LFN-msANTXR2 (filled symbols) complexes.
doi:10.1371/journal.pone.0013888.g003
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oligomeric forms, PA7 and PA8, are similarly stabilized by

ANTXR2 interactions on cell surfaces.

ANTXR2 dimers stimulate PA oligomerization
The assembly of Atx on cell surfaces is not well understood. On

one hand, proteolysis, assembly, and internalization have been

shown to be rapid under physiological conditions, occurring within

minutes [35]. The mechanism of cell-surface assembly is not fully

understood in part because the structure of the full-length

ANTXR is unknown and in part because individual assembly

intermediates have not been isolated from cells. It is known,

however, that while the soluble extracellular domain of ANTXR2

is monomeric, as evidenced in crystallographic [15,17] and mass

spectrometry studies (Fig. 2), the full-length ANTXR2 is thought

to dimerize via its transmembrane single-pass helix domain, as

demonstrated in studies of the transmembrane domain in a

liposomal system [36]. Since ANTXR2 dimerization enhances the

formation of PA8, it was proposed that it may also facilitate

assembly at the cell-surface by populating dimeric intermediates,

because PA8 complexes are produced in that environment [21]. In

further support of this hypothesis, we also find evidence for even-

numbered receptor-bound dimeric and tetrameric species,

Table 2. Negative-staina EM analysis PA-msANTXR2 co-complexes following an exposure at 37uCb.

pH Mean number of particles per micrographc Oligomeric compositiond

PA8 (%) PA7 (%) Total particles (N)

8.0 18 (64) 23 77 364

7.4 20 (67) 26 74 381

7.0 28 (68) 17 83 494

6.5 26 (66) 22 78 482

6.0 19 (64) 16 84 857

5.5 2 (61) n.d.e n.d. n.d.

5.0 1 (61) n.d. n.d. n.d.

aNegative-stain electron micrographs using uranyl acetate stain, 2%.
bA pre-assembled population of PA-msANTXR2 complexes (containing 78% PA7 and 22% PA8) was incubated for 5 minutes at 37uC at the specified pH.
cThe mean number of particles per micrograph (n of 10 micrographs) given as 6s.d.
dOligomeric composition is determined using crystal-structure-referenced alignment and classification analysis [21,22]. The percentage reported is computed from the

total number of particles, N, comprising all PA7 and PA8 classes, where oligomeric composition is equal to the total number of PA7 or PA8 particles divided by N.
en.d., not determined. Class-average image analyses of these pH conditions are not shown due to the low particle counts observed. The low particle counts are
attributed to severe aggregation (as shown in Fig. 3A).

doi:10.1371/journal.pone.0013888.t002

Figure 4. The pH dependence of CD-signal changes for PA7- and PA8-msANTXR2 complexes. (A) Time-course records of the CD signal at
222 nm (CD222) for either an acid pulse (pH 5.0 final, red trace) or a control with no pH pulse (pH 8.0 final, black trace). (B) The pH-dependence of the
CD222-signal change for PA7(LFN)3 (black %, data taken from [22]), PA8(LFN)4 (red #, data taken from [22]), PA7(LFN)3(msANTXR2)7 (black &),
PA8(LFN)3(msANTXR2)8 (red N) complexes. Traces were normalized to the initial and final CD222 signals obtained.
doi:10.1371/journal.pone.0013888.g004
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PA2(LFN)(msANTXR2)2 and PA4(LFN)2(msANTXR2)4, in our

mass spectra (Fig. 2). We conclude that the cell-surface assembly

mechanism likely occurs through dimeric PA intermediates, which

are stabilized via dimeric ANTXR complexes; and this mechanism

is akin to a putative extracellular plasma-based assembly

mechanism, whereby either EF or LF stabilizes dimeric PA

intermediates that can serve to drive assembly [21].

Previous studies have shown that the rate of PA assembly is

accelerated in the presence of LFN [16], which is believed to

bridge a binding site spanning the surface of a PA dimer [37]. In

this report, we consider the role of a dimeric receptor on the

kinetics of PA assembly. Our kinetic FRET measurements show

that dsANTXR2 stimulates PA assembly (Fig. 1B). Furthermore,

PA assembles ,6-fold faster with dsANTXR2 (relative to what is

observed when assembling with LFN.) This acceleration of the

assembly kinetics may reflect that PA binds ANTXR2 with a

higher affinity than LFN (170 pM versus 1 nM, respectively)

[16,38]. Therefore, we propose that ANTXRs, LF, and EF can

stimulate PA oligomerization by populating dimeric PA interme-

diates, which are precursor intermediates in the PA oligomeriza-

tion mechanism.

Stabilization of PA complexes by ANTXR2
The ANTXR-dependent stabilization of PA oligomers has been

demonstrated on cell-surfaces and in solution [17,19,25]. The

mechanism of receptor-mediated stabilization of PA complexes

occurs by reducing the pH threshold for PA channel formation by

,2 pH units. ANTXR2 prevents channel formation by forming a

metal-ion dependent structural bridge that spans domains 2 and 4,

restricting the conformational changes necessary for channel

formation [15,17]. While PA7 complexes have been shown to be

stabilized by ANTXR2 interactions [17], the relative stabilities of

PA7ANTXR27 and PA8ANTXR28 complexes has not been

reported. In the absence of msANTXR2, it has been demonstrat-

ed that PA7 and PA8 form channels at different pH values [22].

Our EM measurements of pH-dependent PA oligomer aggrega-

tion suggest that PA7- and PA8-msANTXR2 complexes instead

form channels at equivalent pH values with a pH midpoint of 5.8

(Fig. 3B). Our CD measurements also suggest that PA7- and PA8-

msANTXR2 complexes form channels at a pH midpoint of 5.8

(Fig. 4). Further evidence of this conclusion is provided by our

analysis of the percentages of soluble PA7 and PA8 oligomer

complexes over the tested pH range. From pH 8.0 to 6.0, we find

the relative ratio of PA7 and PA8 complexes is unaltered,

indicating that both PA7 and PA8 prechannels are stabilized by

msANTXR2 (Fig. 3B). These results are consistent with studies of

PA oligomerization on cell surfaces, revealing that the inherently

less stable PA7 complex is favored 2:1 over the PA8 complex [21].

Therefore, we infer that PA7 and PA8 are likely to form similar

structural interactions with ANTXR2, since both oligomers are

equally stabilized. We conclude that PA7- and PA8-msANTXR2

complexes form channels with identical pH dependencies and

possess equivalent stability when bound to ANTXR2 on cell

surfaces.

Role of ANTXR2 stabilization during pathogenesis
In plasma, LT complexes containing PA8 oligomers are

inherently more stable than those containing PA7 oligomers, thus

allowing the LT containing PA8 complexes to persist for longer

periods of time in that environment [22]. This stabilization

mechanism defines an important role for PA8 oligomers in anthrax

pathogenesis. However, as we report here, toxin complexes

containing either PA7 or PA8 oligomers are equally stabilized by

interactions with ANTXR2 (Fig. 6), and thus the 70:30 ratio of

heptamers to octamers observed on cell surfaces [21] can be fully

explained by the receptor-mediated stabilization data presented

here (Fig. 3B). Therefore, Atx assembly may be a means to regulate

toxin activity and generate toxin gradients in the host (Fig. 7). We

expect that, due to its relatively short half life, PA7 activity may

effectively localize near to sites of infection [22], whereas PA8 may

circulate systemically and provide a longer-range source of toxin

activity. The stabilization imparted upon binding to the ANTXR

allows for PA7 containing toxin complexes to be more concentrated

and efficacious at sites proximal to the site of infection. The levels of

available free LF may control the levels of PA8 complexes produced.

This mechanism should provide a means to maintain higher levels

of toxin activity near to the sites of infection while preventing

premature system-wide shock until PA8 complexes are produced on

a larger scale. As the infection progresses and a fever in the host

develops, PA8 complexes may be required because they are more

thermostable and remain active even after extended exposure to

elevated temperatures [22]. Future work should investigate the types

of Atx complexes produced throughout the various stages of anthrax

pathogenesis.

Materials and Methods

Proteins
Recombinant wild-type PA83 [39] was over-expressed in the

periplasm of the Escherichia coli strain, BL21(DE3). The 83-kDa PA

monomer was purified from the periplasm as described [16].

Recombinant LFN (LF residues 1-263) was overexpressed in

BL21(DE3) via a pET15b construct [40] and then purified from

the cytosol as described [16]. Soluble human anthrax receptor

domain, msANTXR2, from the capillary morphogenesis protein 2

(residues 40–217) [14] was expressed and purified as described

[15]. The six-histidine affinity tags were removed from

msANTXR2 and LFN by treatment with bovine a-thrombin. A

soluble, dimeric fusion of human anthrax receptor domain to

glutathione S-transferase (GST), dsANTXR2, was also expressed

and purified as described [21].

Preparation of purified PA7-msANTXR2 and
PA8-msANTXR2 co-complexes

PA7(LFN)3 was produced using Q-sepharose-purified PA oligo-

mers [21] by forming complexes with a two-fold stoichiometric

excess of LFN (LFN:PA) and purified as described [22]. The resulting

complexes contained .90% PA7. PA8(LFN)4 was prepared by

Figure 5. The formation of SDS-resistant PA7(LFN)3(m-
sANTXR2)7 complexes is temperature-independent. SDS-resis-
tance assays [25] were performed with PA7(LFN)3(msANTXR2)7 com-
plexes, which were incubated at the indicated pH at either 25uC or
37uC. The two species of interest on the SDS-PAGE gels are indicated as
either the high-molecular-weight, SDS-resistant PA oligomer band (*) or
low-molecular-weight SDS-soluble, PA63 monomer band (PA63).
doi:10.1371/journal.pone.0013888.g005
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assembling nPA in the presence of LFN (nPA-LFN, a mixture that

contains ,20–30% PA8), following incubation and purification by

gel filtration as described [21,22]. PA-msANTXR2 complexes were

formed by mixing 1 mM PA7(LFN)3 or PA8(LFN)4 with ten molar

equivalents of purified msANTXR2 (10 mM) in Buffer E (20 mM

Tris, 150 mM NaCl, pH 8) plus 1 mM MgCl2. The complex was

formed at room temperature over the course of 15 minutes.

PA83 labeling with fluorescent dyes
A PA83 mutant K563C was expressed and purified in the

presence of 5 mM DTT. Prior to the reaction, the DTT was

removed by buffer exchange on a G25 desalting column (GE

Healthcare, USA), equilibrated in nitrogen-purged Buffer E.

Labeling reactions were initiated by mixing DTT-free PA83

K563C with 10 molar equivalents of Alexa fluor 555 C5

maleimide (AF555) or Alexa fluor 647 C5 maleimide (AF647)

(Invitrogen, USA) in the presence of 100 mM tris(2-carboxyethyl)-

phosphine (TCEP, Sigma Aldrich, USA) and incubated at room

temperature for 3 hours. The reaction was quenched with 5 mM

DTT and purified on a G25 desalting column to remove free,

unreacted dye molecules. Labeling efficiency was determined by

comparing dye and protein absorbance values. Labeling efficien-

cies of .90% were achieved for either dye.

Figure 6. A model for anthrax toxin assembly. A model for anthrax toxin assembly in plasma and at cells surfaces. (A) In principle, PA
components may assemble into a 70:30 PA7:PA8 mixture of toxin complexes in plasma. However, PA7 readily converts to the channel state and
aggregates within 5 minutes under these conditions, leaving PA8 as the predominant soluble toxin complex capable of infecting cells [22]. By
contrast, both oligomeric forms are equally stable at the cell surface, where binding to ANTXR2 serves to prevent premature channel formation until
PA7 or PA8 complexes are properly internalized and the endosomal compartment is acidified to pH values ,6. On cell surfaces, PA may also
oligomerize into a 70:30 PA7:PA8 mixture [21], where assembly is driven through interactions with dimeric ANTXR complexes. These complexes are
then able to bind LF and become internalized into cells.
doi:10.1371/journal.pone.0013888.g006
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FRET-based PA assembly assay
Dye-labeled, nicked PA (nPA K563C*AF555 or nPA

K563C*AF647) was prepared as described previously [41]. To

initiate assembly, nPA K563C*AF555 and nPA K563C*AF647 were

each diluted to 50 nM in 10 mM sodium cacodylate, 100 mM

potassium chloride, 1 mM magnesium chloride, pH 7.4 either in

the presence or absence of 100 nM LFN, 100 nM msANTXR2, or

100 nM dsANTXR2. Assembly was observed as an increase in the

emission intensity ratio at 668 and 566 (62) nm (F668/F566) upon

excitation at 555 (65) nm, which reached a steady state in about

one hour. Emission values were obtained every five minutes on a

Horiba Jobin Yvon FluoroMax-3 spectrofluorometer, using quartz

cuvettes with a 1-cm path length.

Mass Spectrometry
Mass spectra of the protein complexes were acquired using a

quadrupole time-of-flight (Q-TOF) mass spectrometer equipped

with a Z-spray ion source (Q-TOF Premier, Waters, Milford,

MA). Ions were formed using a nanoelectrospray (nano-ESI)

emitter prepared by pulling borosilicate capillaries (1.0 mm O.D./

0.78 mm I.D., Sutter Instruments, Novato CA) to a tip I.D. of

,1 mm with a Flaming/Brown micropipette puller (Model P-87,

Sutter). The instrument was calibrated with CsI clusters formed by

nano-ESI using a 20 mg/mL solution of CsI in 70:30 Milli-Q

water:2-propanol prior to mass measurement. The protein

solution was concentrated to ,10 mm followed by dialysis into

10 mM ammonium bicarbonate, 1 mM magnesium acetate,

pH 7.8. Immediately prior to mass analysis, the solution was

diluted 1:4 with 200 mM ammonium acetate, pH 7.8. A platinum

wire (0.127 mm diameter, Sigma, St. Louis, MO) was inserted

through the capillary into the solution and electrospray was

initiated and maintained by applying 1–1.3 kV to the wire (relative

to instrument ground). Each raw dataset was smoothed three times

using the Waters MassLyn software mean smoothing algorithm

with a window of 25 m/z (mass-charge ratio).

Electron microscopy
PA-msANTXR2 complexes were prepared in Buffer E plus

1 mM MgCl2 as described above, applied to a freshly glow-

discharged 400 mesh formvar-carbon coated grids, and stained

with 2% uranyl acetate (Sigma-Aldrich, St. Louis, MO) as

described [21,22]. Negative-stain EM images were recorded on

a Tecnai 12 electron microscope (FEI Company, Hillsboro, OR)

operated at 120 kV at a magnification of 49,0006 using a CCD

camera. The micrograph resolution was 2.13 Å/pixel. Particle

images were selected using manual particle picking using boxer in

EMAN [42]. Boxed images of the PA oligomer particles were

subjected to successive cycles of reference-free and reference-based

alignment, multivariate statistical analysis, and classification using

SPIDER [43,44,45], as described [21,22]. Final class-average

images were manually inspected to determine their oligomeric

state and tabulated to determine the oligomeric composition of

each sample (Table 2).

Circular dichroism (CD) spectroscopy
CD measurements of the PA channel transition were obtained

on a JASCO Model 810 spectropolarimeter (JASCO, Inc., Easton,

MD). To determine the pH-dependence of the prechannel-to-

channel transition, PA-msANTXR2 co-complexes were diluted to

50 nM in 2 mL of the buffer: 10 mM potassium phosphate,

10 mM potassium acetate, 0.1 M potassium chloride, 1 mM

magnesium chloride, pH 8. The CD measurement was made

using a 161-cm quartz cuvette containing a Teflon stir bar, at

25uC or 37uC. Recordings of the CD222nm signal were conducted

at a 1-Hz sampling rate. During the recording the pH of the

sample was reduced by adding 0.4 M phosphoric acid to obtain

the desired pH, as described [22]. The CD222nm transition was

then observed and recorded for an additional 60 s. The final pH of

the sample in the cuvette was determined using a pH meter.

SDS-resistance PAGE analysis
SDS-resistance assays [25] were performed with purified PA7-

msANTXR2 complexes. The purified PA7(LFN)3 samples were

complexed with msANTXR2 as described above, forming PA7-

msANTXR2. PA7-msANTXR2 complexes were diluted to 1 mg/

ml final concentration (with respect to PA) in Buffer E plus 1 mM

MgCl2. The following buffers were added to preformed complex-

es, which vary depending upon the pH: 0.1 M Tris-Cl (pH 8.0),

sodium cacodylate (pH 6.5 to 7.5), 0.1 M 2-(N-morpholino)etha-

nesulfonic acid (pH 6.0), and sodium acetate (pH 5.0 to 5.5). The

complexes were incubated for 1 hour at 25uC or 37uC. 1.25%

SDS then was added, and the samples were run on a 12%

polyacrylamide gel, which was stained in Coomassie Brilliant Blue

G-250.
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Figure 7. A model for the regulation of toxin activity in plasma.
The assembly of LT complexes with different lifetimes may serve as a
means to regulate toxin activity in plasma during infection. The reduced
lifetime of PA7 complexes in plasma may limit their cytotoxic effects to
local areas in close proximity to the site of B. anthracis infection. By
contrast, PA8, which is produced at lower levels, has a longer lifetime,
thereby allowing it to exert cytotoxic effects over longer distances.
doi:10.1371/journal.pone.0013888.g007
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