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Abstract

Protein context clearly influences neurotoxicity in polyglutamine diseases, but the contribution of alternative splicing to this
phenomenon has rarely been investigated. Ataxin-3, a deubiquitinating enzyme and the disease protein in SCA3, is
alternatively spliced to encode either a C-terminal hydrophobic stretch or a third ubiquitin interacting motif (termed 2UIM and
3UIM isoforms, respectively). In light of emerging insights into ataxin-3 function, we examined the significance of this splice
variation. We confirmed neural expression of several minor 59 variants and both of the known 39 ataxin-3 splice variants.
Regardless of polyglutamine expansion, 3UIM ataxin-3 is the predominant isoform in brain. Although 2UIM and 3UIM ataxin-3
display similar in vitro deubiquitinating activity, 2UIM ataxin-3 is more prone to aggregate and more rapidly degraded by the
proteasome. Our data demonstrate how alternative splicing of sequences distinct from the trinucleotide repeat can alter
properties of the encoded polyglutamine disease protein and thereby perhaps contribute to selective neurotoxicity.
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Introduction

The polyglutamine neurodegenerative diseases are caused by the

expansion of polyglutamine-encoding CAG trinucleotide repeats

within specific genes. Polyglutamine expansion promotes disease

protein misfolding, triggering a pathogenic cascade leading to

neurodegeneration, with age of disease onset inversely correlated to

expansion length. While all polyglutamine disease proteins are

widely expressed, the patterns of neurodegeneration and clinical

manifestations of disease vary significantly [1]. This variability

suggests that the protein context of each expansion contributes to

selective neuronal toxicity by influencing factors such as subcellular

localization, protein-protein interactions, endogenous function, and

aggregation. Cell-specific elements of protein context are particu-

larly attractive candidate determinants of selective toxicity. Because

the precise protein context of a disease protein will vary between

splice isoforms, alternative splicing may influence patterns of

polyglutamine protein-induced neurodegeneration.

Alternative splicing is an important mechanism by which

proteomic diversity is achieved in eukaryotes, with most

mammalian genes encoding more than one transcript variant

[2,3]. Patterns of alternative splicing can be cell-specific and

regulated through physiological or pathological processes. Many

transcripts that encode polyglutamine proteins are alternatively

spliced [4–15]. For example in SCA6, splice variants encoding the

polyglutamine domain of the Cav2.1 calcium channel are

specifically enriched in Purkinje cells of SCA6 patients but not

in controls [4]. This finding underscores the possibility that

alternative splicing contributes to polyglutamine disease patho-

genesis by regulating the expression of more ‘‘toxic’’ transcripts in

specific cell populations.

Here we explore alternative splicing in the polyglutamine

disorder Spinocerebellar ataxia type 3 (SCA3), the most common

dominantly inherited ataxia. The disease protein in SCA3, ataxin-

3, is a deubiquitinating enzyme [16–19]. The original ataxin-3

transcript isolated from human brain encodes an isoform that

contains a Josephin protease domain, two ubiquitin interacting

motifs (UIMs), and the polyglutamine domain, followed by a C-

terminal stretch of hydrophobic amino acids [20]. Goto and

colleagues subsequently isolated a variant that encodes a third

UIM at its C-terminus instead of this hydrophobic tail [11]. The

protein products of these alternative splice variants are termed the

2UIM and 3UIM ataxin-3 isoforms, respectively (Figure 1A). The

3UIM isoform is known to be widely expressed [21]. Additional N-

terminal splice variants have also been observed in human and

rodent tissues [8,9,13]. Although 2UIM and 3UIM ataxin-3 are

both considered ‘‘full length’’ ataxin-3 isoforms, and both have

been used in mechanistic studies of SCA3, the impact of this 39

splice variation on ataxin-3 function and disease pathogenesis has

not been examined.
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Figure 1. Ataxin-3 is alternatively spliced in ATXN3 YAC transgenic and human brain. (A) Schematic representation of the ATXN3 gene
showing exons that encode specific functional domains. Untranslated regions (U) are not drawn to scale. The splicing pattern of the originally identified
2UIM ataxin-3 transcript is shown below, while above is shown the alternative splicing that links exon 10 to exon 11, generating 3UIM ataxin-3. Asterisks
indicate exons that encode amino acids comprising the catalytic triad, polyQ denotes the polyglutamine domain, and the arrowhead indicates a
polymorphic Tyr/Stop-encoding residue within the hydrophobic domain (W) of the C-terminus of 2UIM ataxin-3. C-terminal amino acid sequences are
shown below the diagram, beginning with shared sequence in both isoforms extending from the polyQ domain, followed by the divergent sequences
for the 2UIM and 3UIM isoforms; residues omitted in some SNP variants of the 2UIM isoform are shown in grey. (B) Diagram showing 59 ataxin-3 splice
variants identified and confirmed by sequencing. Multiple variants are detectable in mature mRNA from adult murine brain (and fetal brain, data not
shown) by RT-PCR, using primers targeting the 59UTR/exon 1 junction and exon 9 (arrows). All identified splice variants that maintain the open reading
frame eliminate at least one catalytic triad residue, and thus are not likely to encode an active DUB. Darkly shaded areas are downstream of a frameshift-
induced stop codon. (C–D) Endogenous Atxn3 and transgenic ATXN3 ‘‘full length’’ splice variants were amplified by RT-PCR using species-specific
(human, hum; murine, ms) and sequence-specific (10-exon 2UIM-encoding, 10; 11-exon 3UIM-encoding, 11) primers. 10-exon and 11-exon variants are
both detectable in mature mRNA: (C) endogenous Atxn3 from all murine samples and unexpanded ATXN3 from MJD15.4(+/2) brain; and (D) expanded
ATXN3 from MJD84.2(+/2) brain, and unexpanded ATXN3 from pooled human brain tissue (hum). Perinatal day 1–3 (PQ84), adult (A), or fetal (F) sources
were used, as indicated. Note: Primers are not drawn to scale; see Materials and Methods for exact sequences and locations.
doi:10.1371/journal.pone.0013695.g001
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In the current study, we investigate ataxin-3 alternative splicing.

We characterize the range of splice variation in human and

transgenic murine brain, establishing that while both 39 splice

variants are expressed, 3UIM ataxin-3 is the predominant isoform.

We further show that although C-terminal splice isoform variation

does not influence ataxin-39s deubiquitinating activity, it signifi-

cantly modifies both its tendency to aggregate and its intracellular

stability. This observation highlights how splicing events that

preserve the polyglutamine domain but alter protein context could

influence selective neuronal toxicity.

Materials and Methods

Animal lines – Three murine models of SCA3 were used in this

study. MJD15.4 and MJD84.2 [22] are yeast artificial chromo-

some (YAC) transgenic lines that contain the full human ATXN3

gene with an unexpanded (Q15-encoding) or expanded (Q84-

encoding) repeat. The presence of all genomic elements of the

ATXN3 gene allows these mice to exhibit alternative splicing of

both transgenic (human) and endogenous (murine) ataxin-3. Both

lines possess the Tyr-encoding version of an A/C SNP within the

extended portion of exon 10, at the position that encodes the final

stop codon seen in the MJD1a isoform (GenBank accession

no. S75313.1), resulting in 2UIM-long isoforms that share an

extreme C-terminus (though not all SNPs) with isoform MJD2-1

[11]. Q71-B transgenic mice [23] express the human MJD1a

splice isoform as a cDNA driven by the prion promoter, and thus

only exhibit alternative splicing of endogenous ataxin-3. Atxn-3

knockout mice [19] and their littermate controls were used to

confirm that ataxin-3 isoforms detected in various tissues by 1H9

mAb were in fact derived from the Atxn3 gene. All lines were

maintained in accordance with the University of Michigan and

University of Iowa AUCUC guidelines, including accepted

measures to minimize pain or discomfort.

Constructs and Primers
3UIM (‘‘full length, FL’’) and catalytically inactive C14A GST-

ataxin-3 fusion proteins were derived from pGEX-6P-1, as

previously described [24]. The 3UIM-encoding pGEX6P1-

At3(Q22)FL expression vector has also been previously described

as pGEX6P1-ATX3-WT [16]. pGEX6P1-At3(Q22)2UIM was

derived from this construct by substituting the region downstream

of the (CAG) repeat in the 3UIM-encoding construct for the 2UIM-

encoding sequence in pEGFP-C1-ataxin-3(Q28) [25]. Briefly, Q28

ataxin-3 was amplified using MJD.Nter.F#722 (see below) and the

primer hMJD2UIM-R1N (59gcggccgctcttatgtcagataaagtg 39), which

creates a novel NotI restriction site, cloned into pCR2.1-TOPO

(Invitrogen, Cat # K4500-01), and restriction digested from an

endogenous PpuMI site downstream of the repeat to the novel NotI

site to generate the donor 39 sequence. The N-terminally Flag-

tagged ataxin-3 eukaryotic expression vector pFlag-A22-FL-M1G

contains the full 3UIM-encoding ataxin-3 sequence in a pFlag-

CMV-6a backbone. pFlag-A22-2UIM-M1G was generated by

inserting the 2UIM-encoding 39 region, as described above. The

pFlag-A22-UIM3(SA/DG)-M1G mutant was similarly generated

by exchanging regions of pFlag-A22-FL-M1G and pGEX6P1-

At3(Q22)UIM3(SA/DG) using endogenous ataxin-3 MfeI and

vector-derived NotI sites. All constructs were confirmed by

restriction digestion and DNA sequencing.

MJD.Nter.F#722 (59 ataaacatggagtccatcttc 39) was the common

forward primer used to amplify human and murine ataxin-3 cDNA.

This primer targets the junction of the 59UTR and exon1. The

following reverse primers were used to amplify transgenic 59 splice

variants from YAC cDNA: HuMJD.Cter1.R#724 (59 gtgtcatatctt-

gagatatg 39) and HuMJD.Cter2.R#723 (59 ttctgaagtaagatttgtac 39)

target exon 9 of human ataxin-3 to amplify 59 variants

independently of the documented 39 variation. The following

reverse primers were used to amplify 39 splice variants from cDNA

pools: 2HumExon10R#537 (59 ctgctccttaatccagg 39) was used to

amplify transgenic and endogenous human 10-exon specific

transcripts, 2HumExon11R#536 (59 cacacggtatacagttgaagg 39)

was used to amplify transgenic and endogenous human 11-exon

specific transcripts, MuMJDexon10R#598 (59 cgagtaaagcatcactg

39) was used to amplify endogenous murine 10-exon specific

transcripts, and MuMJDexon11R#597 (59 ctgactgcctctttggc 39) was

used to amplify endogenous murine 11-exon specific transcripts.

Cell culture and transfection
Cos7 and 293T cells were maintained at 37uC, 5% CO2 in

DMEM, 10% FBS, 1% penicillin/streptomycin. Cells were

transiently transfected with 0.2–2.0 mg DNA, using Lipofectamine

PLUS Reagents (Invitrogen Cat #18324012, #11514-015), as per

the manufacturer’s recommendations. Mock transfections were

performed without DNA, and vector control transfections were

performed with equivalent amounts of empty vector DNA.

Collection of animal tissues
Adult mice were either euthanized with Ketamine/Xylazine

(1 mg/0.1 mg per gram) prior to immediate dissection of brain

tissue, or deeply anesthetized with 0.2 mg Ket/20 mg Xyl per

gram prior to transcardial perfusion (2 ml per minute) with 5–

10 ml of ice cold sterile PBS followed by dissection of brain and

other tissues. Neonatal mice were euthanized by decapitation.

Harvested tissue was either homogenized immediately, snap

frozen, or prepared for archival storage using RNAlater (Ambion,

Cat #AM7020).

Preparation of cDNA from animal tissues and pooled
human RNAs

Total RNA was isolated from murine tissues using TRIzol

Reagent (Invitrogen, Cat #15596-026), and mature mRNA was

extracted from total RNA using the Poly(A)Purist kit (Ambion, Cat

#1916) as per the manufacturers’ standard protocols. Adult and

fetal human total RNA were purchased from Clontech: the adult

RNA (Cat # 636530, Lot 7120601A) was pooled from two

neurologically normal male Caucasians, aged 47–55, the fetal RNA

(Cat # 636526, Lot 7080344) was pooled from 21 third trimester

spontaneous abortions, gestational age 26–40 weeks. Total cDNA

was generated using random hexamer priming of mature mRNA

with Superscript III Reverse Transcriptase (Invitrogen, Cat #
18080-085), prior to transcript-specific analyses.

Sequence specific PCR-amplification of cDNA
All 59 and 39 splice variants were amplified from reverse-

transcribed cDNA using the following conditions: 94uC, 2 min;

(94uC, 30 s; 50uC, 30 s; 72uC, 1 min)635 cycles; 72uC, 1–10 min;

4uC, until further analysis. Fifty microliter reactions were carried

out with Taq polymerase (Invitrogen, Cat # 10342-053) or

Platinum Taq High Fidelity polymerase mixture (Invitrogen, Cat

# 11304-011), following the manufacturer’s protocols in the

recommended buffer systems, using 2 ml cDNA template.

Preparation of protein from murine tissues and cultured
cells

For splice isoform analysis in tissue homogenates, protein was

isolated in conjunction with total RNA, using the TRIzol Reagent,

as per the manufacturer’s recommendations. For ataxin-3
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aggregation analysis and 2D-PAGE, non-denaturing whole brain

lysates were prepared by homogenization of 100 mg tissue per

milliliter of ice cold RIPA buffer (50 mM Tris-HCl, pH 7.4,

150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1%

SDS) plus Complete Mini Protease Inhibitor Cocktail (PI) (Roche,

Cat# 11836153001) in a Potter-Elvehjem homogenizer, and then

centrifuged at 4000 rpm, 15 min, 4uC to separate supernatant and

pellet fractions. Pellet fractions were re-homogenized in an equal

volume of RIPA+PI. All RIPA lysates were stored at 280uC.

Lysates were diluted in Laemmli buffer (50 mM Tris-Cl, pH 6.8,

2% SDS, 10% glycerol, 0.1% bromophenol blue) plus 100 mM

DTT and sonicated 5–10 s for SDS-PAGE followed by Western

blot analysis utilizing Western Lightening ECL (Perkin-Elmer Life

Sciences, Cat # NEL102001EA) or dual color visualization of

IRDye conjugated secondary antibodies (LI-COR Biosciences,

Cat # 926-32210 & 926-32221) on an Odyssey IR imaging

system. Densitometry for aggregate analysis was carried out using

ImageJ software, after background subtraction with a rolling ball

radius of 50; soluble and insoluble ataxin-3 levels were normalized

to endogenous murine ataxin-3 signal to control for equal protein

loading.

For transient transfection experiments, adherent cells were

washed once with ice cold PBS, then directly lysed in Laemmli

buffer plus 100 mM DTT (440 ml/well for 6-well plates; 200 ml/

well for 12-well plates), sonicated for 5–10 s, heated for 3 minutes

at 95uC, and centrifuged for 3 minutes at 14,000 rpm prior to

SDS-PAGE and Western blot analysis, as above.

2D-Western Blot Analysis
Non-denaturing whole brain RIPA lysates (50 mg total protein)

or purified GST-ataxin-3 proteins (5 mg for in gel Coomassie

detection, 50 ng for Western analysis) were diluted into FOSB1

(7 M urea, 2 M thiourea, 1.25% CHAPS 32 mM DTT, 2.5 mM

TCEP, 0.5% ASB-14, 0.5% Triton X-100, 0.5% Zwittergent 3–

10, 0.3% carrier ampholytes, 0.001% Bromophenol Blue) using

100x BioLytes 3.9–5.1 as the carrier ampholytes (BioRad, Cat #
1632098) for optimal narrow range resolution. Diluted samples

were used to passively rehydrate 11 cm narrow range pH 3.9–5.1

immobilized pH gradient (IPG) strips (BioRad, Cat # 163-2024).

Isoelectric focusing was carried out in a PROTEAN IEF cell

under the following conditions: Step 1 (0–250 V, 15 min, rapid

ramp), Step2 (250–8000 V, 1 hr, slow ramp), Step 3 (8000 V

constant, 30,000 V-hr, rapid ramp); all steps were set to a default

temperature of 20uC, and wicks were changed periodically to

remove unwanted salts and enhance actual running time. Focused

IPG strips were equilibrated, run in the second dimension, and

transferred to PVDF membrane using the Criterion Blotter

system, as per the manufacturer’s recommendations.

In vitro deubiquitination assays
Recombinant 2UIM, 3UIM, and C14A ataxin-3(Q22) were

expressed in BL21-A1 E. coli (Invitrogen Cat #C607003) as GST

fusion proteins and purified as follows. Overnight cultures were

subcultured at 1 ml per 100 ml LB +50 mg/ml Ampicillin until an

OD600 between 0.4–0.6. Recombinant protein expression was

then induced with 400 mM isopropyl-1-thio-b-D-galactopyrano-

side for 3 hr at 30uC. Bacteria were lysed by sonication in 0.5x

NPG buffer (150 mM NaCl, 25 mM NaH2PO4, 5% glycerol,

pH 8.0) plus protease inhibitors (1x Sigma Protease Inhibitor

Cocktail, 1x Roche Complete mini Protease Inhibitor Cocktail,

2.25 mM PMSF, 0.5 mM Peflabloc SC). Lysates were pre-cleared

for 15 minutes in 0.5xNPG-equilibrated PABA-agarose, and

recombinant proteins were then bound to equilibrated GST-

Sepharose, (GE Healthcare, Cat #27-4570-03) for 30 minutes, on

ice with periodic mixing, washed 5x with PBS plus Roche

Complete Mini Protease Inhibitor Cocktail and 1x with PBS only,

and then eluted with GSH elution buffer (3 mg/ml reduced

glutathione, 10% glycerol, 1 mM DTT). Purified GST-FBXO2 in

GSH elution buffer was kindly provided by Kevin Glenn

(University of Iowa). Purified protein was quantified against BSA

standards by in-gel Coomassie Brilliant Blue total protein stain. In

vitro deubiquitination reactions were carried out at 37uC with

1 mM GST-ataxin-3 (3UIM, 2UIM, or C14A) and 250 nM

ubiquitin chains in 50 mM HEPES pH 7.5, 500 mM EDTA,

100 ng/ml ovalbumin, and 1 mM DTT. Reactions were stopped

by the addition of 1x Laemmli buffer plus 100 mM DTT, and

stored on ice until SDS-PAGE analysis. Twelve microliters of each

reaction was fractionated on a 5–20% gradient gel and a 15%

acrylamide gel, and analyzed by silver stain (Silver Stain Plus, Cat

# 161-0449, BioRad) and Western blot analysis using P4D1 anti-

ubiquitin mAb, respectively.

Ubiquitin-AMC assays
Ubiquitin-7-amino-4-methylcoumarin (Ub-AMC, Boston Bio-

chem Cat # U-550), GST-ATXN3(Q22)3UIM, GST-ATXN3

(Q22)2UIM, and GST-FBXO2 were diluted to 2x stocks in

50 mM HEPES, 0.5 mM EDTA, 0.1 mg/ml ovalbumin, 1 mM

DTT, pH 7.5 and pre-warmed to 37uC for 15 minutes. At time

zero, 2x stocks of pre-warmed enzyme or buffer-only control were

combined with Ub-AMC to yield 500 nM GST-tagged enzyme

and 500 nM Ub-AMC in a final reaction volume of 100 ml. Ub-

AMC cleavage at 37uC was detected using a Wallac 1420

multilabel fluorimeter using an excitation of 355 nm and emission

at 460 nm, a lamp energy of 5160, and a counting time of 0.1 s

using the Normal Aperture, Top Counter setting. Differences in

initial reaction velocity were assessed by two-tailed heteroscedastic

Student’s t-tests.

Immunostaining of cultured cells
24 hours before harvest, cells were re-plated on rat tail collagen-

coated coverslips to ensure adequate spacing of transfected cells.

Cells were rinsed with ice cold PBS, fixed in 4% paraformalde-

hyde/PBS, and blocked in 5% normal goat serum in 0.05% TX-

100/PBS for at least 30 minutes. Primary antibodies (1H9 mAb

1:500 and Rb anti-Flag pAb (Sigma) 1:150 in 0.05% TX-100/

PBS) were applied for one hour at room temperature. Cells were

washed 3x in abundant 0.05% TX-100/PBS, before incubation

for 1 hour in secondary antibodies (1:250 goat anti-mouse

AlexaFluor 568 and goat anti-rabbit AlexaFluor 488 (Molecular

Probes)). Cells were washed 5x in abundant 0.05% TX-100/PBS,

5 mg/ml DAPI (Sigma cat. D9564) counterstained for 10s, rinsed

briefly, and prepared for mounting with the SlowFade Anti-Fade

kit (Molecular Probes, Cat #S2828) using component A according

to the manufacturer’s recommendations. Coverslips were sealed to

glass slides with Permount (Fisher Scientific, Cat # SP15). All

incubations and washes were carried out at room temperature,

protected from light, unless otherwise noted.

Fixed and stained cells were gated into moderate and high levels

of overexpression based on fluorescence intensity at defined

exposure times using the Zeiss Axiocam MRGrab software.

Moderate overexpression was defined as visibility of a-Flag

staining of the cytoplasm and nucleus in the live image capture

window with exposure times from 500–1000 ms; representative

images for these cells were captured with the following exposures

(DAPI 200 ms, 1H9 15,000 ms, a-Flag pAb 1000 ms), set to linear

display (gamma = 1) with brightness and contrast levels adjusted

to span the peaks of the pixel intensity histogram. High

overexpression was defined as visibility of a-Flag staining of the

Splice Isoforms of Ataxin-3
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cytoplasm and nucleus in the live image capture window at

#500 ms; representative images for these cells were captured with

the following exposure times (DAPI 200 ms, 1H9 4500 ms, a-Flag

pAb 350 ms), and adjusted as above. All images were pseudoco-

lored and overlaid in Adobe Photoshop without further adjust-

ment. The number of puncta per cell that were brightly positive

for both a-Flag and 1H9 immunostaining was counted for the first

25 cells identified in each replicate that met fluorescence gating

criteria (or the maximum number of cells to meet criteria, if less

than 25), and plotted in histogram form. Statistical differences

between aggregation phenotypes in 2UIM vs. 3UIM ataxin-3,

2UIM vs. UIM3-mutant ataxin-3, and 3UIM vs. UIM3-mutant

ataxin-3 were assessed using the Chi-squared test of independence,

using frequency data binned into populations containing 0, 1–5,

6–10, or .10 puncta per cell, giving 3 degrees of freedom (df) for

each comparison.

Analysis of protein stability with cycloheximide
treatment

Cos7 cells were transiently transfected with 0.4 mg unexpanded

Flag-ataxin-3(Q22) constructs one day before treatment with

cycloheximide. At time zero cells were either harvested immedi-

ately or grown at 37uC, 5% CO2 in DMEM, 10% FBS, 1% P/S

plus or minus 10 mM cycloheximide, 10 mM epoxomycin, and/or

10 mM 3-methyladenine for 10 or 24 hours before harvest in 1X

Laemmli buffer plus 100 mM DTT. Lysates were resolved by

SDS-PAGE and analyzed by Western blot analysis using rabbit a-

Flag antibody followed by Coomassie Brilliant Blue R250 total

protein staining of the PVDF membrane. Flag-tagged and total

protein were analyzed densitometrically using ImageJ software,

after rolling ball background subtraction with a rolling ball radius

of 50. Differences in normalized abundance between constructs at

each time point were assessed using a two-tailed Student’s t-test,

assuming unequal variance. Differences in abundance of individ-

ual constructs under 24 hr degradation-rescue conditions com-

pared to 0 hr and 24 hr + cycloheximide conditions were assessed

using paired one-tailed Student’s t-tests (assuming a rescue value at

24 hours less than or equal to that at time zero, and a value

greater than or equal to that at 24 hr without pharmacological

rescue).

Results

Ataxin-3 is alternatively spliced in ATXN3 YAC transgenic
mouse and human brain

Because most observations of ataxin-3 alternative splicing have

been made in peripherally-derived mRNA, we wanted to confirm

the presence of alternative splice variants in brain. In addition to

analyzing mRNA from pooled human brain tissue, we isolated and

characterized mature mRNA from the brains of ataxin-3 YAC

transgenic mice, which contain the full human ATXN3 gene and

thus are an ideal model in which to examine alternative splicing of

both transgenic human and endogenous murine ataxin-3 tran-

scripts. To characterize 59 splicing of ATXN3 mRNA independent

of 39 variation, we PCR amplified brain-derived, Q15-encoding

YAC cDNA using primers targeting the 59UTR/exon1 junction

and exon 9 of the human ATXN3 transcript. Multiple minor splice

variants from perinatal (data not shown) and adult murine brain

were detected, cloned, and sequenced (Figure 1B). Two identified

59 variants contain frameshift-induced stop codons upstream of

multiple exon junction complexes, and thus are strong candidates

for nonsense mediated decay (NMD). The remaining identified

minor variants excise at least one exon encoding a Josephin

domain catalytic residue (indicated by asterisks in Figure 1B), and

thus are not predicted to encode functional deubiquitinating

enzymes (DUBs).

We also evaluated the presence of 39 splice variation among

ATXN3 (human) and Atxn3 (murine) transcripts, using species-

specific and sequence-specific reverse primers that selectively

target either the 10-exon (2UIM) or the 11-exon (3UIM)

variant. Both endogenous 39 Atxn3 variants were detected in

nontransgenic and MJD15.4 hemizygous transgenic mice

(Figure 1C). This mirrored the expression pattern of human

ATXN3 variants in three sources: nonexpanded MJD15.4

transgenic mice (Figure 1C), CAG repeat-expanded MJD84.2

transgenic mice, and cDNA from pooled adult or fetal human

brain tissue (Figure 1D). Although both 39 variants were

detected in whole brain samples, amplification of 11-exon

transcripts consistently produced a more robust signal than did

10-exon transcripts, independent of CAG repeat length or

species of origin. Because these assays are not quantitative, this

is not a strict inference of relative copy number. It does,

however, illustrate that 11-exon transcripts are abundant and

readily amplifiable.

3UIM ataxin-3 is the predominant protein isoform in
murine and human brain

Neuronal toxicity in polyglutamine diseases is likely mediated

primarily by the disease protein. Therefore, it was important to

validate our observations of ATXN3 splice variation at the protein

level. To assess the presence and relative abundance of 2UIM and

3UIM ataxin-3 isoforms, we carried out standard and 2D Western

blot analyses. The monoclonal antibody 1H9 recognizes an

epitope encoded by both the 2UIM and 3UIM splice variants of

human and murine ataxin-3, whereas ataxin-3C polyclonal

antibody specifically recognizes human 3UIM ataxin-3 [21], as

shown schematically in Figure 2A. First, to assess the range of

tissue-specific isoform variation, we compared murine ataxin-3

expression in various tissues including forebrain, midbrain plus

hindbrain, heart, kidney, liver, skeletal muscle, and spleen in

wildtype (Q6) versus Atxn3 knockout animals (Figure 2B). Endog-

enous ataxin-3 protein bands vary in apparent molecular weight

across various tissues, consistent with the expression of tissue-

specific splice variants, posttranslational proteolysis, or both. The

kidney and spleen in particular contain prominent lower

molecular weight isoforms distinct from the predicted 40.5 kDa

full length 3UIM ataxin-3. In contrast, a single predominant

isoform consistent with full length ataxin-3 is present in brain

tissue. The predominant ataxin-3 bands recognized by 1H9 in

standard Western blot analysis of MJD15.4 (Figure 2C), MJD84.2

(Figure 2D), and human (Figure 2E) brain lysates are also

recognized by the 3UIM-specific antibody, ataxin-3C pAb. This

result confirms that the 3UIM isoform of ataxin-3 is present in

brain tissue from all of these sources, but is not conclusive evidence

of relative abundance without further analysis, as included below.

Multiple synonymous, non-synonymous, and non-coding single

nucleotide polymorphisms have been documented in the ATXN3

gene [11,27]. Both MJD15.4 and MJD84.2 mouse lines were

constructed with YACs possessing a non-synonymous tyrosine-

encoding SNP rather than the stop codon seen in the MJD1a

ataxin-3 isoform. This tyrosine-encoding SNP produces a slightly

longer 2UIM isoform from 10-exon transcripts (termed 2UIM-

long; data not shown). Consequently, the difference in predicted

molecular weight (MW) between 2UIM-long and 3UIM ataxin-3

isoforms is only 0.5 kDa in the unexpanded MJD15.4 (41.4 kDa

vs. 41.9 kDa) and expanded MJD84.2 (50.2 kDa vs. 50.7 kDa)

transgenic lines. To rule out the possibility that 2UIM ataxin-3 is

actually present yet obscured by its close proximity to 3UIM

Splice Isoforms of Ataxin-3
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ataxin-3, we took advantage of the difference in isoelectric point

(pI) between these isoforms to assess their relative abundance.

Whole brain lysates were resolved by 2D-PAGE followed by

Western blot analysis with ataxin-3 specific antibodies (Figure 2F).

A strong signal was detected for unmodified 3UIM ATXN3 with

both ataxin-3C and 1H9 antibodies. Additional spots consistent

with multiple phosphorylated forms of 3UIM ataxin-3 were also

observed (slight increase in apparent MW with an acidic shift).

1H9 mAb exclusively detected spots consistent with endogenous

murine 3UIM ataxin-3 (pI 4.69, MW of 40.5 kDa), mono-

ubiquitinated 3UIM ataxin-3 (pI 4.81, MW ,8 kDa greater than

the major transprotein and detectable only in the abundantly

expressing MJD15.4 brain), and putative smaller ataxin-3 splice

isoforms or degradation products (apparent MW of ,37 kDa).

Figure 2. 3UIM ataxin-3 is the predominant protein isoform in murine and human brain tissue. (A) Diagram of 2UIM (upper) and 3UIM
(lower) ataxin-3 variants showing recognition sites for 1H9 mAb, which recognizes both isoforms, and a-ataxin-3C, which recognizes only 3UIM
ataxin-3. (B) Western blot of wildtype (Q6) or Atxn3 knockout mouse tissue lysates, probed for endogenous murine ataxin-3 (1H9) and GAPDH. Tissues
include forebrain (FB), midbrain and hindbrain (M+H), heart (Ht), kidney (Kid), liver (Liv), skeletal muscle (SkM), and spleen (Spl). Although various
putative tissue-specific splice isoforms exist, there is only one predominant isoform in brain tissue. (C–D) The major isoform (arrow) of human ataxin-3
is recognized by the 3UIM-specific antibody (3C) and 1H9 in brain tissue from hemizygous transgenic (+/2) MJD15.4 (C, Q15) and MJD84.2 mice (D,
Q84), whereas endogenous Q6 ataxin-3 (arrowhead) is recognized only by 1H9 in hemizygous transgenic mice and wildtype (2/2) controls. Perinatal
day 1–3 (P), adult (A), and non-specific 3C signal (*), as shown. (E) Both 1H9 and 3C recognize the predominant non-expanded ataxin-3 isoforms
(brackets) in healthy controls and SCA3 patients (S01–017 and LaLa), as well as the predominant expanded isoform in SCA3 patients (bold arrows).
Lower molecular weight bands (bars) are preferentially recognized by 1H9; cortex (ctx), cerebellum (cb), putamen (p), caudate (cd) sources, as
indicated. (F,G) 2D-Western blot analysis was used to distinguish 2UIM from 3UIM ataxin-3 protein. IPG range and predicted isoelectric points (pI) of
each isoform are shown. (F) In brain lysates of MJD15.4 (Q15)or MJD84.2 (Q84) YAC transgenic mice, 1H9 recognizes multiple species including
endogenous murine (arrowhead) and 3UIM ataxin-3 transprotein (arrow), but does not detect any 2UIM ataxin-3 (which would be 1H9-positive, 3C-
negative, 0.5 kDa larger than 3UIM ataxin-3, with a basic shift in pI, as indicated by the open arrow). The prominent band detected by 3C (*) is
nonspecific. (G) 2D-Western of 50 ng purified recombinant GST-tagged ataxin-3 isoforms shows that unexpanded Q22 2UIM GST-ataxin-3 is detected
as readily as 3UIM GST-ataxin-3.
doi:10.1371/journal.pone.0013695.g002
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Despite consistently detecting the 2UIM-encoding mRNA, we

could not detect 2UIM ataxin-3 protein (pI 4.81, MW 41.9) in

whole brain lysates. We were similarly unable to detect 2UIM

ataxin-3 in cerebellar lysates from MJD84.2 mice (data not

shown), arguing against a dramatic enrichment of this isoform in

this selectively vulnerable brain region in SCA3. Recombinant

2UIM and 3UIM GST-ATXN3(Q22) were similarly resolved and

detected by 2-D Western blot analysis (Figure 2G) or in-gel

Coomassie staining (data not shown), indicating that the absence

of detectable 2UIM ataxin-3 in brain lysates is not an artifact (due,

for example, to preferential insolubility, aggregation, or precipi-

tation during passive rehydration or IPG strip equilibration, or to

a lack of recognition by the 1H9 mAb). We conclude that 3UIM

ataxin-3 protein is the predominant isoform in the central nervous

system. In contrast, 2UIM ataxin-3 is expressed at extremely low

levels or in a highly restricted subpopulation of cells in the CNS, or

is posttranslationally modified so as to be undetectable at the

anticipated pI/MW.

2UIM and 3UIM ataxin-3 display similar in vitro DUB
activity

In polyglutamine diseases, selective neuronal toxicity may result

both from an expanded polyglutamine-dependent gain of function

and from a partial loss of activity of the endogenous protein

[27,28]. Recent studies have shown that ataxin-3 is a member of

the Josephin family of DUBs. In Drosophila, ataxin-3 suppresses the

toxicity of expanded polyglutamine proteins in a manner that

requires the catalytic activity of the Josephin domain [29]. In vitro,

3UIM ataxin-3 binds K48-linked, K63-linked, or mixed linkage

chains and preferentially cleaves longer ubiquitin chains and K63

linkages within mixed linkage chains. These activities of ataxin-3

are UIM-dependent, as high affinity ubiquitin binding and

cleavage specificity are lost when all three UIMs are mutated

[16]. Intriguingly, while UIMs 1 and 2 are required for high

affinity binding to ubiquitin chains, UIM3 is dispensable for this

property and for the ability of ataxin-3 to cleave ubiquitin-

aldehyde [19]. While both 2UIM and 3UIM ataxin-3 can bind

polyubiquitinated proteins [30], the capacity of the third UIM to

modulate ataxin-3 DUB activity has not been adequately assessed.

To test whether replacing UIM3 with the hydrophobic tail of

the 2UIM isoform alters the specificity of ataxin-3 DUB activity,

we incubated 1 mM purified recombinant GST- ATXN3

(Q22)3UIM, GST-ATXN3(Q22)2UIM, or catalytically inactive

GST-ATXN3(Q22)C14A with 250 nM defined ubiquitin chains

at 37uC in vitro. DUB activity towards K48-hexaubiquitin, K63-

tetraubiquitin, and K48-K63-K48 mixed linkage tetraubiquitin

was compared by Western blot (Figure 3A–C); silver stain

confirmed that equivalent levels of GST-ataxin-3 isoforms were

used (data not shown). GST-ATXN3(Q22)2UIM showed the

same cleavage activity as GST-ATXN3(Q22)3UIM: Limited

cleavage of K48-linked Ub chains, more robust cleavage of

K63-linked Ub residues and mixed linkage chains, and vigorous

cleavage of the higher molecular weight Ub chains that likely

represent dimers of Ub4 or Ub6 [16]. These data suggest that C-

terminal splice variation does not alter the basic DUB activities of

ataxin-3 and are consistent with previous reports showing the

greater importance of UIMs 1 and 2 for ubiquitin-related activities

of this protein, [19,30].

To provide a more quantitative analysis of 2UIM and 3UIM

ataxin-3 enzymatic function, we utilized the fluorogenic substrate

Ub-AMC, which emits fluorescence at 460 nm upon cleavage of a

monoubiquitin from the 7-amino-4-methylcoumarin moiety. To

assess the relative ability of 2UIM and 3UIM ataxin-3 to cleave

Ub-AMC, we incubated 500 nM of GST-ATXN3(Q22)3UIM or

GST-ATXN3(Q22)2UIM with 500 nM of Ub-AMC. GST-

FBXO2 (a recombinant GST-fusion protein that is not a DUB)

and a buffer only control lacking any GST-fusion protein were

used as negative controls. 2UIM and 3UIM ataxin-3 each cleaved

Ub-AMC (Figure 3D). Moreover, there was no significant

difference in initial reaction velocity between 2UIM and 3UIM

DUB reactions (p.0.4 by a 2 tailed heteroscedastic Student’s t-

test). Ub-AMC was not cleaved by buffer alone or GST-FBXO2

(Figure 3E).

2UIM ataxin-3 is more prone to aggregate than 3UIM
ataxin-3

While visible aggregates and inclusions may not directly cause

polyglutamine-induced cytotoxicity, these pathophysiological hall-

marks remain useful in identifying cells that are subject to a high

burden of misfolded proteins. More subtle facets of intracellular

polyglutamine protein behavior, such as alterations in subcellular

localization [31], protein-protein interactions [27], and the

formation of microaggregates [32], have been implicated in

SCA3 toxicity. Thus, immunocytological analyses of expanded

polyglutamine-expressing cells remain useful adjuncts to biochem-

ical analyses of protein misfolding and cytotoxicity. To compare

the cellular behavior of 2UIM and 3UIM ataxin-3 isoforms, we

expressed Flag-tagged ataxin-3(Q22) variants with 2UIMs,

3UIMs, or 3UIMs in which the third UIM contained two

mutations (A -. G, S -. D) that abolish its interactions with

ubiquitin [17,33]. This UIM3 mutant allows us to distinguish

potential UIM3-specific effects from potential UIM-independent

effects of substituting a hydrophobic domain (the C-terminus of

2UIM variant) for the largely hydrophilic sequence in UIM3. We

transiently expressed these forms of ataxin-3 in Cos7 cells

(Figure 4A and 4B) or HEK293T cells (data not shown) for

48 hours. Expression levels were confirmed by Western blot

analysis with Flag and ataxin-3 antibodies (data not shown), and

ataxin-3 subcellular localization was determined by immunofluo-

rescence. Cells expressing 2UIM ataxin-3 displayed moderately

robust aggregation that was not observed in cells expressing 3UIM

ataxin-3 or UIM3-mutant ataxin-3. To quantify this, cells were

gated by fluorescence intensity into populations of moderate or

high overexpressors, and the number of immunopositive puncta

per cell was counted for each ataxin-3 isoform (Figure 4b). 2UIM

ataxin-3 expressing cells exhibited significantly higher aggregate

formation than did 3UIM ataxin-3 or UIM3-mutant ataxin-3

expressing cells. This difference was present in moderately

overexpressing cells (x2 52.6 and 22.5, respectively, df = 3,

p,0.0001) and was even more pronounced in highly overex-

pressing cells (x2 75.4 and 54.3, respectively, df = 3, p,1610211).

There was no difference in aggregation behavior between 3UIM

and UIM3-mutant ataxin-3, whether in moderately or highly

overexpressing cells (x2 5.56, df = 3, p = 0.12 for moderate; x2

1.92, df = 3, p = 0.59 for high overexpressors). Puncta in 2UIM

ataxin-3 expressing cells generally exhibited a nuclear or

nucleocytoplasmic distribution, whereas 3UIM and UIM3-

mutant puncta were often exclusively cytoplasmic. In addition,

puncta formed by 2UIM ataxin-3 were qualitatively larger and

more irregular. Thus, in transfected cells 2UIM ataxin-3 confers

an aggregation phenotype, even with a non-expanded polyglu-

tamine domain, which does not occur with the 3UIM ataxin-3

isoform. This could be physiologically significant in cells

endogenously expressing small quantities of 2UIM ataxin-3

protein, as aggregate seeding is a kinetic barrier to misfolded

protein fibrillization, and nucleoplasmic ataxin-3 misfolding is

critical for disease pathogenesis.

Splice Isoforms of Ataxin-3
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To address the possibility that this increased aggregation of

2UIM ataxin-3 reflects transient overexpression in nonneuronal

cells, we compared levels of SDS-insoluble ataxin-3 aggregates in

whole brain lysates from aged MJD84.2 mice, which express

primarily expanded Q84 3UIM ataxin-3 transprotein, and Q71B

mice, which only express expanded Q71 2UIM ataxin-3

transprotein (Figure 4C and 4D). Insoluble ataxin-3 aggregates

are retained at the base of wells and in the stacking gel, whereas

soluble (non-aggregated) human ataxin-3 transprotein and endog-

enous murine ataxin-3 electrophorese within the resolving gel.

Given its longer repeat size, ataxin-3(Q84) in MJD84.2 mice might

be expected to aggregate at least as readily as ataxin-3(Q71)

expressed in Q71 B mice, provided that 2UIM and 3UIM ataxin-3

behave similarly in vivo. Yet at 18 months of age, 3UIM-

predominant MJD84.2 YAC mice show a significantly lower ratio

of aggregated (SDS-insoluble) to soluble ataxin-3 than do age-

matched 2UIM-only Q71B mice (p,0.0005 by a 1 tailed

heteroscedastic Student’s t-test). In summary, consistent with the

enhanced aggregation observed for 2UIM ataxin-3 in transfected

cells, we observe more ataxin-3 aggregation in brain tissue from

Q71B mice, which express only 2UIM ataxin-3, than in brain

tissue from MJD84.2 mice, which express primarily 3UIM ataxin-

3, despite the smaller polyglutamine expansion in Q71B mice.

2UIM ataxin-3 is a less stable protein than 3UIM ataxin-3
and is subject to rapid proteasomal degradation

In cells, transient transfections of equivalent amounts of 2UIM and

3UIM ataxin-3 expression vectors consistently yielded lower amounts

of 2UIM protein. This observation together with the enhanced

aggregation propensity of 2UIM ataxin-3 prompted us to explore the

relative stabilities of 2UIM and 3UIM ataxin-3 (Figure 5A and B).

Cells were transiently transfected with Flag-tagged ATXN3(Q22)

splice isoforms 1 day before treatment with one or more agents:

10 mM cycloheximide (CHX) to inhibit new protein synthesis, plus or

minus 10 mM epoxomycin (Epox) to inhibit proteasomal degrada-

tion, or 10 mM 3-methyladenine (3-MA) to inhibit macroautophagy.

At 0, 10, and 24 hours after cycloheximide addition, cells were

harvested for Western blot analysis. Densitometry was used to

quantify differences in the rate of protein degradation, and at each

Figure 3. 2UIM and 3UIM ataxin-3 display similar DUB activity against defined ubiquitin chains in vitro. (A–C) Recombinant GST-
ATXN3(Q22) (3UIM or 2UIM) can cleave K48-linked hexaubiquitin (A), K63-linked tetraubiquitin (B), and mixed linkage K48-K63-K48 tetraubiquitin (C)
chains. Results with catalytically inactive GST-ataxin-3 (C14A mutant) are also shown. (D–E) Recombinant 2UIM and 3UIM GST-ATXN3(Q22) cleave Ub-
AMC at a similar rate. (D) Ub-AMC reaction curves. Both 3UIM and 2UIM ataxin-3 area able to cleave Ub-AMC, while reactions with either an unrelated
control protein (the non-DUB F-box protein FBXO2) or buffer only show no cleavage. Error bars show standard deviations. (E) There is no significant
difference between the initial reaction velocity of 2UIM and 3UIM ataxin-3(Q22) (p.0.4 by a 2 tailed heteroscedastic Student’s t-test).
doi:10.1371/journal.pone.0013695.g003
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time point the Flag ataxin-3 signal, normalized to total protein, was

expressed as a percentage of the normalized Flag ataxin-3 signal at

time zero. In the presence of cycloheximide, 2UIM ataxin-3 levels

decreased much more rapidly than did 3UIM ataxin-3, regardless of

whether 3UIM ataxin-3 had a functionally intact UIM3 (*p,0.02 by

a two-tailed heteroscedastic Student’s t-test).

Epoxomycin and 3-MA were used to evaluate whether the

proteasome, macroautophagy, or both, contributed to the

degradation of unexpanded Q22 2UIM versus 3UIM ataxin-3

isoforms (Figure 5C). Degradation of 2UIM ataxin-3 was nearly

completely prevented by proteasomal inhibition (n.s. vs.

t = 0+CHX; p,0.01 vs. t = 24+CHX), and only slightly by

Figure 4. 2UIM ataxin-3 is more prone to aggregate than 3UIM ataxin-3. (A) Representative immunofluorescence of Cos7 cells transiently
expressing Flag-tagged ataxin-3(Q22) splice isoforms or the UIM3(SA/DG) mutant. Cells were gated by fluorescence intensity into populations of
moderate and high expressors. (B) Quantification of puncta per cell in (A). Error bars represent the standard deviation within each bin. Frequency
distributions differ significantly between ATXN3(Q22)2UIM and ATXN3(Q22)3UIM and between ATXN3(Q22)2UIM and ATXN3(Q22)UIM3(SA/DG)
mutant ataxin-3 (*p,0.0001, ** p,1610-11), but not between ATXN3(Q22)3UIM and ATXN3(Q22)UIM3(SA/DG) mutant ataxin-3 by a x2 test for
independence, df = 3. (C) Supernatant (sup) and pellet (pel) fractions of non-denaturing RIPA brain lysates from aged MJD84.2 (ATXN3(Q84)3UIM)
and Q71B (ATXN3(Q71)2UIM) hemizygous transgenic mice were analyzed by Western blot with 1H9 anti-ataxin-3 antibody. Insoluble
microaggregates are detected at the base of lane wells, whereas soluble transprotein and endogenous ataxin-3 are visualized within the resolving
gel. (D) Quantification of the ratio of insoluble to soluble ataxin-3 transprotein seen in (C). 3UIM-predominant MJD84.2 mice show a significantly
lower ratio of insoluble:soluble transprotein than 2UIM-only Q71B mice (*p,0.0005 by a 1 tailed heteroscedastic Student’s t-test).
doi:10.1371/journal.pone.0013695.g004
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inhibition of macroautophagy (p,0.01 vs. t = 0+CHX; p,0.05 vs.

t = 24+CHX). In contrast, proteasomal inhibition did not

significantly prevent degradation of 3UIM or UIM3-mutant

ataxin-3 (p,0.05 vs. t = 0+CHX; n.s. vs. t = 24+CHX), whereas

inhibition of macroautophagy had an effect. Degradation of

UIM3-mutant ataxin-3 was significantly prevented by 3-MA (n.s.

vs. t = 0+CHX; p,0.05 vs. t = 24+CHX), and the prevention of

3UIM ataxin-3 degradation approached statistical significance

(t = 24+CHX vs. t = 24+CHX +3-MA, p = 0.057). Though we did

not anticipate seeing reduced 3UIM and UIM3-mutant ataxin-3

levels in the presence of epoxomycin, this observation is consistent

with reports that epoxomycin treatment also induces autophagy

[34]. In summary, these results are consistent with the transient

expression and aggregation data: while 3UIM and UIM3-mutant

ataxin-3 are relatively stable proteins with a low turnover rate,

primarily via autophagy, 2UIM ataxin-3 is a highly unstable

protein that is prone to misfolding and rapid degradation,

primarily by the proteasome.

Discussion

While several minor ataxin-3 splice variants are detectable at

the transcript level, we have established that full length 3UIM

ataxin-3 is the major isoform expressed in brain regardless of age

or polyglutamine expansion. In contrast, the originally cloned and

often studied 2UIM isoform, though enzymatically similar,

appears to be a highly unstable, aggregation-prone protein that

is not detectable in brain tissue. Bottomley and colleagues have

proposed a multi-domain model of misfolding and aggregation for

ataxin-3 and other polyglutamine disease proteins [35,36] in

which early oligomer formation depends on polyglutamine-

flanking sequences whereas insoluble fibrillar aggregation is

polyglutamine-dependent. Building on this model, we propose

that the hydrophobic C-terminus of 2UIM ataxin-3 modifies this

process (Figure 6).

According to this model, 2UIM and 3UIM ataxin-3 exist in at

least two monomeric states: a more stable native conformation,

and an aggregation-prone conformation. For 2UIM ataxin-3, we

propose that the hydrophobic C-terminus remains buried and

protected from the aqueous environment in native monomers, but

is exposed in the aggregation-prone conformation. To shield its

hydrophobic tail from the aqueous environment, 2UIM ataxin-3

can revert to the native conformation or oligomerize through both

the self-association propensity of the Josephin domain (like 3UIM

ataxin-3) and intermolecular hydrophobic interactions mediated

by the 2UIM-specific domain. Within 2UIM oligomers, interac-

tions between the hydrophobic C-termini would effectively

increase the local polyglutamine concentration, favoring formation

of detergent-insoluble aggregates. Unstable monomers and

oligomers may be degraded by the proteasome, whereas insoluble

fibrils may be poorly handled by protein quality control systems

and thus accumulate as biochemically and microscopically

detectable aggregates. In cells and brain tissue, this process would

lead to a low abundance of soluble 2UIM ataxin-3 and increased

aggregation when the protein is overexpressed, as in the Q71B

transgenic mouse. In more physiological 3UIM-predominant

disease models, small increases in 2UIM ataxin-3 protein

expression in restricted cell populations could serve as a

fibrillization nidus, facilitating recruitment of expanded 3UIM

ataxin-3 into toxic intranuclear microaggregates.

We confirmed the presence of multiple rare splice variants in

murine brain and putative splice isoforms in other tissues.

Recently, a study of 39 ATXN3 alternative splicing in peripheral

blood leukocytes (PBL) from SCA3 patients and normal controls

Figure 5. 2UIM ataxin-3 is a less stable protein than 3UIM
ataxin-3 and is subject to rapid proteasomal degradation. (A)
Representative cycloheximide ‘‘pulse-chase’’ in Cos7 cells transiently
transfected with Flag-tagged ataxin-3(Q22) constructs; ataxin-3 levels
are visualized by anti-Flag Western blotting and total protein levels are
visualized by Coomassie Brilliant Blue staining of the PVDF membrane.
(B) Quantification of ataxin-3 levels during a 24 hour incubation with
cycloheximide: ATXN3(Q22)2UIM is degraded significantly faster than
ATXN3(Q22)3UIM or ATXN3(Q22)UIM3(SA/DG) mutant ataxin-3 at 10
and 24 hours (*p,0.02 by a two-tailed heteroscedastic Student’s t-test).
(C) Quantification of ataxin-3 levels during a 24 hour cycloheximide
incubation in the absence or presence of the proteasomal inhibitor
epoxomycin or the macroautophagy inhibitor 3-methyladenine; loss of
protein at 24 hours is rescued by proteasomal inhibition for ATXN3(-
Q22)2UIM and by inhibition of macroautophagy for ATXN3(Q22)3UIM
and ATXN3(Q22)UIM3(SA/DG) mutant ataxin-3 ({p,0.05 or {p,0.01
compared to time zero; *p,0.05 or **p,0.01 compared to 24 hour
time point by paired one-tailed Student’s t-tests). In B and C,
densitometry analyses are plotted as the percentage of signal at time
zero, normalized to total protein signal.
doi:10.1371/journal.pone.0013695.g005
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identified 56 distinct alternatively spliced transcripts, several of

which have been previously reported or predicted [13]. While we

did not detect most of these transcripts, all five minor 59 splice

variants identified by us in MJD15.4 transgenic mouse brain were

also observed in non-neuronal human PBLs. Moreover, at the

protein level we found that the range of putative splice isoforms

detectable in leukocyte-rich splenic tissues was greater than in

brain, which expresses a single, predominant full length isoform.

Similar to the minor splice variants we identified in YAC

transgenic brain, many PBL-derived variants are strong candidates

for NMD [37,38]. Of the remaining variants, Bettencourt et al.

[13] observed that most lacked exons encoding important features

of the Josephin domain, indicating that such isoforms cannot be

active DUBs. Unlike our study, Bettencourt et al. also identified

five poor candidates for NMD which encode severely truncated

Josephin domains followed by frameshift-induced polyalanine

repeats. We did not observe these variants in brain tissue, which

argues against splicing-induced polyalanine toxicity as a major

contributor to disease pathogenesis. Because all brain-derived 59

ATXN3 splice variants we identified were also seen in PBLs [13]

and lymphocyte-rich splenic tissues, which are unaffected in

human disease, they are unlikely to explain the selective neuronal

toxicity observed in SCA3.

Although the 2UIM and 3UIM 39 splice variants are both

detectable in brain at the mRNA level, 3UIM ataxin-3 is clearly

the predominant, physiologically relevant C-terminal splice

isoform in brain. The third UIM of ataxin-3 is highly conserved

across mammals and even in Xenopus, implying an important

function. What that function is, however, remains elusive. Recent

studies implicate the third UIM in casein kinase 2-dependent

ataxin-3 phosphorylation [39], a modification that influences

nucleocytoplasmic shuttling and intranuclear aggregation of

ataxin-3. Consistent with this, on 2D-Western blots we observed

at least two spots consistent with phosphorylated UIM ataxin-3.

Together, these findings underscore the importance of further

studying how the UIM3-containing C-terminus modulates ataxin-

3 function within cells. They also illustrate the need for researchers

to be careful when choosing among murine models when planning

to study SCA3 disease pathogenesis. YAC or BAC transgenic

models provide the full array of splice variants for the study of

human ataxin-3 whereas existing cDNA transgenic mice only

express single variants. Such models allow the study of a

Figure 6. Model for the differential aggregation properties and processing of 2UIM and 3UIM ataxin-3. In the absence of polyglutamine
expansion, 3UIM ataxin-3 follows a multi-domain aggregation mechanism to generate limited oligomeric species without detectable formation of
SDS-insoluble fibrillar aggregates. In contrast, 2UIM ataxin-3 exists in at least two monomeric states: the native conformation, in which the
hydrophobic tail remains buried and protected from the aqueous environment, and an aggregation-prone conformation with an exposed
hydrophobic tail. The aggregation prone monomer can revert to the native conformation or oligomerize through both the self-association propensity
of the Josephin domain (like 3UIM ataxin-3) and hydrophobic interactions of the 2UIM-specific domain. Within 2UIM oligomers, the hydrophobic C-
termini will associate, increasing the local polyglutamine concentration beyond that seen in 3UIM oligomers, favoring formation of detergent-
insoluble aggregates. Unstable forms of monomer and oligomer are subject to protein quality control mechanisms, including proteasomal
degradation for 2UIM ataxin-3. Insoluble fibrils, which are less well handled by protein quality control systems, accumulate as biochemically and
microscopically detectable aggregates.
doi:10.1371/journal.pone.0013695.g006
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predominant isoform, including the ways that its behavior may be

affected by the properties of minor splice isoforms. A knock-in

model would be most suitable for the study of polyglutamine

effects on endogenous murine ataxin-3, though no knock-in model

of SCA3 yet exists.

The instability of 2UIM ataxin-3 and its propensity to aggregate

suggest that while 2UIM ataxin-3 is less physiologically relevant

than 3UIM ataxin-3, the 2UIM isoform may better facilitate in

vitro studies of ataxin-3 fibrillization and aggregation or high

throughput screening assays based on aggregation. In some

circumstances, such as defined in vitro systems exploring ataxin-3

DUB activity, 2UIM ataxin-3 and 3UIM ataxin-3 behave nearly

identically and will produce similar results. Nevertheless, our

results demonstrate that the 2UIM and 3UIM isoforms of ataxin-3

are structurally distinct species that behave differently within the

cell, and should not be used interchangeably as ‘‘full length’’

ataxin-3 constructs.

Because most polyglutamine disease genes are alternatively

spliced and a subset of splice variants are enriched in affected

neural tissues [4,12], select alternative splicing events likely

influence polyglutamine neurotoxicity. Splicing-induced differenc-

es in protein context could alter polyglutamine toxicity in

numerous ways. First, increased conformational instability in the

amino acid sequence flanking the polyglutamine stretch could lead

to increased rates of protein misfolding and oligomerization,

thereby enhancing toxicity. For example, Reid and colleagues

have identified an aggregation-prone splice isoform of TBP, the

disease protein in SCA17, which is enriched in its soluble form in

Alzheimer disease (AD) and Huntington disease (HD) brains [7];

whether this isoform contributes significantly to SCA17 pathology

or is merely a marker of dysregulated splicing in AD and HD is yet

to be determined. Second, changes in protein context can alter

subcellular localization; for example, functional nuclear localiza-

tion signals outside of the polyglutamine domain can increase

polyglutamine aggregation [40] and toxicity [31]. Finally, protein

context also helps to determine protein-protein interactions, which

may protect against protein misfolding or become disrupted when

the polyglutamine domain is expanded, as recently described for

the SCA1 disease protein, ataxin-1 [27].

Alternative splicing and other putative cell type-specific aspects

of protein context are candidate determinants of selective neuronal

toxicity. In addition to identifying splice variants that include or

exclude polyglutamine-encoding exons, as in SCA6 [4,41,42], it

will be important to identify any splice variants that alter

physiological functions or protein-protein interactions of polyglu-

tamine disease proteins, or that affect polyglutamine expansion-

induced properties including protein misfolding and aggregation.

Here we have demonstrated that alternative splicing of sequences

distinct from the polyglutamine-encoding repeat can result in the

production of an unstable, aggregate-prone ataxin-3 isoform,

which results in increased insoluble aggregates in one murine

model of SCA3. An overrepresentation of such an aggregation-

prone splice variant in specific neuronal populations could

contribute to the pattern of selective neuronal toxicity in one or

more polyglutamine diseases.
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