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Abstract

Background: Phylogenetic methods produce hierarchies of molecular species, inferring knowledge about taxonomy and
evolution. However, there is not yet a consensus methodology that provides a crisp partition of taxa, desirable when
considering the problem of intra/inter-patient quasispecies classification or infection transmission event identification. We
introduce the threshold bootstrap clustering (TBC), a new methodology for partitioning molecular sequences, that does not
require a phylogenetic tree estimation.

Methodology/Principal Findings: The TBC is an incremental partition algorithm, inspired by the stochastic Chinese
restaurant process, and takes advantage of resampling techniques and models of sequence evolution. TBC uses as input a
multiple alignment of molecular sequences and its output is a crisp partition of the taxa into an automatically determined
number of clusters. By varying initial conditions, the algorithm can produce different partitions. We describe a procedure
that selects a prime partition among a set of candidate ones and calculates a measure of cluster reliability. TBC was
successfully tested for the identification of type-1 human immunodeficiency and hepatitis C virus subtypes, and compared
with previously established methodologies. It was also evaluated in the problem of HIV-1 intra-patient quasispecies
clustering, and for transmission cluster identification, using a set of sequences from patients with known transmission event
histories.

Conclusion: TBC has been shown to be effective for the subtyping of HIV and HCV, and for identifying intra-patient
quasispecies. To some extent, the algorithm was able also to infer clusters corresponding to events of infection
transmission. The computational complexity of TBC is quadratic in the number of taxa, lower than other established
methods; in addition, TBC has been enhanced with a measure of cluster reliability. The TBC can be useful to characterise
molecular quasipecies in a broad context.
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Introduction

Phylogenetics is a branch of molecular biology that infers

knowledge about taxonomy and evolution of species [1,2]. Usually

–but not exclusively- molecular phylogeny relies on a multiple

alignment of genomic sequences (species, taxa), and a phylogenetic

tree is a hierarchical clustering of taxa that are leaves of the tree.

The taxa are implied to descent from a common ancestor. When

the tree is rooted using an outgroup (a taxa known to be related

but distant in terms of evolution from all the other species), each

node represents the most recent common ancestor of the

descendants. During the past forty years a plethora of methods

that infer phylogenetic trees have been introduced, based on

genetic distances, evolutionary parsimony, maximum-likelihood

and Bayesian theory [2,3,4,5,6]. Genetic distances and phyloge-

netic trees can be inferred via different sequence evolution models

and model selection criteria [7]. With some methodologies it is

possible to reconstruct sequences at the internal nodes, called

ancestral sequences, and also to estimate rate of evolution and to

date speciation events. In addition, using resampling techniques,

node splits of a phylogenetic tree can be given a measure of

reliability [1,2].

Among the prerogatives of the application of phylogenetic

theory, one is the classification of taxa into distinct groups, such as
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genotyping or (sub)typing for viral strains, and another is the

identification of pathogen transmission clusters in a sparse sample

of a population, for instance groups of individuals that were

infected from the same source (might be a viral strain) and

transmitted the infection one to each other. Finally, another

problem is to identify families within a viral quasispecies

harbouring a single individual.

By cutting a phylogenetic tree at some level(s), it is possible to

induce a partition of the taxa and define clusters, identifying thus

non-overlapping groups of taxa or transmission events. However,

the procedures for selecting optimal phylogenetic tree cut points

have not been widely explored. The state-of-the-art method is a

heuristic procedure that examines inter-cluster and intra-cluster

distance distributions and gives a partition of the set of taxa in a

phylogenetic tree, by considering the patristic distance matrix,

implemented in a software named CTree [8]. This algorithm has a

drawback in its complexity, which is cubic in the number of taxa.

CTree has been successfully validated with the classification of

type-1 human immunodeficiency virus (HIV-1) group M subtypes,

but would be hardly applied for the identification of transmission

clusters within large phylogenetic trees (up to several thousands of

taxa, whilst the maximal number of taxa allowed in CTree for

automatic cluster determination is 125). In fact, recent literature

that addressed the HIV-1 transmission event identification,

defined a partially-overlapping set of clusters based on a thresh-

olding of the genetic distance matrix of the viral sequences [9,10].

The identified clusters were then confirmed by looking at the

phylogenetic tree and verifying that they were together in a subtree

highly supported by the resampling statistics.

This manuscript introduces a new partition technique, the

threshold bootstrap clustering (TBC), to address the taxa

clustering, the transmission group identification, and the intra-

patient quasispecies characterisation. The TBC is an incremental

algorithm [11], and it is remarkably linked with the Chinese

restaurant process, previously employed both for the clustering of

microarray gene expression data [12] and for haplotype

identification in ultra-deep sequencing [13].

The TBC uses models of sequence evolution and performs

resampling of sequence alignments, and does not require

phylogenetic tree estimation. Unlike other distance-based cluster-

ing techniques, such as k-means or partition around medoids

(PAM) [14], TBC automatically determines the number of clusters

without additional steps (for instance the maximisation of average

silhouette values, by running multiple times k-means or PAM and

using different cluster sizes), although also other methods are able

to infer automatically the number of clusters [15,16]. The

computational complexity of the TBC has a quadratic upper

bound, lesser in one order of magnitude than the complexity of the

CTree algorithm.

Finally, coupled with the TBC, we define a methodology for

assessing its robustness, calculating partition likelihood and cluster

reliability, which indeed is independent on the clustering

techniques and can be used with any other partition method.

Materials and Methods

Ethics statements
Viral isolate sequences considered in this study were obtained

either querying world public data bases [17,18] or using the

proprietary retrospective HIV data base of Catholic University of

Sacred Heart, Rome, Italy. For the latter, patients’ written

informed consent has been previously obtained and all legal

aspects concerning national and international privacy policies

have been accomplished, along with the approval of the ethic

committee of CUSH as concerns the execution of retrospective

studies. Biological samples were not collected or processed in any

form for this study.

The threshold bootstrap clustering
The core of TBC method is inspired by a Chinese restaurant

process (also known as Dirichlet process), a discrete-time stochastic

process [19,20,21]. The process can be described with the

metaphor of a (Chinese) restaurant with infinite tables, where

customers walk in and sit down at a table. The tables are chosen

according to the following random process: (a) the first customer

always chooses the first table; (b) the nth customer chooses the first

unoccupied table with probability a/(n21+a), and an occupied

table with probability c/(n21+a), where c is the number of people

sitting at that table and a is a scalar parameter of the process.

Intuitively, each customer entering the restaurant sits at a table

with probability proportional to the number of customers already

sitting at it, and sits at a new table with probability proportional to

a. Thus, customers tend to sit at most ‘‘popular’’ tables that

become even more crowded. By this, the process has a ‘‘power

law’’ behaviour, where a few tables attract the majority of the

customers, and the parameter a determines how likely a customer

is to sit at a new table. Usually, in real-world problems, the

Chinese restaurant process is used as a prior and a Gibbs’ sampler

is employed [12,13].

In the TBC the probability assigned to any particular cluster

slightly depends on the cluster size itself (this is accounted indeed

in the refinement step), whilst the chance for a given object to join

a cluster or to form a new one depends on how much the object is

‘‘similar’’ to other objects in a cluster, with respect to a known

distribution that describes the overall object (dis)similarity. Since

we intend to cluster molecular sequences, the measure of

dissimilarity can be a genetic distance calculated via a specific

evolutionary model, such as the LogDet distance [22]. In addition,

the TBC is run on a column-wise bootstrap sample of the original

alignment, shuffling the sequence alignment order: this allows to

obtain potentially different partitions when executing the TBC,

using random seeds for shuffling and bootstrap (see the next

section for the likelihood assessment of partitions and the cluster

reliability calculation).

The TBC algorithm starts with a multiple sequence alignment

A, |A| = n. The algorithm initially shuffles the sequence order and

draws a column-wise bootstrap sample of the alignment B. A

preliminary phase creates an a-priori distribution DB of random

pair-wise distances from B and calculates a threshold value t,

corresponding to a xth (usually 5th or 10th) percentile of DB. Then

an empty list of clusters C is initialised. The sequences are scanned

sequentially and the first sequence s1 induces a first cluster

{s1} = c1 E C. The second sequence is compared with the first

cluster and if the median value of the distance distribution

obtained by comparing s2 with all the elements in c1 (now there is

only one element in c1) is below the threshold t, then s2 is assigned

to c1, otherwise forms a new cluster. The same holds with sequence

s3, which is compared with c1, and eventually with c2, if s2 had

formed a new cluster. Either the cluster list or the size of a cluster

grows by continuing the sequence scan and distance threshold

comparison. At iteration i, sequence si id compared with the

cluster list C = {c1, …, ck, …, cj}, where j, = i. The comparison

starts from k = 1 and proceeds until j, stopping in between if si joins

a certain cluster ck. If si is assigned to cluster ck, ck = ck U {si},

otherwise the cluster list is incremented by a new cluster cj+1 = {si},

i.e. C = C U{cj+1}. After each sequence has been examined (i = n), a

post-processing phase starts. By following the Chinese restaurant

dogma, for which popular clusters tend to attract single elements,

Threshold Bootstrap Clustering
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we calculate a distribution of cluster sizes and we delete the clusters

whose size is below the 5th (or 10th) percentile. Then the cluster

assignment phase is re-run for those sequences belonging to the

deleted clusters. Finally, the number of clusters corresponds to the

size of |C|. The TBC algorithm is explained in detail in Figure 1.

The computational complexity of the TBC is O(n2), where n is

the number of objects to be clustered: in fact, the threshold

assessment phase requires n2 random object comparisons for the

estimation of DB, and the sequence scan phase in the worst cases

would create either a unique cluster or n distinct clusters,

corresponding to n(n+1)/2 comparisons.

In order to speed up the algorithm in our implementation, we

limited the number of random distances to be calculated in the

interval [1000, 500000], with an additional control on the

threshold t, calculated at every 100th iteration, stopping the

procedure if the difference between two consecutive estimated

thresholds was below 0.0000001. In the sequence scan phase, each

distribution Dij was approximated by considering a limited number

of comparisons with the objects in a cluster equal to the square

root of the cluster size, with a minimum of 10 comparisons (unless

the cluster size was smaller) and a maximum of 100, i.e.

min{max{sqrt(|ci|),10},100}.

Assessment of partition likelihood and cluster reliability
The TBC clustering induces a full partition of the taxa objects

into p clusters, where p is automatically determined. By varying the

initial conditions (i.e. random seeds for taxa shuffling and sequence

bootstrap), TBC can produce different partitions, both in the

number of clusters and in the elements belonging to each cluster.

As maximum-likelihood and Bayesian estimations are used to

select both for best phylogenetic trees under a set of model

parameters, and to infer node reliability, we might be interested to

assess the most plausible partition(s) obtained from multiple runs of

the TBC and to determine reliability of each cluster. Of note, such

a methodology would apply to any clustering technique that can

produce different partitions by varying its initial conditions.

By reviewing the literature, this problem has gained growing

attention in the recent years, acquiring the name of ‘‘consensus’’ or

‘‘ensemble’’ clustering [23]. Consensus clustering tries to find a

single partition which is a better fit under some goodness-of-fit

functions with respect to other existing partitions. The consensus

partition does not necessarily coincide with any of the original

partitions. The cluster-based similarity partitioning algorithm, the

hyper-graph partitioning algorithm, or k-means based algorithms

[24] are a few of the many variations on a theme.

We propose here, differently from most of consensus clustering

algorithms, a methodology that selects one particular partition in a

set of obtained partitions.

Partitions can be compared statistically to determine their

agreement, using the adjusted Rand index (ARI) [25], an indicator

of cluster agreement which corrects for chance and takes values in

[0,1]. By using the ARI, given a set of partitions P, |P| = m, we

can compute the likelihood of a partition with respect to the others

pi E P as L(P| pi) = Pr(pi|P) = Pj?iaji, where aji is the ARI between

partition pj and pi, and then select the best partition pb with the

maximum likelihood. In this case, we are assuming that the ARI is

directly proportional to a probability, i.e. aji / L(pj| pi) = Pr(pj|pi).

Once the best partition is determined, we estimate the reliability

of each cluster with a procedure similar to the posterior probability

estimation for nodes of a phylogenetic tree under Bayesian monte-

carlo analysis [1]. In detail, the partitions pi E P are ordered

decreasingly by their associated likelihood and the last xth percentile

(usually from the 75th or above) of partitions is deleted. Each

retained partition pi is compared with the best partition pb and for

each cluster cb
i E pb a support value is defined as follows: (i) for each

partition pj E P, j?b, identify the cluster c*
jk E pj such as c*

jk > cb
i is the

maximum among all possible intersections cjk > cb
i; (ii) calculate the

support sb
ij as sb

ij = c*
jk > cb

i/c*
jk U cb

i. Then the overall support sb
i for

a cluster cb
i is the average value of all sb

ij.

Data sets, software and settings of comparison methods
The TBC has been entirely implemented in java [26].

Procedures for likelihood and cluster reliability assessment have

been written using the R mathematical software suite [27]. The

whole source code is available as a supplementary material (File

S1). The CTree [8] algorithm was used as a comparison method,

along with the PAM (using the LogDet estimator as a distance

measure) where the optimal number of clusters was assessed via

the average silhouette value maximisation [14].

The TBC was tested in the following scenarios: (i) identification

of HIV-1 subtypes using a standard reference set, downloaded as a

pre-made alignment from the Los Alamos repositories [17],

considering either full-length genomes or pol genes; (ii) identifica-

tion of HCV subtypes, using a standard reference set, downloaded

as a full-genome pre-made alignment from the Los Alamos

repositories [18]; (iii) identification of HIV-1 subtypes using a

larger full-genome population sample, downloaded as a pre-made

alignment from the Los Alamos repositories [17]; (iv) identification

of inter-patient quasispecies (discriminating among different

patients) using a HIV-1 subtype B data set, downloaded as a

full-genome pre-made alignment from the Los Alamos repositories

[18]; (v) identification of inter/intra-patient quasispecies (discrim-

inating within the same patients and among different patients)

using a data set previously analysed by Shankarappa et al. [28],

composed by HIV-1 env (C2-V5 region) isolates sampled from

different patients, followed up from 6 to 12 years after

seroconversion, until the development of advanced disease.

As a final evaluation (vi), the TBC was also applied to a set of

HIV-1 group M subtype B polymerase sequences obtained from the

private CUSH clinical data base, identifying viral isolates coming

Figure 1. The threshold bootstrap clustering (TBC) algorithm.
doi:10.1371/journal.pone.0013619.g001
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from patients with known transmission history (collecting any

sequence at any time point). A set of control sequences was added to

this data set: specifically, samples coming from other HIV positive

patients followed up at CUSH, with unknown transmission history,

two outgroups (HIV-1 subtypes C and J), and the reference HIV-1

subtype B HXB2 strain. Sequences were aligned using ClustalW

[29]. Resistance of each viral sequence with respect to an

antiretroviral class (nucleoside-tide/non-nucleoside/protease inhib-

itors) was defined as the presence of at least one amino-acidic

mutation panelled by the International AIDS Society (any major

mutation for protease) [30], by aligning pairwisely each sequence

against the HIV-1 consensus B, with an in-house modified version of

the local Smith-Waterman-Gotoh alignment algorithm implement-

ed in java [31,32]. Columns of the multiple alignment correspond-

ing to codon positions previously associated to drug resistance were

deleted, in order to avoid the possible bias coming from convergent

evolution due to treatment experience.

For each TBC analysis [data sets (i) to (vi)], the distance

threshold percentile was evaluated in the interval t = [1.0, 45] with

step sizes of 0.5/0.25, and 200 bootstrap runs were executed. For

the analyses of HIV/HCV subtyping (reference data sets), CTree

has been executed on phylogenetic trees constructed by neigh-

bour-joining and LogDet estimator. A patient from the data set

analysed by Shankarappa et al. [28] was analysed in depth by

estimating a Bayesian phylogeny using BEAST [33]. For the

analysis of transmission clusters on CUSH data, a maximum-

likelihood tree was estimated, setting up a general-time-reversible

model, with a 20-parameter gamma optimisation, and a mix of

nearest-neighbor interchanges and subtree-prune-regraft moves

for tree topology search, using the FastTree software [34,35].

Reliability of each tree split was calculated by a Shimodaira-

Hasegawa test. The internal sensitivity parameter of CTree was

always set to 1 (slowest as concerns computational time, but

correspondent to maximal accuracy).

Results

HIV-1 subtyping
HIV is divided into two types (type-1 and 2), and into four groups

(M, N, O, P) [36,37]. Group M is the most widespread and is

divided into several subtypes, lettered from A to K. Subtypes have

been historically defined by a human-driven crisp clustering

obtained by analysing different phylogenetic trees constructed over

different HIV genes, but do not necessarily correspond to an

optimal grouping under specified constraints. HIV can also

recombine and a number of strains composed by mixed subtypes

has been described. During the past years, the subtype

nomenclature has been undergoing many revisions: for instance,

subtypes E and I have been discovered to be indeed recombinant

forms and removed from list of pure subtypes. However,

considering the large and long-lasting research done on HIV

subtyping, the current classification can be considered as reliable

[36], and it is used as a standard reference for expert systems that

infer subtype for patients’ sequences [38].

The HIV subtype reference multiple alignment (i) was

composed by 38 representative sequences of 11 pure subtypes

(on average 3.4 sequences for each subtype). TBC was run either

on the whole genome (<9,000 bases) or restricting on the

polymerase gene (<2700 bases), which is the routinely sequenced

gene in clinical practice for drug-resistance testing. By considering

the full-length genome set, a TBC tuned on t = 10 yielded a perfect

concordance with the HIV subtypes, producing exactly 11 clusters,

with an ARI between clusters and real subtypes of 1.0, a median

(IQR) cluster support of 95% (72%–100%). Figure 2, panel A,

depicts the distribution of pairwise distances, using the LogDet

estimator, with a median (IQR) distance of 0.050 (0.048–0.051).

The CTree also produced a perfect partition, whilst the PAM with

silhouette maximisation identified exactly all subtypes except for B

and D, that were pooled together. When executing the TBC using

the sole pol gene, at t = 10 all sequences but one were partitioned

correctly (Figure 3, panel B): ARI was 0.967, median (IQR) cluster

support was 92% (63%–98%). The misplaced sequence was a

subtype D, that clustered alone (support was 42%). By looking at

the whole set of partitions, often subtype D divided into two

distinct clusters (formed either by one or two sequences out of

four). The CTree algorithm yielded an ARI of 0.955; in this case

two subtype D sequences formed a cluster apart, similarly to the

TBC. The PAM, instead, pooled together subtype B and D. As

expected, the number of clusters decreased by increasing the

percentile threshold: in detail, for the whole genome case, at t = 5

ARI was 0.511 and number of clusters was 26, whilst at t = 25 ARI

was 0.375 and number of clusters was 6.

A larger set of full-length genomes HIV-1 isolates with known

subtype was also considered (iii). The data set was composed by

1,258 isolates, with a median (IQR) number of 19 (4–63) isolates

per subtype. There was exactly one sequence per patient, and the

median (IQR) distance was 0.027 (0.022–0.029) (Figure 2, panel

C). The optimal threshold for TBC was found at t = 25, obtaining

an ARI of 0.99 and a median (IQR) cluster support of 97.8%

(91.9%–99.7%). The CTree algorithm was not executed on this

data set, because of the high number of isolates. The PAM

clustering yielded an ARI of 0.894.

HCV subtyping
As a second analysis, TBC was run on the Los Alamos HCV

genotype reference set (ii). HCV nomenclature is not as well

established as that of HIV. HCV has been divided into a few major

genotypes (numbered from 1 to 7, where the word genotype should

correspond ideally to the group for HIV) and several subtypes

(lettered alphabetically). Recent studies have strongly revised HCV

classification [39], and still some subtypes have to be confirmed (a

confirmation of a subtype is when at least two or three whole-

genome sequences coming from patients that are not epidemiolog-

ically linked cluster together under different phylogenetic analyses

and do not exhibit recombination patterns). The current HCV

reference set from Los Alamos comprises both confirmed and

unconfirmed sequences: the downloadable whole genome (<9,500

bases) pre-made alignment is composed by 61 distinct sequences, 7

genotypes (thus 8.7 sequences per genotype), and 32 subtypes (1.9

sequences per subtype, and 4.6 subtypes for each genotype). The

median (IQR) pairwise distance was 0.094 (0.079–0.101), as shown

in Figure 2, panel B. Only whole genome analysis was carried out.

In the HCV analysis we obtained the best subtype concordance

at a lower percentile threshold, i.e. t = 4. Thirty-one clusters were

identified, the ARI was 0.952, and the median (IQR) cluster

support was 96% (79%–100%). Differently from the given

classification, TBC put together subtypes 6i and 6j (Figure 3,

panel A). The CTree yielded 38 clusters, with an ARI of 0.842:

differently from the TBC output, subtypes 1b, 2a, 4a, 5a, and 6k

were split into three, two, two, two, and two clusters, respectively,

whilst subtypes 6i and 6j were correctly identified. The PAM

found 24 clusters, with an ARI of 0.815; in this case, several

genotypes were misplaced.

HIV-1 group M subtype B inter/intra-patient quasispecies
analysis

For this analysis (iv), 356 HIV-1 subtype B isolates were

considered, from 83 patients, with multiple samples or clones per

Threshold Bootstrap Clustering
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patient. The median (IQR) number of isolates per patient was 3 (2–4).

The median (IQR) pairwise distance was 0.025 (0.023–0.027)

(Figure 2, panel D. The primary objective was to identify a cluster

for each population sample of a patient. The TBC found 110 clusters,

with an ARI of 0.934 at the optimal threshold of t = 1.9. The median

(IQR) cluster support was 93% (72%–100%). In this case, the PAM

algorithm yielded 73 clusters and an ARI of 0.933.

Analysis of the ‘‘Shankarappa’’ [28] data set
This data set (v) was composed of 1300 isolates from 9 patients,

with a median (IQR) pairwise distance of 0.040 (0.035–0.044)

(Figure 2, panel E). The TBC was primarily run on the whole data

set, trying to cluster the different patients. At t = 7.5, we obtained

the best ARI of 0.716 (58 clusters), with a median (IQR) cluster

support of 64% (47%–74%). The PAM algorithm yielded 8

clusters and an ARI of 0.260.

Successively, a single patient (Figure 2, panel F) was selected

from this data set (patient # 7, n = 138 sequences) and analysed

separately, estimating a Bayesian phylogeny, highly resolved,

depicted in Figure 4. The tree was rooted on the earliest sequence

and showed a clear ladder-like topology, where the more distant

branches usually corresponded to later time points, which is typical

of a longitudinal HIV-1 sampling. Since there was not an already

defined clustering (except for the time point indicators), we

optimised the threshold by maximising the average silhouette

value, as it was done for the PAM algorithm [14]. At a threshold

corresponding to the 12th percentile, the TBC produced a

partition (39 clusters) that was clearly following the evolution

Figure 2. Pairwise distance distributions. Distributions of pairwise distances using the LogDet estimator for the data sets (i) – (vi) analysed in this
study.
doi:10.1371/journal.pone.0013619.g002

Threshold Bootstrap Clustering

PLoS ONE | www.plosone.org 5 October 2010 | Volume 5 | Issue 10 | e13619



through time highlighted by the phylogenetic analysis (Figure 4).

In addition, the TBC identified correctly the sub-population that

evolved into an X4-tropic virus.

Transmission cluster identification
The last analysis (vi) was executed on the CUSH dataset

(Figure 2, panel G), comprising HIV-1 subtype B isolates from

patients with known transmission history: there were 12 known

transmission events from patient-to-patient (n = 66 sequences, with

5.5 sequences per transmission event, and exactly two patients in

each transmission event), 6 control patients from CUSH (12

sequences), two outgroups (subtype C and J), and the subtype B

HXB2 reference isolate. The best ARI between transmission

groups and clusters generated by TBC was 0.682 at t = 7, with a

median (IQR) cluster support of 75% (56%–88%). All control

sequences except one were correctly placed, whereas, when

looking at the transmission events, only 3/12 (25%) transmission

events were uniquely determined by placing both patients (and

only those) in the same cluster (supplementary Figure S1). The

TBC was able in general to identify and cluster viral isolates

belonging to the same patient, but not extremely sensitive to

identify transmission events, although the sample size of this

experiment was small and sparse as concerns times of sampling.

The CTree algorithm yielded a poorer performance, with an

ARI = 0.35, identifying correctly only 2/12 (16.7%) transmission

events. The PAM did not identify any transmission group, and

selected only 2 clusters, with an ARI of 0.001.

As an additional comparison, we used also the method proposed

in [9,10], which can be considered the state-of-the-art with respect to

HIV-1 transmission cluster identification. The procedure identified

3/12 (25%) clusters that were confirmed by node reliability values

.90% from the maximum-likelihood phylogenetic tree.

However, the best method for identifying transmission clusters

still remains a human interpretation of the phylogenetic tree

(supplementary Figure S1). By looking at the node reliability

(.90%) and (sub)tree branch lengths, we identified manually 6/12

(50%) clear transmission events. Of note, even the phylogenetic

tree was not resolving correctly all the transmission events. In a few

cases, two patients belonging to the same transmission event

clustered apart from each other, or mixed with other events/

controls. More severely, there were patients whose sequences were

not even clustering always together in the tree.

Discussion

In this manuscript we introduced the threshold bootstrap

clustering, a new incremental methodology for partitioning molecular

sequences. The TBC is inspired by a stochastic Chinese restaurant

process and takes advantage of resampling techniques and models of

sequence evolution. The TBC uses as input a multiple alignment of

molecular sequences and its output is a crisp partition of the taxa into

an automatically determined number of clusters. By varying initial

conditions, TBC can produce different partitions.

We described also a procedure for selecting a partition among a set

of candidate ones and a measure of cluster reliability. Note that our

definition of the likelihood of a partition is not an absolute measure of

the ‘‘goodness’’ of the partition, but expresses how much a partition is

similar to all the generated partitions (in this sense is seen as a

consensus partition) and is of use for assessing cluster reliability.

Figure 3. Phylogeny and TBC of HIV/HCV subtypes. Phylogenetic trees constructed for the HCV genotype (panel A) and group M HIV-1
subtype (panel B) reference sets of Los Alamos repositories (neighbour-joining, LogDet distance). Coloured branches represent clusters retrieved by
the CTree algorithm, whilst circles represent clusters retrieved by the TBC algorithm.
doi:10.1371/journal.pone.0013619.g003
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TBC was successfully tested for the identification of group M

HIV-1 and HCV subtypes and compared with an established

methodology, the CTree algorithm [8], and the with the PAM

algorithm [14]. The CTree algorithm works on patristic distances

of a phylogenetic tree (but can work on any general distance

matrix) and produces a crisp partition in O(n3) complexity. The

TBC is based as well on distances and runs in O(n2) complexity.

TBC was as good as CTree in identifying ex-novo the group M

HIV-1 subtypes and outperformed slightly CTree in the HCV

subtyping problem. Our algorithm showed also good performance

in clustering larger data sets and in identifying inter/intra-patient

quasispecies. It was also efficient in partitioning longitudinal intra-

patient data, and could be useful in other related contexts, such as

the detection of dual infections.

In principle, the TBC might be applied also to next-generation

sequencing data alignments, and the sequence length should not

be a serious problem if Roche 454 Life Science [40] technology is

used to amplify specific regions. With shotgun sequencing the data

need to be analysed via sliding windows, and then a problem of

variant reconstruction arises. We do not know how the TBC

would behave in presence of sequencing errors that should be -at

least- corrected before running the clustering. However, another

approach that uses the Chinese restaurant process as a prior to

infer clusters via Gibbs’ sampling has been recently proposed, and

performs both clustering and error correction at the same time

[13].

TBC was also evaluated in the problem of transmission event

identification. Using a data set of patients followed up at the

Catholic University of Sacred Heart in Rome, Italy, with known

transmission history, TBC was able to identify transmission events

in 25% of cases, whilst CTree assessed on 16.7%. The

transmission event dataset was also evaluated using a previously

published method [9,10], specifically tuned for HIV transmission

cluster identification, and that method identified 25% of

transmission events. With a human-visual evaluation of subtrees

and node reliability of a maximum-likelihood phylogenetic tree,

we were able to infer correctly 50% of transmission events. Thus,

even a detailed phylogenetic analysis was not able to resolve all

transmission events. In fact, for HIV it has been shown previously

that many factors (such as long period of infectivity, sparse time

and space sampling) can limit the concordance of phylogenetic

reconstruction and the reported epidemiological evidence

[41,42,43]. The transmission event data set of CUSH was

composed by sequence samples of patients taken at different times

and disease stage: some patients were sequenced multiple times

either before treatment initiation or at treatment failures, whilst

others had only one sequence sample taken. We recognise that a

larger and less sparse data set would be desirable in order to assess

better the TBC performance on this particular problem.

This work has some limitations. First, the TBC algorithm might

be sensitive to the percentile threshold, which is a free parameter.

A value of 10 was optimal for the problem of group M HIV-1

Figure 4. Intra-patient phylogeny and TBC. Bayesian phylogenetic tree for a particular patient (# 7) from the Shankarappa [28] data set. Tree is
rooted on the earliest sequence, and node labels represent posterior probabilities. Coloured tips correspond to different clusters retrieved by the TBC
using a threshold of 12 (whilst black tips are singletons). X4-tropic populations are enclosed in red-boxes.
doi:10.1371/journal.pone.0013619.g004
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subtyping, whereas lower thresholds were needed for the HCV

and the subtype B HIV-1 transmission data sets (4 and 7,

respectively). In our study we did not find a direct correlation

between the median pairwise distance and the optimal threshold,

considering also that the majority of the data sets did not present a

normal distribution of distances.

A way to optimise the percentile threshold -without knowing a

priori the sequence grouping- is to run the TBC using different

thresholds and then calculate for each partition a cluster validity

measure, such as the Goodman-Kruskal index, the Dunn’s index,

or the average silhouette value [14,44,45]. We have implemented

a few of these indices in the released software, which can be used

effectively to optimise the threshold. Nonetheless, this issue

warrants further investigations, especially when different objectives

rather than the viral subtyping are prosecuted, as it is for

transmission event identification or intra-patient quasispecies

grouping. It might be that the optimal threshold identified by a

statistical analysis does not necessarily correspond to a suitable

grouping from a biological/clinical point of view. However, for

most of the cases, the optimal threshold selected by an index

maximisation was concordant with the experimental results (see

the supplementary Figure S2).

A second limitation is the cluster support calculation, defined in

a very simple manner. In fact, in some degenerate cases can be

completely uninformative, such as when all the partitions are

composed by either all single clusters or a unique one, yielding

always a cluster support of 100%.

Another problem that was not covered in this work was how to

deal with the presence of recombinant viral strains in the data sets

to be clustered. The TBC could produce unstable partitions when

recombinants happen to be included, since depending on the

bootstrap sampling they might jump among different clusters. This

might also affect the overall cluster support calculation. A possible

approach could be the relaxation of the crisp clustering,

considering a soft clustering model where instances can belong

to different clusters with different grades of membership.

In conclusion, the TBC has been shown to be as effective as, if

not better, than previously published methods for the clustering of

viral strains, under different scenarios. TBC has the advantage of a

quadratic complexity, and there is the possibility to identify a

consensus partition and a measure of cluster reliability. Although

conceptually different and presumably with less expressional

power than a full phylogenetic analysis, the TBC might be useful

for the processing of large-scale sequence data sets, where both the

phylogenetic software and the standard clustering algorithm might

be hardly applicable.

Supporting Information

Figure S1 Maximum likelihood tree estimated using sequences

from patients with known transmission history (n = 66, with 12

transmission events) and control sequences, all collected at the

Catholic University of Sacred Heart in Rome, Italy. Phylogenetic

tree is rooted using HIV-1 J and C subtypes. Different colours

highlight different transmission events. Coloured boxes indicate a

transmission cluster uniquely determined and supported by a node

reliability .90%. By visual inspection of the tree, 6/12

transmission events could be resolved. The TBC algorithm

identified correctly 3/12 transmission events (indicated with

coloured bullets).

Found at: doi:10.1371/journal.pone.0013619.s001 (1.53 MB TIF)

Figure S2 Optimisation of the threshold value by considering a

cluster validity index (in this case maximising the difference

between the median inter/intra-cluster distance distributions of a

partition and the median values obtained from a random partition

with the same number of clusters).

Found at: doi:10.1371/journal.pone.0013619.s002 (0.16 MB

PNG)

File S1 Software source and compiled code

Found at: doi:10.1371/journal.pone.0013619.s003 (0.02 MB ZIP)
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