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Abstract

PTEN, a phosphoinositide-3-phosphatase, serves dual roles as a tumor suppressor and regulator of cellular anabolic/
catabolic metabolism. Adaptation of a redox-sensitive cysteinyl thiol in PTEN for signal transduction by hydrogen peroxide
may have superimposed a vulnerability to other mediators of oxidative stress and inflammation, especially reactive carbonyl
species, which are commonly occurring by-products of arachidonic acid peroxidation. Using MCF7 and HEK-293 cells, we
report that several reactive aldehydes and ketones, e.g. electrophilic a,b-enals (acrolein, 4-hydroxy-2-nonenal) and a,b-
enones (prostaglandin A2, D12-prostaglandin J2 and 15-deoxy-D-12,14-prostaglandin J2) covalently modify and inactivate
cellular PTEN, with ensuing activation of PKB/Akt kinase; phosphorylation of Akt substrates; increased cell proliferation; and
increased nuclear b-catenin signaling. Alkylation of PTEN by a,b-enals/enones and interference with its restraint of cellular
PKB/Akt signaling may accentuate hyperplastic and neoplastic disorders associated with chronic inflammation, oxidative
stress, or aging.
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Introduction

Inflammation and cancer are intricately linked [1,2]. ‘Smolder-

ing’ inflammation [3], also called para-inflammation [4], occurs in

many types of pre-malignant and malignant tumors, e.g. colorectal

adenoma and adenocarcinoma where the content of inflammatory

leukocytes and the inflammatory enzyme cyclooxygenase-2 (COX-

2) influence progression, prognosis and survival [5,6]. Non-

steroidal anti-inflammatory drugs (NSAIDs) that inhibit COX-2

can prevent certain, but not all, cancers [7]; and some NSAIDs,

such as sulindac sulfone, act independently of COX and

prostaglandin E2 (PGE2) inhibition [8]. Other NSAIDs, e.g.

celecoxib, can paradoxically enhance tumor progression in

APCMin/+ mice, which model intestinal tumorigenesis [9]. While

COX-2 and its metabolite PGE2 are undoubtedly important,

para-inflammation may enhance tumorigenesis by mechanisms

that are incompletely understood. Innate immune mechanisms are

prime candidates for investigation.

Usually, innate immune inflammation consists of a ‘‘wounding’’

phase to annihilate pathogens, and a ‘‘healing’’ phase to repair

and regenerate damaged host tissue [10]. The transition between

phases depends on gradual exhaustion of inflammatory mediators

and conversion of certain pro-inflammatory mediators, e.g. PGD2,

into anti-inflammatory metabolites, D12-PGJ2 [11,12,13]. Ele-

ments of the inflamed site itself, e.g. reactive oxygen species (ROS),

albumin, fibroblasts and neutrophils, orchestrate this conversion

[14,15,16,17]. For example, reactive oxygen species (ROS) cause

non-enzymatic peroxidation of essential fatty acids, like arachi-

donic acid (AA) [18]. AA hydroperoxides transform readily into

reactive products containing an a,b–unsaturated carbonyl [19,20]

that include acrolein (2-propenal) [21,22], 4-hydroxy-2-nonenal

(4-HNE) [23], and cyclopentenone prostaglandins (cyPGs), PGA2

and D12-PGJ2 [24]. Covalent modification of NFkB and IKKa/b
proteins by these a, ß–unsaturated carbonyl metabolites (i.e.

protein alkylation) seems to be a ‘‘switch’’ to terminate

inflammation [25]. Following this precedent, we hypothesized

that alkylation may also act as a ‘‘switch’’ to initiate repair and

regeneration of tissue damaged by inflammation.

PTEN (phosphatase tensin homolog on chromosome 10) is a

phosphoinositide-3-phosphatase with two physiological roles:

tumor suppressor and regulator of anabolic/catabolic cell

signaling. The PTEN gene is frequently mutated or inactivated

in advanced cancers [26]. Using MCF7 and HEK-293 cells, we

report that reactive a, ß–unsaturated carbonyls (acrolein, 4-HNE,

and D12-PGJ2) inactivate the PTEN protein – not the gene - by

alkylation. Inactivation of PTEN by a, ß–unsaturated carbonyls

leads to increased Akt signaling, enhanced nuclear b-catenin

signaling, and augmented cellular proliferation. Redox signaling

by PTEN may have evolved to enable cells (tissues) to stratify their

response to oxidative stress. For example, transient inhibition of
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PTEN by reactive oxygen or carbonyl species, and the

corresponding signaling through Akt/GSK3b/b-catenin/TCF4/

Lef1 might benefit the host via increasing proliferation and

regeneration of tissue damaged by acute inflammation or oxidative

stress. Errant and persistent PTEN inactivation by the same

molecular mechanism might favor tumor progression and provide

an etiological link between ‘smouldering’ inflammation and

certain cancers, especially colorectal cancer, where both the

PTEN and the APC tumor suppressors restrict nuclear b-catenin

signaling [27].

Results

The a, ß–unsaturated carbonyls acrolein, 4-HNE and D12-
PGJ2 covalently modify cellular PTEN

We exposed MCF-7 cells to representative a, ß–unsaturated

carbonyl (Figure 1C) or H2O2, then selectively tagged any

proteins that had oxidized or carbonylated thiols using NEM-

biotin (Figure 1A). We then sequestered proteins with a biotin

epitope onto NeutrAvidin (NA) beads and identified carbonylated

PTEN by SDS-PAGE and immunoblotting. MCF-7 cells treated

with 10 mM D12-PGJ2, 4-HNE, or acrolein contained carbony-

lated PTEN in amounts comparable to cells treated with 100 mM

H2O2 (Figure 1A, NA pulldown). This method does not

distinguish between oxidized and carbonylated thiols on PTEN.

However, electrophoresis under non-reducing conditions, followed

by western blotting, showed that PTEN migrated as a discrete

isoform due to an oxidized disulfide [28,29], which occurred only

in cells treated with 100 mM H2O2, but not in cells treated with a,

ß–unsaturated carbonyl (D12-PGJ2, 4-HNE, acrolein) or 15-

HpETE, a lipid hydroperoxide (Figure 1B).

Cyclopenteneone PG-biotin analogs are model a,
b–enones that alkylate PTEN

The cysteinyl thiolate in the PTEN active site (–HC(X5)RT–) is

prone to oxidation because it is a strong nucleophile, pKa ,5.

Figure 1. a, ß–unsaturated carbonyls covalently modify cellular PTEN. (A) Diagram of the procedure to identify PTEN with an oxidized or
alkylated thiol in cells exposed to ROS or a, ß–unsaturated carbonyls. The anti-PTEN immunoblot shows oxidized or carbonylated PTEN (NA Pulldown)
relative to total PTEN (Cell Lysate) isolated from MCF-7 cells treated 30 min with vehicle (DMSO), 10 mM D12-PGJ2 or 4-HNE versus 10 min with
100 mM H2O2; an immunoblot from a separate experiment shows oxidized, carbonylated and total PTEN in cells treated for 30 min with vehicle or
20 mM acrolein versus 10 min with 100 mM H2O2. (B) Anti-PTEN immunoblot of MCF-7 cell lysates fractionated by SDS-PAGE under non-reducing
conditions. PTEN oxidized to a Cys124-Cys71 disulfide appears as a faster migrating species (PTEN oxidized disulfide) only in cells treated with H2O2.
This species was undetectable in MCF-7cells treated 30 min with DMSO vehicle or 20 mM each D12-PGJ2, 4-HNE, acrolein or 15-HpETE. (C) Chemical
structures of typical a, ß–unsaturated carbonyls. Acrolein and 4-HNE are a, b enals; D12PGJ2 is an a,b enone. Electrophilic b carbons are denoted with
d+. Blots are representative of results obtained in at least three independent experiments.
doi:10.1371/journal.pone.0013545.g001

Electrophiles Inactivate PTEN
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This trait should also facilitate alkylation of PTEN by a, ß–

unsaturated carbonyls. We used CyPG-biotin analogs, which have

an electrophilic b-carbon capable of nucleophilic addition

(Michael reaction), as chemical models to test this hypothesis

[30]. Alkylation of any cellular proteins by these analogs would

introduce a biotin epitope de novo (Figure 2A). PGA1-biotin and

D12 PGJ2-biotin were both taken up into MCF-7 cells and formed

covalent adducts with ,20 proteins (Figure 2B). D12 PGJ2-biotin

(a bi-functional dienone) was more reactive than PGA1-biotin

(mono-functional enone), agreeing with others who reported ,20-

30 protein targets modified by cyPG-biotin in 3T3 cells or

mitochondria [31,32]. Sequestration of de novo biotinylated cellular

proteins on NA beads, followed by immunoblot with anti-PTEN

antibodies, showed that PTEN formed a covalent adduct ,10-fold

more readily with D12-PGJ2-biotin than with PGA1biotin

(Figure 2C, lane 4 vs lane 3).

The a, ß–enone, D12-PGJ2, interferes with PTEN
suppression of Akt kinase

Growth factors, insulin, and other stimuli prompt PI3-K to make

PIP3, which recruits PKB/Akt kinase to the cell membrane where

PDK1/2 phosphorylates Akt Thr308 and Akt Ser473 residues,

respectively [33,34,35]. PTEN down-regulates PKB/Akt activation

by metabolizing PIP3 to PIP2 [36]. a, ß–unsaturated carbonyls that

alkylate cellular PTEN may interfere with its suppression of Akt

kinase. A representative a, ß–enone, D12-PGJ2, caused a concen-

tration and time dependent increase in phospho-(T308) Akt in MCF-

7 cells. As little as ,2 mM D12-PGJ2 caused a half-maximal response

(Figure 3A). Increases in cellular phospho-(T308)Akt were detectable

at 10 min, maximal at 30 min, and durable for .120 min

(Figure 3B). D12-PGJ2 increased formation of phospho-(T308)Akt

without altering formation of phospho-(S241)PDK1 (the kinase that

phosphorylates T308 of Akt), and without altering PTEN protein

Figure 2. CyPG biotin analogs: model a, ß–unsaturated carbonyls alkylate cellular PTEN. (A) Michael addition reaction between PTEN and
a D12-PGJ2-biotin analog. Following treatment of cells with cyPG-biotin, proteins with a de novo biotin epitope were sequestered onto neutravidin
beads (NA Pulldown), then fractionated by SDS-PAGE for immunoblotting. (B) Anti-biotin immunoblot of proteins from lysates of MCF-7 cells treated
with DMSO (lane 1), 10 mM PGA1-biotin (lane 2), and 10 mM D12PGJ2-biotin (lane 3). D12-PGJ2 biotin formed a covalent adduct with proteins more
readily than PGA1-biotin (arrowheads). (C) Anti-PTEN immunoblot of cellular PTEN that formed a covalent adduct with cyPG-biotin (NA Pulldown)
relative to total PTEN (Cell Lysate) from MCF-7 cells treated with DMSO (lane 1), 1 or 10 mM PGA1-biotin (lanes 2, 3), and 1 or 10 mM PGJ2-biotin (lanes
4, 5). Blots are representative of results obtained in at least three independent experiments.
doi:10.1371/journal.pone.0013545.g002

Electrophiles Inactivate PTEN
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expression (Figure 3C). These data suggest that D12-PGJ2

interfered with PTEN’s capacity to restrain activation of Akt kinase.

Consistent with this interpretation, co-treatment of cells with cyPGs

plus 50 mM LY294002, lowered levels of phospho-(T308)Akt by

inhibiting PI3-K, at the apex of the PI3-K/RPDK1/2RAkt kinase

cascade (Figure 3C, lanes 3 vs 2, and 6 vs. 5). Furthermore, 1 mM of

various PGA and PGJ isomers, and other a, ß–enones directly

inhibited isolated PTEN enzyme [Table 1]. The electrophilic b
carbon of cyPGs is essential for inhibition, since a structurally similar,

but non-electrophilic cyPG, PGB1, was inactive.

Structure-activity experiments showed that various J-series cyPGs,

including PGJ2, D12 PGJ2 and 15-deoxy- D12, 14-PGJ2, increased

phospho-(T308)Akt in MCF-7 cells, compared to vehicle or their

precursor PGD2 (Figure 3D). PGA1 had a modest effect on cellular

Akt phosphorylation (Figure 3C, lane 5), which corresponds with its

weaker covalent modification of cellular PTEN (Figure 2C, lane 3).

Activated phospho-(T308/S473)Akt kinase can phosphorylate

different protein substrates that regulate cell proliferation and fate

Figure 3. The a, ß–unsaturated enone D12PGJ2 interferes with PTEN suppression of Akt activation. (A) Immunoblots of phospho-
(T308)Akt relative to total Akt in lysates from MCF-7 cells treated 30 min with 0–20 mM D12-PGJ2. The bar graph shows the increase in phospho-
(T308)Akt/total Akt (mean 6 s.e.m) from n$3 separate experiments. (B) Immunoblot of phospho-(T308)Akt relative to total Akt in lysates from MCF-7
cells treated with 20 mM D12-PGJ2 for 0–120 min. The bar graph shows the increase in phospho-(T308)Akt/total Akt (mean 6 s.e.m) from n = 4
separate experiments. (C) Immunoblots of total Akt, phospho-(T308)Akt, PTEN, phospho-(S241)PDK1 from lysates of MCF-7 cells treated 30 min with
20 mM D12-PGJ2 (lane 2, 3) and 20 mM PGA1 (lane 5, 6) in the presence of the PI3-K inhibitor 50 mM Ly294002 (lane 3, 6) or DMSO vehicle (lane 2, 5).
(D) Immunoblot of phospho-(T308)Akt relative to total Akt in lysates from MCF-7 cells treated 4 hrs with vehicle, the cyclopentenones - PGJ2, D12-
PGJ2, and 15-deoxy-D12-PGJ2, or their precursor PGD2. For (C) and (D), blots are representative of results obtained in three independent experiments.
doi:10.1371/journal.pone.0013545.g003

Table 1.

Test Compound PTEN Activity

% Inhibition

Vehicle 0

10 mM PGB1 562

1 mM PGA1 3765

1 mM PGA2 4063

1 mM PGJ2 4865

1 mM D12-PGJ2 5664

1 mM 15-deoxy-D12, D12-PGJ2 7363

10 mM Acrolein 4066

10 mM 4-hydroxy-2-nonenal 5762

Mean 6 sem, n = 3.
doi:10.1371/journal.pone.0013545.t001

Electrophiles Inactivate PTEN
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[35]. Phosphorylation of Akt substrates with an RxRxx-phospho-

S/T epitope, coincided with increased phospho-(T308)Akt in

MCF-7 cells treated with 10 mM D12-PGJ2 (Figure 4A). Akt

kinase activation also coincided with Akt-dependent proliferation

in MCF-7 cells treated with 1–10 mM D12-PGJ2 (Figure 4B).
This finding is consistent with reported bi-phasic actions of cyPGs,

whereby they increase proliferation of cultured cells at ,1 mM

[37,38], while they decrease proliferation or cause apoptosis by

modifying other protein targets at ,50 mM [39].

a, ß–unsaturated carbonyls cause a time-dependent
accumulation of cellular phospho-(S473)Akt kinase
(active) R phospho-(S9)GSK3b (inactive) R b-catenin
and a rise in nuclear b-catenin signaling

GSK3b converts b-catenin to phospho-(S33/37/T41) b-catenin,

which is rapidly eliminated by the 26S proteasome [40]. GSK3b

acts in concert with the tumor suppressor APC. In cells with

mutant APC, or when WNT ligands stimulate cells with wild type

APC, GSK3b fails to phosphorylate b-catenin, which allows it to

accumulate, associate with other nuclear transcription factors and

express its target genes (e.g. c-myc, cyclin D1) [41]. PTEN can block

b-catenin accumulation/signaling by favoring retention of active

GSK3b and inactive PKB/Akt kinase in some [42,43], but not all

experimental systems [44,45]. Accordingly, inactivated PTEN

should augment b-catenin signaling by favoring retention of

inactive phospho-(S9)GSK3b and active phospho-(S473) Akt

kinase. We thus hypothesized that these electrophilic mediators

may affect ß-Catenin signaling through this mechanism. To

investigate this further, we used HEK 293 cells which have an

intact ß-Catenin signaling pathway. We found that the different a,

ß–unsaturated carbonyls that alkylated PTEN (6 mM D12 PGJ2,

6 mM 4-HNE and 20 mM acrolein) all caused a time-dependent

rise in phospho-(S473)Akt (i.e. active Akt kinase), with a

Figure 4. a, ß–unsaturated carbonyls interferes with Akt kinase and downstream signaling in MCF7 and HEK 293 cells. (A)
Immunoblots of phospho-(T308)Akt, total Akt, and several phosphoproteins with (K/R)-x-(K/R)-xx-(S/T), a motif recognized and phosphorylated by
active phospho-(T308)Akt, in lysates from MCF-7 cells treated 0 and 10 mM D12-PGJ2. (B) Relative proliferation of MCF-7 cells (mean 6 s.e.m, n = 4)
treated with 0, 1, and 10 mM D12-PGJ2 alone (&), or in the presence of 10 mM of inhibitor IV (&), an Akt kinase inhibitor. (C) Immunoblots of
phospho-(S473)Akt, total Akt; phospho(S9)GSK3b, total GSK3b; and b-catenin and tubulin in lysates from HEK 293 cells after treatment for 0,1, 3, 6 and
16 hrs with 6 mM D12PGJ2, 6 mM 4-HNE or 20 mM acrolein. For (A) and (C), blots are representative of results obtained in three independent
experiments.
doi:10.1371/journal.pone.0013545.g004

Electrophiles Inactivate PTEN
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corresponding rise in phospho-(S9)GSK3b (i.e. inactive GSK3b)

and b-catenin (Figure 4C). To determine if a, b–unsaturated

carbonyls enhanced nuclear b-catenin signaling, we used HEK

293 cells engineered to stably express WNT3A and Super-

TopFlash (STF) reporter gene [46]. These cells, called STF3A

cells, thus secret WNT3A, an autocrine/paracrine stimulus for

FZD receptors that slows APC-dependent degradation of b-

catenin (Figure 5A). Nuclear b-catenin signaling in STF3A cells is

Figure 5. a, ß–unsaturated carbonyls enhance nuclear b-catenin signaling in STF3A cells: structure activity relationships. (A) STF3A
cells harbor a stably integrated transgene which expresses WNT3A (1). When secreted, WNT3A elicits autocrine/paracrine stimulation of Fzl receptors
(2) which inhibits APC-dependent turnover of b-catenin (3). If b-catenin is not phosphorylated by GSK3b, it can accumulate as a b-catenin:LEF dimer
(4) and bind to promoters on stably integrated b-catenin:luciferase reporter gene (SuperTop Flash) (5). Luciferase activity in cell lysates is
proportional to nuclear b-catenin signaling. (B) Nuclear b-catenin signaling (luciferase luminescence) in STF3A cells (26104 cells/well) grown for
24 hrs in medium containing 0, 10, or 30 ng/ml of DKK1 (mean + s.d., n = 3). DKK1, a wnt antagonist, inhibited b-catenin signaling (C) Nuclear b-
catenin signaling in STF3A cells (26104 cells/well) grown for 24 hrs in medium containing 20 mM of cyPGs; a,b-enals or primary PGs. Several reactive
electrophiles enhanced b-catenin signaling by ,2–4 fold. Histogram represents the mean + s.e.m., n = 4.
doi:10.1371/journal.pone.0013545.g005

Electrophiles Inactivate PTEN
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proportional to their luciferase expression (activity), and they are

responsive to DKK1, a WNT antagonist that inhibited b-catenin

signaling in STF3A cells in a concentration-dependent manner

(Figure 5B).

Several reative carbonyl metabolites, each with an electrophilic

a,b enone or enal substituent, enhanced expression of the b-

catenin:luciferase reporter gene in STF3A cells (Figure 5C).

Luciferase reporter activity rose by ,4-fold over baseline (p,0.01)

in STF3A cells incubated with D12 PGJ2 or 4-HNE; by ,3-fold

(p,0.01) in cells with other PGJ analogs, acrolein or 4-ONE; and

by ,1.5-fold (p,0.05) in cells with PGA2. Consistent with our

mechanistic hypothesis, neither PGB2 nor MDA had a detectable

effect. PGB2 is a cyPG, but tautomerism prevents the charge de-

localization required to create an electrophilic b carbon, which is

required for protein alkylation. MDA (b-hydroxy-acrolein) pene-

trates cell membranes poorly because it is .99% ionized at

physiological pH ,7.4 used in our experiments. Neither PGE2

nor other primary PG metabolites of COX-1 or -2 had any effect

on nuclear b-catenin signaling in STF3A cells. We draw attention

to the fact that ectopic over-expression of EP receptors in HEK

293 cells was required to elicit any PGE2 mediated b-catenin

signaling [47]. The weak response to PGE2 and other PG’s in

Figure 5C may reflect the constitutive levels of EP, FP, DP or IP

receptors in STF3A cells or rapid metabolism of PGs, or both.

Enhanced b-catenin signaling in STF3A cells was concentration

dependent between 2–20 mM for acrolein, 4-HNE and D12 PGJ2

(Figure 6A). Depletion of cellular GSH to ,10% of baseline by

treatment with 100 mM BSO potentiated b-catenin signaling, e.g.

in STF3A cells treated with 2 and 6 mM D12 PGJ2 (Figure 6B).

This is consistent with the role of reduced glutathione in the

conjugation of reactive metabolites, and protection of redox

sensitive proteins from alkylation [20].

Discussion

The PTEN tumor suppressor gene is frequently mutated or

inactivated in advanced cancers [26,48]. PTEN is a phosphoino-

sitide-3-phosphatase that metabolizes PIP3 to PIP2 [36], thereby

Figure 6. a, ß–unsaturated carbonyls enhance nuclear b-catenin signaling in STF3A cells:concentration-response relationships. (A)
Nuclear b-catenin signaling (luciferase luminescence) in STF3A cells (26104 cells/well) grown for 24 hrs in medium containing 0, 2, 6 and 20 mM each
of acrolein (%), D12 PGJ2 (&) and 4-HNE (&). (B) Nuclear b-catenin signaling in STF3A cells (26104 cells/well) grown for 24 hrs in medium containing
0, 2 or 6 mM of D12 PGJ2 alone (&) or D12 PGJ2 plus 100 mM BSO. GSH levels fell by 79% and 88% at 6 and 24 hrs after treating cells with BSO; 92–
95% of cells were still viable at 24 hrs. Bars represent the mean 6 s.e.m from n$3 separate experiments.
doi:10.1371/journal.pone.0013545.g006

Electrophiles Inactivate PTEN
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counter-regulating PKB/Akt, a serine/threonine kinase proto-

oncogene that controls anabolic growth and specification of cell

fate [33,34,35]. PTEN, itself, is regulated post-translationally by

phosphorylation [49], acetylation [50], and reversible oxidation of

its catalytic cysteine124 residue [28,29]. Oxidation of cellular

PTEN can involve H2O2 derived from NADPH oxidase [51],

superoxide dismutase [52], or enzymatic peroxidation of arachi-

donic acid (AA) by COX-1, COX-2 or 5-LOX [53]. All of these

enzymes are commonly over-expressed and activated by inflam-

mation or neoplastic transformation. PTEN oxidation, and any

attendant pathophysiology, varies with the degree of cellular

exposure to reactive oxygen species (ROS). In these studies, we

demonstrate that the chemistry which facilitates oxidation of

PTEN can also facilitate its alkylation by electrophilic a, ß-enals

and a, b-enones [19,20].

PTEN epitomizes the adaptation of redox-responsive thiols for

cell signaling, as well as their potential vulnerability to by-products

of oxidative stress and inflammation. PTEN is inactivated by two

distinctive redox-mediated processes: 1) intra- or inter-molecular

disulfide formation by ROS and 2) thiolate carbonylation (Michael

addition) by electrophilic a, ß–unsaturated carbonyls (Figure 1–3).

Hydrogen peroxide (H2O2), a prototypical ROS, inhibits cellular

PTEN by directly oxidizing its catalytic Cys124 to a sulfenic acid

intermediate, which then forms an inactive, intra-molecular

Cys124–71 disulfide [28,29]. Our data show that several represen-

tative, electrophilic carbonyl species (a,ß-enals and a,ß-enones),

which can occur endogenously as byproducts of lipid peroxidation

during inflammation or oxidative stress, alkylate and inactivate

PTEN. Inactivation of PTEN by redox-mediated processes causes

an increase in activity of the proto-oncogene Akt. Hyperactivation

of Akt increases proliferation and survival of many different

cancers.

Signaling by H2O2 spans a wide pathophysiological continuum

[54] and a comparable role for reactive electrophiles seems

plausible. Reactive carbonyl species such as acrolein, 4-HNE and

D12PGJ2 represent a sub-set of electrophiles commonly produced

during oxidative stress and inflammation. These findings might

extrapolate to electrophilic agents lacking a carbonyl but

containing other electron withdrawing groups, and we refer to

them generally as ‘‘reactive electrophiles’’. First, like H2O2,

reactive electrophiles occur in vivo during inflammation and

oxidative stress [16,18,19,22]. Second, reactive electrophiles

covalently modulate other proteins that regulate important

signaling processes; i.e. LKB1/STK11 [55], NFkB [56], and

IKKb. Third, H2O2 and reactive electrophiles both originate from

a combination of spontaneous and enzymatic processes, which

often coincide in inflamed tissues [57]. H2O2 derives from

superoxide anion, O2
2, the primary metabolite of NADPH

oxidases. Spontaneous and enzymatic dismutation converts O2
2

into H2O2. Likewise, spontaneous and enzymatic lipid peroxida-

tion generates acrolein and 4-HNE [18,57]. cyPGs originate from

the lipid endoperoxide PGH2, the primary metabolite of COX-1

and -2. Enzymatic and spontaneous scission of endoperoxide

bonds converts PGH2 into PGE2 and PGD2; albumin/serum then

causes their dehydration into PGA2, PGJ2, and their isomers

[14,16,24].

While speculative, it appears that ROS and reactive electro-

philes (H2O2, acrolein, 4-HNE, D12 PGJ2) may have both evolved

to play disparate roles in innate immunity: 1) annihilating

pathogens and 2) resolving inflammation. Analogous to inactiva-

tion of NFkB and IKKab, temporary inactivation of the PTEN

tumor suppressor protein by its alkylation, and attendant

activation of PKB/Akt kinase proto-oncogenes, might help

normalize morphology and histology at acutely inflamed tissues

by releasing their restriction on cell proliferation, anabolic growth

and fate specification [34,35]. In ordinary situations repair and

resolution should help terminate innate immune inflammation

(Figure 7,a). However, this mechanism might also confer

inescapable risks if PTEN were inactivated errantly or persistently.

Furthermore, reactive electrophiles also inactivate other notable

tumor suppressors, including p53 [30] and LKB1/STK11 [55].

This combined and sustained inactivation of tumor suppressors

could contribute significantly to inflammation-associated tumori-

genesis and subsequently prolong the cycle of tumor-associated

para-inflammation (Figure 7,b). Overall, our data and model

align with the observation that tumors are wounds that fail to heal

[58]. In this situation, tumor progression may derive partly from

mal-adaptation of a molecular mechanism that evolved to

terminate and resolve innate immune inflammation.

Inflammation is a critical component of tumor progression.

Many cancers arise from sites of infection, chronic irritation and

inflammation. The tumor microenvironment, which is comprised

largely of inflammatory cells, plays a major role in the neoplastic

process, fostering proliferation, survival, and migration. We show

herein that reactive carbonyl species that are commonly produced

during inflammation covalently modify and inactivate PTEN

tumor suppressor. Importantly, the mechanism we describe might

also extrapolate to: 1) other electrophilic species generated by

inflammation, oxidative or xenobiotic stress (i.e. other a, ß

unsaturated aldehydes and ketones; allylic or vinyl epoxides;

quinones, chlorhydrins, chloramines, vinyl sulfones; and 2) other

members of the PTP superfamily that are redox sensitive. These

studies extend our understanding of the mechanisms by which

inflammation contributes to the initiation and progression of

cancer.

Materials and Methods

Materials
We used minimum essential medium (MEM), supplements,

bovine insulin, gentamicin, human embryonic kidney HEK-293

cells, and HEK-293 cells containing the Epstein Barr virus nuclear

antigen 1 gene (HEK-EBNA1) (Invitrogen; Carlsbad, CA); MCF-7

cells (HTB-22, American Type Culture Collection; Manassas,

VA); PGs, cyPG-biotin analogs, and WST proliferation assay kits

(#10008883) (Cayman Chemical; Ann Arbor, MI); CompleteTM

protease inhibitor mixture (Roche Molecular Biochemicals;

Indianapolis, IN); lysis buffer 0.6% Igepal CA-630 in PBS

(Promega; Madison, WI); NeutrAvidin conjugated beads, NEM-

biotin and goat anti-biotin polyclonal antibodies (#31852) (Pierce

Chemical; Rockford, IL); a PI3-K inhibitor, LY294002 (# 9901),

polyclonal antibodies against PTEN (#9552), Akt (#9271),

phospho-(Thr308)Akt (#9375), phospho-(S473)Akt (#9271), phos-

pho-(S9)GSK3b (#9336), GSK-3b (# 9332), phospho-(Ser33/37/

Thr41) b catenin (#9561S) K/R-x-K/R-x-x-S/T(PO4) epitopes

(#9614) and phospho-(S241)PDK1 (#3061) (Cell Signaling

Technologies; Danvers, MA); b-catenin (# C19220)(BD Trans-

duction Laboratories; Franklin Lakes, NJ); HRP (horseradish

peroxidase) conjugated secondary antibodies (Santa Cruz Bio-

technology; Santa Cruz, CA); polyvinylidene difluoride (PVDF)

membranes and Western LightningTM chemiluminescence re-

agents (Perkin-Elmer; Waltham, MA); PTEN enzyme assay kits (#
17–351)(Upstate Biotechnology; Lake Placid, NY); Akt inhibitor

IV (#124011) (Calbiochem; San Diego, CA); acrolein (#01680),

crotonaldehyde (# 262668), L-Buthionine-sulfoximine (BSO)

(B2515), H2O2 30% solution (H-1009), malondialdehyde (Fluka

Cat.# 63287) (Sigma-Aldrich; St Louis, MO); DKK-1 (#1096-
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DK-010) (R & D Systems; Minneapolis, MN) and Luciferin

(Cat.# 10101-2) (Biotium Inc., Hayward, CA).

Cell culture
MCF-7 breast cancer cells (ATCC) were grown in MEM with

10% v/v FBS, 2 mM L-glutamine, 1.5 g/l NaHCO3, 0.1 mM

non-essential amino acids, 1 mM sodium pyruvate, 0.01 mg/ml

bovine insulin, and 0.01 mg/ml gentamicin. HEK-293 cells

(ATCC) were grown in MEM with 10% fetal calf serum, 100

units of penicillin/streptomycin, 2 mM L-glutamine, and 1 mM

pyruvate.

Identification of modified PTEN by tagging with biotin-
conjugated maleimide

MCF-7 cells (MEM 1% v/v FBS) were treated for 30 min with

vehicle, or reactive electrophiles (10 mM D12-PGJ2, 4-HNE,

acrolein), or 100 mM H2O2. Media was removed; cells were

frozen at 280uC for 15 min; transferred to vacuum and incubated

1 h, 25uC with 1 ml of O2-free extraction buffer (50 mM

NaHPO4, pH 7.0, 1 mM EDTA, 10 mM NEM [N-ethyl

maleimide], 10 mM IAA [iodoacetic acid], 1% Triton X-100,

5 mM NaF, 50 mg/ml leupeptin and 50 mg/ml aprotinin). This

treatment selectively alkylates all reduced thiols in PTEN, but not

oxidized thiols or thiols modified by Michael addition with

reactive electrophiles. Samples were washed in 1 ml of O2-free

extraction buffer then transferred to a 15-ml conical tube. After

adding SDS to a final concentration of 1% v/v, the mixture was

held 2 h at 25uC in the dark, and proteins were precipitated with

TCA [trichloroacetic acid], 10% v/v for 1 h. The precipitate was

washed twice with acetone to remove traces of TCA, NEM, and

IAA. Precipitated proteins were solubilized and oxidized or

modified cys residues were reduced in 0.1 ml of O2-free reducing

buffer (50 mM Hepes-NaOH, pH 7.7, 1 mM EDTA, 2% SDS

and 4 mM DTT) for 30 min at 50uC. Reduced proteins were

subsequently biotinylated with 0.9 ml of a solution containing

50 mM NaHPO4 pH 7.0, 1 mM EDTA, and 1 mM biotin

conjugated to polyethylene oxide-maleimide for 30 min at 50uC.

Proteins were precipitated in 10% v/v TCA for 1 h. The

precipitate was isolated by centrifugation, washed with dry ice-

chilled acetone, and solubilized in 0.3 ml of 50 mM Hepes-

NaOH, pH 7.7, 1 mM EDTA, and 2% SDS. The sample was

then diluted with 0.3 ml of the same solution without SDS. 15 mg

protein was assayed by immunoblot for PTEN. A separate sample

(200 mg protein) was added to 100 mL immobilized NA beads in

1 ml PBS, 0.4% v/v Tween 20. This suspension was rotated 16 hr

at 4u, centrifuged, and beads were washed twice with PBS/0.4%

v/v Tween 20. Loading buffer (50 mL) with 5% BME was added

directly to beads, boiled for 10 min to release maleimido-

biotinylated proteins, and 20 mL was assayed by immunoblot for

total and oxidized PTEN.

Identification of PTEN occurring as an intra-molecular
disulfide

MCF-7 cells (MEM 1% v/v FBS) treated for 30 min with

20 mM D12-PGJ2, 4-HNE, acrolein, 15-HpETE or for 10 min

Figure 7. Model Depicting Hypothetical Roles of PTEN Alkylation in Inflammation and Cancer.
doi:10.1371/journal.pone.0013545.g007
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with 100 mM H2O2 were lysed and proteins (15 mg) in the lysates

were fractionated by non-reducing SDS-10% PAGE, followed by

anti-PTEN immunoblot to distinguish native PTEN from oxidized

PTEN occurring as an intra-molecular Cys124-Cys71 disulfide [28].

Identification of PTEN covalently modified by
cyclopentenone PG-biotin analogs

MCF-7 cells (MEM 1% v/v FBS) treated 1 hr with 1–10 mM of

the aminopentylbiotinamide analogs of PGA1 or D12 PGJ2, were

lysed, sonicated 106for 1 s at 4uC, then centrifuged 10,0006g for

10 min. Supernatant with 100 mg of protein was incubated with

100 ml of NA beads in 1 ml PBS with 0.4% Tween 20 for 16 h at

4uC to sequester proteins containing a biotin epitope introduced de

novo by reaction with cyPG-biotin analogs. The beads were then

centrifuged at 5006 g for 5 min to isolate neutravidin-biotin

complexes (NA pulldown). The beads were washed 36with 1 ml

of PBS/0.4%Tween 20 then boiled 5 min in Laemmli loading

buffer with 5% BME to release bound proteins. These samples

were analyzed by immunoblotting for PTEN or proteins with a

biotin epitope.

Western immunoblotting
Following treatment with reactive electrophiles, H2O2, or

enzyme inhibitors, MCF-7 or HEK-EBNA cells were lysed in

250 mM sucrose, 50 mM Tris pH 7.4, 5 mM MgCl2, 1 mM

EGTA, 16 CompleteTM protease inhibitor, 2 mM NaF and

2 mM sodium orthovanadate. Samples were dissolved in 50 ml of

Laemmli loading buffer, 0.5% BME and heated at 95uC for

10 min. Samples (15–30 mg protein) were fractionated by SDS-

PAGE and transferred to PVDF membranes. Membranes were

blocked with 5% w/v nonfat dry milk in TBS-T, then incubated

for 16 h at 4uC with primary antibodies directed against PTEN

(1:1000), biotin (1:10,000), Akt (1:1000), phospho-(T308)Akt

(1:1000), phospho-(S473)Akt (1:1000), phospho-(S241)PDK1

(1:1000), GSK3b (1:1000), phospho-(S9)-GSK3b (1:1000),

RxRxx-phospho-(S/T) (1:1000) or b-catenin (1:1000) followed

by HRP-conjugated secondary antibody (1:5000). Antigen-anti-

body complexes were detected with Western LightningTM ECL

reagents. The intensity of chemiluminescent protein-antibody

complexes was quantified with a Kodak Image Station 440TM. Bar

graphs depict the mean 6 S.E. from densitometric analyses of

separate experiments.

Akt phosphorylation and signaling
,16106 MCF-7 cells (MEM 1% v/v FBS) were treated with 0–

20 mM D12-PGJ2 for 30 min at 37uC, or with 20 mM D12-PGJ2

for 0–120 min to determine concentration and time dependence.

,16106 MCF-7 cells were also treated 30 min at 37uC with

10 mM of various PGs, including PGD2 and its cyPG dehydration

products PGJ2, D12-PGJ2 and 15-deoxy-D12, D14-PGJ2; PGE2

and its cyPG dehydration products PGA2, its epimer 8-iso-PGA2,

and its isomer PGB2 to determine structure-activity relationships.

In certain experiments cells were also treated with 50 mM

LY294002, 5 mM troglitazone, or 10 mM Akt inhibitor IV. Lysates

from treated cells (15 mg protein) were fractionated on SDS-10%

PAGE and proteins were transferred to PVDF membranes for

immunoblot analysis of Akt, phospho-(T308)Akt, phospho-

(S473)Akt, Akt substrate proteins containing the K/R-x-K/R-x-x-

S/T(PO4) epitope, phospho-(S241)PDK1, and PTEN.

Wnt/b-catenin signaling in STF3A cells
STF cells are HEK-293 cells containing a stably integrated

SuperTopFlash (STF) transgene with TCF binding sites upstream

of a luciferase reporter gene [59]. STF cells have negligible b-

catenin/TCF-LEF transactivation and luciferase expression unless

they are exposed to a Wnt ligand, e.g. WNT3A. We derived a

subsidiary cell line, designated STF3A, by transfecting parental

STF cells with a linearized pPGK + Wnt3A plasmid and a

linearized blasticidin resistance plasmid for cell selection. STF cells

grown on 10-cm plates were transfected using LipofectAMINE

2000 (Invitrogen). At 24 h after transfection, cells were serially

diluted, re-plated and grown in medium with blasticidin (10 mg/

ml) for 14 d. Forty colonies were screened for b-catenin/TCF-LEF

activity by measuring luciferase activity normalized to total protein

concentration. The selected STF3A clones, which stably expressed

and secreted WNT3A, were maintained at 37uC in DMEM with

10% FBS, penicillin/streptomycin and 10 mg/ml blasticidin in a

humidified incubator with 5% CO2. We measured wnt/b-catenin

signaling in STF3A cells by quantifying their Super TopflashH
luciferase reporter signal. STF3A cells (20,000/well) were plated in

white, clear bottom 96-well plates coated with poly-L-lysine and

grown 24 h at 37uC. Medium was removed and replaced with

200 ml fresh medium containing 0–300 ng/ml DKK1; 2–20 mM

of a,b-enone containing cyPGs; 2–20 mM of a,b-enal metabolites

derived from lipid peroxidation (acrolein, MDA, crotonaldehyde,

4-HNE, 4-ONE); 20 mM of primary PGs, PGH2, PGE2, PGF2a,

PGD2, PGI2; 20 mM BSO, a glutathione synthesis inhibitor; other

inhibitors, or DMSO vehicle. STF3A cells were incubated for 24 h

at 37uC, washed with 200 ml PBS at 4uC, and lysed with 20 ml lysis

buffer. Luciferin (60 ml/well) was added and luciferase activity in

the lysates was quantified by fluorimetry. LDH activity in the

lysate, an index of cell count, was quantified by spectroscopy. The

ratio of luciferase/LDH activity is proportional to nuclear b-

catenin signaling in STF3A cells.

Inhibition of PTEN Enzymatic Activity
Inhibition of PTEN with 0–30 mM reactive electrophiles was

quantified by using a PTEN enzyme assay kit (# 17–351, Upstate

Biotechnology).

Statistical analysis
Statistical significance at p,0.05 was assessed by analysis of

variance (ANOVA) with Bonferroni’s post-hoc test for compari-

sons among groups.
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