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Abstract

Dopamine (3-hydroxytyramine) is a well-known catecholamine neurotransmitter involved in multiple physiological
functions including movement control. Here we report that the major extracellular metabolite of dopamine, 3-
methoxytyramine (3-MT), can induce behavioral effects in a dopamine-independent manner and these effects are partially
mediated by the trace amine associated receptor 1 (TAAR1). Unbiased in vivo screening of putative trace amine receptor
ligands for potential effects on the movement control revealed that 3-MT infused in the brain is able to induce a complex
set of abnormal involuntary movements in mice acutely depleted of dopamine. In normal mice, the central administration
of 3-MT caused a temporary mild hyperactivity with a concomitant set of abnormal movements. Furthermore, 3-MT induced
significant ERK and CREB phosphorylation in the mouse striatum, signaling events generally related to PKA-mediated cAMP
accumulation. In mice lacking TAAR1, both behavioral and signaling effects of 3-MT were partially attenuated, consistent
with the ability of 3-MT to activate TAAR1 receptors and cause cAMP accumulation as well as ERK and CREB phosphorylation
in cellular assays. Thus, 3-MT is not just an inactive metabolite of DA, but a novel neuromodulator that in certain situations
may be involved in movement control. Further characterization of the physiological functions mediated by 3-MT may
advance understanding of the pathophysiology and pharmacology of brain disorders involving abnormal dopaminergic
transmission, such as Parkinson’s disease, dyskinesia and schizophrenia.
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Introduction

The phenylethylamine derivative dopamine (DA) plays an

important role in the brain as a neurotransmitter that mediates

many critical functions including motor control [1,2,3]. During

DA synthesis, L-DOPA is produced from the amino acid tyrosine

by tyrosine hydroxylase (TH) and further decarboxylated by L-

aromatic acid decarboxylase (L-AADC) to yield DA [1,2].

Synthesized DA is accumulated in synaptic vesicles [4,5], thus

becoming available for release into the extracellular space. After

release and activation of its receptors, DA undergoes dilution by

diffusion, but also becomes subject to metabolic degradation by

catechol-o-methyl transferase (COMT) [1,6,7]. This process yields

the major extracellular metabolite, 3-methoxytyramine (3-MT),

that is generally considered to be a biologically inactive

compound. At the same time, a large portion of released DA is

re-captured into dopaminergic terminals by the plasma membrane

dopamine transporter (DAT) [8,9], thus providing a large

intracellullar storage pool of recycled DA available for subsequent

re-release [10,11].

By using mice lacking the dopamine transporter (DAT-KO

mice) [9,11], we have developed a model of acute dopamine

deficiency, DDD mice (dopamine-deficient DAT-KO mice)

[12,13]. In the absence of DAT-mediated recycling mechanisms

in DAT-KO mice, neuronal DA levels become entirely dependent

on its de novo synthesis [10,11]. Pharmacological inhibition of DA

synthesis in these mice by the irreversible inhibitor of TH a-

methyl-p-tyrosine (aMT) induces prolonged depletion of dopa-

mine in the major dopaminergic regions of the brain such as

striatum. This acute DA deficiency results in the development of a

pronounced behavioral phenotype manifested as severe akinesia

and rigidity. As expected, the movement in DDD mice can be

restored by administration of the DA precursor L-DOPA or by

treatment with non-selective DA agonists [12,13]. We took

advantage of having this simple and reversible model of severe

DA deficiency to search for alternative treatments that can affect

movement control in the absence of DA [12,14]. Interestingly,

several amphetamine derivatives counteracted behavioral mani-

festations of DA deficiency in DDD mice in a DA-independent

manner. This led us to suggest that DA and DAT-independent
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targets of amphetamines may be responsible for these effects [12].

Among the several known targets of amphetamine derivatives, is

the newly identified, G protein-coupled trace amine associated

receptor 1 (TAAR1, also known as trace amine receptor 1, TA1)

[15,16,17,18,19]. Intriguingly, TAAR1 can be activated in vitro not

only by amphetamines but also by many other phenylethylamine

derivatives including trace amines themselves and monoamine

metabolites, including 3-MT [16,20,21,22]. While biogenic trace

amines such as tyramine, tryptamine, b-phenylethylamine,

octopamine and synephrine are found in various tissues in many

species in the kingdom Animalia, only tyramine and octopamine

have been recognized as neurotransmitters in invertebrates. Both

of these are critically involved in regulation of various physiolog-

ical functions such as circadian rhythms, emotional behaviors,

cardiovascular regulation, learning, memory and movement

[18,23,24]. To explore if trace amines or other endogenous

compounds active on TAAR1 could be involved in movement

control in mammals, we performed an unbiased screen of several

compounds that activate TAAR1 for their potential effects on

locomotor activity in akinetic DDD mice [12,13]. Unexpectedly,

we observed potent behavioral and biochemical effects of the

dopamine metabolite 3-MT that were partially dependent on

TAAR1. These observations indicate that 3-MT is not just an

inactive metabolite of DA but a neuromodulator that may play a

role of its own in motor control.

Methods

Animals
DAT-KO and TAAR1 knockout (TAAR1-KO) mice of mixed

C57BL/6J x 129Sv/J backgrounds were generated as described

[9,12]. All studies were conducted with approved protocols from

the Duke University Institutional Animal Care and Use Commit-

tee and were in accordance with the NIH guidelines for the Care

and Use of Laboratory Animals. 3–6 month old wild type (WT)

and knockout (KO) mice of both sexes and male C57BL/6J mice

were used in this study.

Drugs
Compounds or saline (0.9% NaCl) were administered intraper-

itoneally (i.p.) or subcutaneously (s.c.) in a volume of 10 ml/kg or

intracerebroventricularly (i.c.v.) in a volume of 4 ml. For i.c.v.

administration compounds were dissolved in artificial cerebrospi-

nal fluid and infused into the right lateral ventricle at a rate of

1 ml/min as described previously [25]. Corresponding vehicle

solutions were infused to respective control animals. All the

compounds used were from Sigma (St. Louis, MO).

Behavioral methods
Locomotor activity of DAT-KO and WT mice was measured in

an Omnitech CCDigiscan (Accuscan Instruments, Inc. Columbus,

Ohio USA) monitor under conditions of bright illumination

[12,26]. Activity parameters were continuously monitored and

tallied at 5 min intervals. To evaluate the effects of compounds in

DDD mice, DAT-KO mice were placed into activity monitor

chambers for 30 min and then treated systemically with aMT

(250 mg/kg, i.p.). 1 h after aMT administration a compound or

combination of drugs was injected systemically or i.c.v. and

various parameters of locomotor activity were monitored for up to

3 h. In cumulative dosing experiments, animals were treated with

increasing doses of compounds with a one hour interval. To assess

effects of 3-MT in normal and TAAR1-KO mice, the animals

were placed in the locomotor activity chamber and 30 min later

various doses of 3-MT were administered i.c.v.. To perform i.c.v.

administration in this paradigm, habituated mice were removed

from the experimental chamber, briefly restrained, i.c.v. injection

cannula was placed into the previously implanted (one week

before) guide cannula and infusion of 3-MT or vehicle (artifical

CSF) was performed for 4 minutes when animal was freely moving

in a home cage. After infusion, animals were put back into

experimental chamber and behavior was monitored for 90 min

after administration.

In vitro transfection of human TAAR1 and cAMP Assay
All cell culture reagents and buffers were from Gibco and

Sigma. Human embryonic kidney 293 (HEK-293) cells were

maintained in Minimum Essential Medium Eagle (MEM) medium

supplemented with 10% (vol/vol) of FBS, 2 mM glutamine and

0.05 mg/ml of Gentamicin at 37uC in a humidified atmosphere at

95% air and 5% CO2. Transient transfections were performed

24 h after cell seeding using calcium phosphate protocol. A

modified version of human TAAR1(hTAAR1) in which the first

nine amino acids of the b2-adrenergic receptor were added at N-

terminus of hTAAR1 to enable plasma membrane expression of

the receptor was used as previously described [21]. 5 mg of

hTAAR1 or of an empty vector for each ml of transfection

solution were used. To investigate effects of tyramine and 3-MT at

hTAAR1 we measured the cAMP response using the standard

cAMP column assay [21,27].

Antibodies and Western Blot Analyses
The antiphospho-ERK1/2 (Thr-202/Tyr-204), anti-ERK, anti-

phospho-CREB (Thr-34) and anti-CREB antibodies were pur-

chased from Cell Signaling Technology (Beverly, MA). Western

blot analyses of brain samples were performed as described in

Beaulieu et al. [28]. Briefly, mice were euthanized by decapitation,

after which the heads of the animals were immediately cooled by

immersion in liquid nitrogen for 6 s. The right hemisphere

striatum was rapidly dissected (within 60 s) on an ice-cold surface

and frozen in liquid nitrogen before protein extraction. Tissue

samples were homogenized in boiling 1% SDS solution and boiled

for 10 min. Protein concentrations were measured using a DC-

protein assay (Bio-Rad, Hercules, CA). Protein extracts (25 or

50 mg) were separated on 10% SDS/PAGE and transferred to

nitrocellulose membranes. Blots were incubated with primary

antibodies overnight at 4uC. Immune complexes were detected

using appropriate peroxidase-conjugated secondary antibodies

(Jackson Immuno-Research, West Grove, PA) and a chemilumi-

nescent reagent (SuperSignal West-Pico; Pierce Biotechnology,

Rockford, IL). Densitometric analysis was performed within the

linear range using IMAGEQUANT V1.1 (GE Healthcare Life

Sciences, Piscataway, NJ). For quantitative analysis, total proteins

were used as loading controls for phosphoprotein signals. In all

these experiments, results were normalized to respective controls

and presented as means 6SEM.

To analyze effect of 3-MT on TAAR1-mediated intracellular

signaling events in HEK-293 cells, hTAAR1 was expressed as

described [21]. After 24 of transfection, cells were lysed with RIPA

buffer supplemented with protease (Roche Diagnostic) and

phosphatase (Thermo Scientific) inhibitors. After 10 minutes of

incubation on ice, lysates were centrifuged for 10 minutes at

13000 rpm and supernatants were collected for protein concen-

tration assay (BCA protein assay kit, Thermo Scientific). 25 mg of

protein extract were separated on 10% SDS/PAGE and

transferred on nitrocellulose membrane. All primary antibodies

were incubated overnight at 4uC. Appropriate peroxidase-

conjugate secondary antibodies (Pierce) and chemiluminescent

reagents (ECL detection reagent, Amersham) were used. Total

3-MT Is a Neuromodulator
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protein levels were used as loading controls for phosphoprotein

signals. Results were normalized to respective controls.

Data analysis
The data are presented as means 6 SEM and analyzed using a

two-tailed Student’s t-test, one-way ANOVA followed by Dunnet’s

multiple comparison test, two-way ANOVA followed by Tukey’s

HSD test or a two-tailed Mann-Whitney U-test where

appropriate.

Results

Unbiased screen of trace amines and monoamine
metabolites for potential effects on movement in DDD
mice

The ability of a-methyl-p-tyrosine (aMT), a potent irreversible

inhibitor of TH, to selectively deplete brain DA in mice lacking the

DAT provided a simple in vivo model of DA deficiency to use as a

test system to analyze DA-independent actions of various

compounds [12]. It should be noted, that while the global nature

of DA deficiency may limit the use of this model in studies aimed

at deciphering particularities of brain circuitry at normal

conditions, it provides certain advantages in studies aimed at

uncovering DA-independent mechanisms involved in motor

control. Thus, we elected to employ this model to perform an

unbiased screen of putative TAAR1 ligands and monoamine

metabolites for potential actions on movement control. Briefly,

DAT-KO mice were treated with aMT and 1 hour later, when

maximal depletion of DA was achieved the tested compounds

were administered. In an initial screening, no significant effect on

motor control was observed when these compounds were

administered systemically (intraperitoneal injection; i.p.) [12].

Since many of these compounds have limited capacity to pass

the blood-brain barrier (BBB), we administered them intracer-

ebroventricularly (i.c.v.) using a paradigm of successively increas-

ing the concentration given to a single animal (Table 1). The trace

amines p-tyramine, m-tyramine, octopamine, tryptamine, b-

phenylethylamine (b-PEA) and monoamine metabolites 4-meth-

oxytyramine (4-MT), metanephrine, normetanephrine, 3,4-dihy-

droxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)

caused no significant effect in akinetic DDD mice (Table 1, data

not shown). Unexpectedly, the extracellular DA metabolite 3-

methoxytyramine (3-MT) induced significant behavioral activation

in DDD mice (Figure 1A). This activity however, was mostly

presented as a set of disorganized abnormal movements that

included tremor, head bobbing, straub tail, grooming and

abnormal orofacial movements rather than normal forward

activity. To verify that this endogenous compound can affect a

receptor-mediated cellular signaling mechanism we collected

striatal tissue of DDD mice treated with 36 mg of 3-MT (30 min

after 3-MT administration) and performed analysis of ERK

activity by Western blot. We elected to analyze ERK signaling as it

represents one of the most common signaling mechanisms

involved in multiple striatal functions, including movement control

[29,30,31]. As presented in Figure 1B, 3-MT caused a significant

increase in the level of phosphorylated Erk2, thus indicating that

certain receptor-mediated processes in striatal cells are affected by

this treatment.

Furthermore, to directly explore if these motor effects could be

mediated via the postulated activation of DA receptors by 3-MT at

high concentrations [48,49], we pre-treated an additional group of

DDD mice with a combination of D2 DA receptor antagonist

raclopride (2 mg/kg, i.p.) and D1 DA receptor antagonist SCH-

23390 (0.1 mg/kg, i.p.) 30 minutes before 3-MT (90 mg) infusion.

Infusion of 3-MT at this behaviorally active concentration

(Figure 1A) to saline pre-treated DDD mice caused abnormal

movements as evidenced by significantly increased horizontal

activity counts in 1 hour period (10976459 in saline pre-treated 3-

MT infused group vs. 50627 in saline pre-treated vehicle infused

controls, * p,0.05; Student’s t-test n = 4-6 per group). Since DDD

mice demonstrate spontaneous severe akinesia and rigidity [12],

pre-treatment with DA antagonists did not induce additional

locomotor effects in vehicle infused controls. Importantly, pre-

treatment with DA antagonists did not affect the ability of 3-MT to

induce abnormal movements (horizontal activity counts/1 hour:

12596661 in DA antagonists pre-treated 3-MT infused group vs.

2462 in DA antagonists pre-treated vehicle infused controls,

* p,0.05; Student’s t-test, n = 4–6 per group). By comparison, the

same pre-treatment protocol involving combination of raclopride

and SCH-23390 at relatively high doses completely abolished

locomotor-restoring effect of L-DOPA/carbidopa (50/50 mg/kg,

i.p.) in DDD mice [12]. Thus, DA receptors are unlikely to be

involved in the observed locomotor effects of 3-MT.

Table 1. Trace amines and monoamine metabolites tested in DDD mice.

Trace amines and monoamine metabolites Doses Number of mice Motor effects

p-Tyramine 36 and 360 mg, i.c.v. 4 No

m-Tyramine 36, 72 and 180 mg, i.c.v. 4 No

Octopamine 36 and 360 mg, i.c.v. 4 No

Tryptamine 36, 72 and 180 mg, i.c.v. 4 No

b-Phenylethylamine 100 mg, i.c.v. 4 No

200, 400 mg, i.c.v. 4 No

4-Methoxytyramine (4-MT) 18, 72 and 180 mg, i.c.v. 4 No

Metanephrine 18, 72 and 180 mg, i.c.v. 4 No

Normetanephrine 18, 72 and 360 mg, i.c.v. 4 No

DOPAC 18, 72 and 360 mg, i.c.v. 4 No

HVA 27 and 68 mg, i.c.v. 4 No

3-methoxytyramine (3-MT) 36 and 180 mg, i.c.v. 6 Yes

Compounds were administered i.c.v. 1 h after aMT treatment (250 mg/kg, i.p.). In cumulative dosing experiments, animals were treated with drugs with interval 1 h.
doi:10.1371/journal.pone.0013452.t001
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To verify if 3-MT is able to cause similar effects in wild type

mice with an intact DA system we tested several doses of 3-MT in

C57Bl6 mice. While no effect was observed when 3-MT was

infused at doses below 9 mg (data not shown), at 9 mg and higher

doses 3-MT dose-dependently caused transient behavioral activa-

tion with a complex set of behaviors. In particular, transient

hyperactivity and stereotypy, sniffing, grooming, rearing and mild

abnormal involuntary movements (AIMs) at the level of limbs was

observed after infusion of 9 mg of 3-MT. Similar behaviors were

also observed after 18 mg of 3-MT with the additional appearance

of tremor as well as oral and whole body AIMs. Further

progression of these behaviors to a complex phenotype involving

head bobbing, backward walking, prominent orofacial and whole

body AIMs as well as minor seizure activity was found with 36 mg

of 3-MT. Infusion of higher concentrations of 3-MT caused

pronounced seizures in normal mice (data not shown). Examples

of behavioral effects of 3-MT (36 mg, 40 min after administration)

in normal mice of mixed 129SvJ/C57BL6 background (wild type

littermate controls for TAAR1-KO mice) are presented in the

Supplemental Videos S1 and S2. Given the extreme complexity

and quickly changing nature of this behavioral phenotype in mice

we elected to perform unbiased computerized assessment of

abnormal movement behaviors in locomotor activity chambers,

rather than just simply applying ethological scoring approaches

developed for other manifestations of abnormal behavioral

activation, such as stereotypies and dyskineisas. Dynamics of

behavioral effects of 3-MT in C57BL6 mice at doses 9–36 mg as

detected in a computerized locomotor activity monitor by changes

in total distance traveled, vertical activity and stereotypy time are

presented in the Supplemental Figure S1. Nevertheless, future

development of specific ethological scoring system will be

necessary to perform careful characterization of these abnormal

behaviors induced by 3-MT in more details.

In addition, to estimate the brain extracellular concentration of

3-MT that could be achieved after i.c.v. administration of 3-MT in

C57BL6 mice, we performed in vivo microdialysis measurements of

3-MT in the dialysates collected from striatum of freely moving

mice following 3-MT infusion into the lateral ventricle. As

presented in the Supplemental Figure S2, i.c.v. infusion of 3-MT

(9 mg) caused potent elevation of 3-MT concentrations in striatal

dialysates with maximal levels approaching 100 nM.

3-MT activates TAAR1-mediated signaling in vitro
Since the discovery of the family of trace amine associated

receptors (TAARs) [15,16] most interest has been focused on the

TAAR1. This Gs-coupled receptor has tantalizing pharmacology

and can be activated, at least in vitro, by trace amines,

amphetamines and several monoamine metabolites [18,19]. It

has been reported that 3-MT is an agonist of mouse, rat as well as

rat-human and mouse-human chimeric versions of this receptor in

cellular systems that express TAAR1 mostly intracellularly

[15,16,17,20,22]. To confirm that 3-MT is able to activate human

TAAR1, we employed a recently developed approach to express

hTAAR1 at the plasma membranes of HEK cells [21]. Assessment

of cAMP accumulation using a bioluminescence resonance energy

transfer (BRET) assay [21] and a classical column cAMP assay

(Figure 2) confirms activity of 3MT at TAAR1 with a potency

comparable to tyramine (EC50 for 3-MT is 7006180 nM and for

tyramine is 3206100 nM) (Figure 2A). Furthermore, we per-

formed an analysis of intracellular signaling mechanisms that

could mediate the actions of 3-MT on hTAAR1 expressed in

HEK cells. 3-MT caused a rapid and prolonged phosphorylation

of Erk2 and CREB only in cells expressing hTAAR1 (Figure 2B,C)

thus indicating that a Gs-dependent signaling cascade involving

accumulation of cAMP and activation of Erk2 and CREB is likely

involved in the action of TAAR1.

Effects of 3-MT are reduced in TAAR1-KO mice
To directly test if TAAR1 is involved in the action of 3-MT we

analyzed behavioral and biochemical responses to 3-MT in mice

lacking TAAR1 [32]. As presented in the Figure 3, i.c.v. infusion

of 3-MT (9,18 and 36 mg) induced a dose-dependent activation of

Figure 1. 3-MT induces behavioral activation and intracellular signaling in the striatum of DA deficient mice. (A) Identification of motor
actions of 3-MT in DDD mice. DAT-KO mice were treated with aMT (250 mg/kg, i.p.) and 1 h after aMT were challenged repeatedly with increasing
concentrations of a drug (interval between treatments is 1 h). 3-MT induced abnormal activation in DDD mice after i.c.v. infusion of both 36 and
180 mg of 3-MT (visual observations), as revealed by the significant effect of 3-MT in measures of horizontal activity at dose 180 mg (cumulative
horizontal activity counts for 1 h following infusion of 180 mg 3-MT is 1711.46580.1 vs. 26.8611.8 in vehicle-treated group; p,0.05, two-tailed Mann-
Whitney U test, n = 6 per group). (B) 3-MT administered at dose of 36 mg, i.c.v. (30 min after infusion) caused significant increase in Erk2
phosphorylation in the striatal tissue of DDD mice (n = 10 per group; ** - p,0.01; Student’s t-test).
doi:10.1371/journal.pone.0013452.g001
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wild type mice with a complex set of often competing abnormal

behaviors as reflected by changes in automated measures of

movement time, total distance traveled and vertical activity

(Figure 3, Supplemental Videos S1 and S2). However, in

TAAR1-KO mice these effects of 3-MT were reduced

(Figure 3C,D,E) with the lowest dose (9 mg) being completely

inactive in the mutants (Figure 3A,B). However at highest dose

tested, 3-MT still caused significant behavioral activation in

TAAR1 mutants and similar, albeit somewhat reduced in mutants,

pattern of abnormal movements was observed in both genotypes

after 36 mg of 3-MT (Figure 3; visual observations). Furthermore,

analysis of Erk2 and CREB phosphorylation in the striatum

provoked by an intermediate dose of 3-MT (18 mg) that causes

significant behavioral activation in wild type mice (Figure 3C,D,E),

revealed that these signaling events were significantly reduced in

TAAR1 mutants (Figure 4). Thus, it is likely that part of the

behavioral activation and a significant portion of striatal signaling

events triggered by 3-MT are dependent on TAAR1. However,

the fact that only a part of 3-MT effects was affected by TAAR1

deficiency strongly suggests that other non TAAR1-mediated

mechanisms are also involved in the action of 3-MT.

Discussion

In this study we demonstrate that 3-MT, the major product of

extracellular dopamine metabolism mediated by COMT, can

directly affect behavior and induce intracellular signaling events

partially via activation of TAAR1. Importantly, this action of 3-

MT does not directly involve dopaminergic transmission and can

be observed in mice lacking DA. At the same time, effects of 3-MT

are partially reduced in mice lacking TAAR1 indicating a role of

TAAR1 in physiological actions of 3-MT. Taken together, these

observations suggest that rather than being just an inactive

metabolite of extracellular DA, 3-MT is a neuromodulator that at

high concentrations can exert physiological actions partially via

activating TAAR1.

3-MT as a neuromodulator
3-MT is a well known extracellular metabolite of 3-hydro-

xytyramine/dopamine. Historically, dopamine was considered as

a biologically inactive precursor of norepinephrine and only the

identification of large concentrations of dopamine in certain brain

regions and the direct demonstration of its physiological functions

particularly in movement control [33,34] firmly established

dopamine as the classical monoaminergic neurotransmitter/

neuromodulator. A major source of 3-MT is the released

dopamine in the extracellular space that is being metabolized

via o-methylation by COMT to yield 3-MT [1]. A predominant

mechanism of inactivation of 3-MT is its MAO mediated

metabolism to homovanillic acid (HVA), that in turn is cleared

from the brain by specific transporters [35,36]. Since extracellular

concentrations of DA are generally found in a low nanomolar

range, concentrations of 3-MT at steady state in the brain are also

quite low [7,37]. The fact that 3-MT originates from released

dopamine has led to consideration of 3-MT levels as a reflection of

Figure 2. 3-MT induces activation of human TAAR1 in cAMP assay and causes CREB and Erk2 phosphorylation in HEK-293 cells. (A)
cAMP response to tyramine and 3-MT in cells expressing hTAAR1 receptor. Dowex and Alumina column chromatography was used to measure [3H]-
cAMP accumulation in HEK-293 cells transfected with the hTAAR1 receptor and treated with the concentrations of compounds shown in the Figure
for 15 minutes at room temperature. Results are the mean 6 SEM of two (tyramine) or three (3-MT) independent experiments performed in duplicate.
EC50 for tyramine was estimated as 3206100 nM and for 3-MT as 7006180 nM. No effects of tyramine and 3-MT were observed in corresponding
Mock cells expressing endogenous receptors only (data not shown). The inserted images obtained with a Zeiss LSM510 confocal microscope show
the fluorescence from the immunostaining of HA epitope tagged hTAAR1 receptors expressed at the plasma membrane compartment of non
permeabilized HEK-293 cells (left image), and an overlay of the fluorescence on a phase image of the same cells (right image) [21]. (B) and (C) Time-
course of effect of 3-MT (10 mM) on Erk2 (B) and CREB (C) phosphorylation in HEK-293 cells expressing hTAAR1. hTAAR1 was expressed in cells as
described previously [21] and treated with vehicle or 3-MT (10 mM). The cells were lysed and then analyzed by Western blot for Erk2 and CREB
phosphorylation. 3-MT produced time dependent phosphorylation of Erk2 and CREB in cells expressing hTAAR1 while no effects were observed in
vehicle-treated controls. A significant effect in comparison to untreated cells (time point 0) was observed at 2, 5, 10 and 20 min time points for ERK2
phosphorylation and at 10 and 20 min periods for CREB phosphorylation (n = 4 independent experiments per group, p,0.05, one-way ANOVA
followed by Dunnet’s multiple comparison test). No effect of 3-MT was observed in corresponding Mock cells without hTAAR1 expression (data not
shown).
doi:10.1371/journal.pone.0013452.g002
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DA release. In fact, numerous studies have been performed on the

analysis of DA release in various experimental paradigms by

assessing accumulation of 3-MT tissue levels in brain tissue, often

after blockade of MAO by pargyline [7,38]. However, while later

in vivo microdialysis studies have generally confirmed the

association between extracellular levels of DA and 3-MT [37],

the static tissue measures of 3-MT accumulation have proven to be

quite inaccurate measures of dynamics of DA release [39,40].

In our unbiased screen for potential dopamine-independent

actions of putative TAAR1 ligands on the movement control in

DDD mice, we failed to detect significant effects of trace amines

and major metabolites of monoamines ([12]; Table 1). The only

exception was 3-MT, which caused a complex set of abnormal

movements in DDD mice. It should be noted that while there is a

common belief that 3-MT is just an inactive metabolite of

dopamine, several groups have reported specific behavioral effects

of 3-MT in experimental animals, ranging from 3-MT-induced

tremor [41], stereotypies [42,43,44], hyperactivity [43,44] and

even hypoactivity [45]. The present study unequivocally shows

behavioral and intracellular signaling effects of this endogenous

compound and identifies TAAR1 as one of the mediators of 3-MT

actions in vivo. It should be noted, however, that under normal

conditions the basal concentrations of 3-MT in the extracellular

space appear relatively low (below 10 nM) [10] to significantly

affect TAAR1 since the affinity of 3-MT at TAAR1 under

different in vitro conditions was found to be in the range of 350-

2,810 nM ([16,20,21,22], present study). However, a similar

situation exists for the dopamine system where steady state 7–

10 nM concentrations of dopamine are detected by in vivo

microdialysis [10] but, for example, the affinity of DA at D1 DA

receptors is routinely reported to be in the micromolar range [46].

Direct microdialysis measurements of the extracellular concentra-

Figure 3. Behavioral effects of 3-MT are reduced in TAAR1-KO mice. Administration of 3-MT (9 mg, i.c.v.) to WT mice (A) but not TAAR1-KO
mice (B) induced abnormal behavioral activation as reflected by total distance traveled. Analysis of total distance traveled for 60 min after 3-MT
administration revealed significant effect of 3-MT versus vehicle treatment (p,0.05; Student’s t-test) in WT but not TAAR1-KO mice (Figure 3D). (C, D
and E) Dose-dependence of 3-MT-induced complex set of abnormal movements (please see description in the text and Supplemental Figure 1S) as
detected in computerized locomotor activity monitor as changes in movement time (C), total distance traveled (D) and vertical activity (E). Data are
presented as cumulative counts for 60 min after 3-MT administration. Two-way ANOVA analysis revealed significant main effects of dose (p = 0.0001)
and genotype (p,0.0001), but no significant dose by genotype interaction (p = 0.4) in measures of movement time (C), significant main effects of
dose (p = 0.0002), genotype (p,0.0001) and dose by genotype interaction (p = 0.0198) in measures of total distance (D) and significant main effects of
dose (p = 0.026) and genotype (p,0.0001) but no significant dose by genotype interaction (p = 0.321) in measures of vertical activity (E). Pair-wise
comparisons conducted with post-hoc Tukey’s HSD test revealed significant differences between genotypes (* - p,0.05 effect of 3-MT in WTs vs. KOs)
and dose (# - p,0.05 effect of 3-MT vs. respective vehicle-treated controls). Please note, that after 36 mg a similar pattern of abnormal movements
was observed in both genotypes (visual observations).
doi:10.1371/journal.pone.0013452.g003
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tions of 3-MT following i.c.v. administration have shown that

infusion of a behaviorally active dose of 3-MT (9 mg, i.c.v.) results

in accumulation of about 100 nM concentration of 3-MT in the

striatal dialysates (Figure S2). Given the fact that the in vitro

recovery of 3-MT across the dialysis membrane at present

conditions is about 20% (data not shown), we estimate that

behaviorally active extracellular 3-MT concentrations should be

above 500 nM which is consistent with affinity values of 3-MT at

TAAR1 in cellular assays ([16,20,21,22], Figure 2). Since the

spatial and temporal dynamics of 3-MT concentrations following

the release of DA in the synaptic cleft are unknown [47], it is

unclear if 3-MT under normal conditions achieves the concen-

trations required to activate TAAR1. However, in pathological

situations or with pharmacological treatments causing massive DA

release or a deficiency in MAO, accumulated 3-MT could possibly

reach the concentrations that would activate TAAR1. Similarly,

decreases in 3-MT concentrations due to central COMT

inhibition could significantly diminish the possibility of TAAR1-

mediated effects of 3-MT.

Another important question relates to the fact that the effects of

3-MT were only partially blocked in TAAR1-KO mice. This

observation indicates that TAAR1 is not the exclusive receptor

involved in the actions of 3-MT and a complete explanation of the

behavioral effects and, to a lesser degree, striatal signaling

responses requires the additional actions on receptors other than

TAAR1. While there is some indication that at high micromolar

concentrations 3-MT may bind to dopamine and a2-adrenergic

receptors [48,49], it is more likely that other, currently

unrecognized receptors could play important role in 3-MT effects.

It should be noted, that the TAAR receptor gene family in humans

is represented by 9 members and in mice by 16 members [17] and

it is not inconceivable that the full physiological output of a

monoaminergic neuromodulator/neurotransmitter requires the

activation of multiple receptors of the same family. For example,

activation of both D1 and D2 dopamine receptors is necessary to

induce movement in conditions of dopamine deficiency [12].

Novel roles of COMT and MAO
3-MT concentrations in the brain are tightly controlled by the

activity of COMT and MAO (with major contribution of MAO-A)

[1,35,38,50,51]. As such, inhibitors of COMT lead to dramatic

decreases in 3-MT levels while blockade of MAO induces

remarkable elevations in 3-MT levels [35,38,50,52]. Intriguingly,

both COMT and MAO inhibitors cause significant modulating

effects on the clinical manifestations of Parkinson’s disease [6,53].

Polymorphisms in MAOA gene have been associated with

aggression, affective disorders, alcoholism and attention deficit

hyperactivity disorder (ADHD) [54,55,56,57]. Variations in

COMT gene affecting enzyme activity has been associated with

schizophrenia, ADHD, pain sensitivity and several other patho-

logical conditions [6,55,56,58,59] but the role of this enzyme has

been exclusively related to modulation of metabolism of classical

catecholamines, such as dopamine and norepinephrine. The

realization of the fact that 3-MT has its own neuromodulatory

properties suggests that alterations in COMT activity, which

serves as the rate limiting enzyme for this putative neuromodu-

lator, could affect brain functions also by altering extracellular 3-

MT concentrations. Understanding the role of 3-MT mediated

effects of COMT and MAO in various pathological conditions

represents an exciting topic for future research.

Potential role of 3-MT in Parkinson’s disease and
schizophrenia

Both COMT and MAO inhibitors have found clinical utility in

Parkinson’s disease [6,53]. It is tempting to speculate that the

behavioral effects caused by 3-MT may have particular relevance

to the pathogenesis or responses to treatments in this disorder. It

has been suggested previously that abnormal 3-MT levels may

contribute to some side-effects of L-DOPA treatment [43–45].

Particularly intriguing is the observation that 3-MT concentrations

are more markedly increased in the putamen of patients that

develop L-DOPA-induced dyskinesia [60]. The low nanomolar

concentrations of 3-MT, closely following the dynamics of

extracellular DA levels, should be elevated by each administration

Figure 4. Striatal signaling effects of 3-MT are reduced in
TAAR1-KO mice. Effect of 3-MT infusion (18 mg, 30 min after
treatment) on Erk2 (A) and CREB (B) phosphorylation in WT and
TAAR1-KO mice. 3-MT induced significant phosphorylation of both Erk2
and CREB in WT mice, but not in TAAR1-KO mice (* p,0.05; Student’s t-
test n = 10 per group).
doi:10.1371/journal.pone.0013452.g004
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of L-DOPA [61]. It is unknown what concentrations of 3-MT in

the brain are produced by the chronic multi-year treatment of L-

DOPA that is necessary to cause dyskinesias in PD patients, but a

large increase in urine 3-MT levels have been reported in patients

treated chronically with L-DOPA [62,63]. Thus, a potential

contribution of elevated 3-MT levels to at least some specific

manifestations of L-DOPA-induced dyskinesias and the role of

TAAR1 in these processes deserve further detailed investigation.

A dopaminergic theory of schizophrenia suggests an enhanced

dopaminergic transmission as a leading cause of the disorder. An

enhanced dopamine release should produce elevation in brain 3-

MT concentrations and variations in COMT activity found in this

disorder [59] could significantly affect these levels. Thus, it might

be important to explore whether TAAR1-dependent neuromodu-

lation caused by 3-MT contributes to pathological manifestations

of schizophrenia [64].

Conclusions
Taken together, these observations indicate an important

neuromodulatory role for the major extracellular dopamine

metabolite, 3-MT. The data suggest the broadening of the list of

tyrosine metabolites – dopamine, norepinephrine, epinephrine,

tyramine, octopamine, b-PEA, and now 3-MT– that can exert

significant neuromodulatory/neurotransmitter actions in various

organisms. The identification of 3-MT as a neuromodulator

supports the concept that multiple products of a single synthetic

pathway and also their degradation products can serve as signals to

affect specific neuronal systems or provide mechanisms for the

fine-tuning of physiological functions. Finally, given low (trace)

concentrations of 3-MT at steady state in the brain, its

phenylethylamine structure and activity at TAAR1, this biogenic

amine could be classified as a novel member of the family of

endogenous trace amines.
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Figure S1 Automated measures of dynamics of abnormal

movements induced by 3-MT in wild type mice.
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Figure S2 Determination of striatal extracellular levels of 3-MT

after i.c.v. infusion of 3-MT (9 mg) into the lateral ventricle.
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Video S1 Examples of abnormal motor behaviors induced by 3-

MT (36 mg, i.c.v.) in wild type mice (40 minutes after

administration).
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Video S2 Examples of abnormal motor behaviors induced by 3-

MT (36 mg, i.c.v.) in wild type mice (40 minutes after

administration).
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