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Abstract

Background: Extracellular cAMP is a key extracellular signaling molecule that regulates aggregation, cell differentiation and
morphogenesis during multi-cellular development of the social amoeba Dictyostelium discoideum. This molecule is
produced by three different adenylyl cyclases, encoded by the genes acaA, acrA and acgA, expressed at different stages of
development and in different structures.

Methodology/Principal Findings: This article describes the characterization of the promoter region of the acaA gene,
showing that it is transcribed from three different alternative promoters. The distal promoter, promoter 1, is active during
the aggregation process while the more proximal promoters are active in tip-organiser and posterior regions of the
structures. A DNA fragment containing the three promoters drove expression to these same regions and similar results were
obtained by in situ hybridization. Analyses of mRNA expression by quantitative RT-PCR with specific primers for each of the
three transcripts also demonstrated their different temporal patterns of expression.

Conclusions/Significance: The existence of an aggregation-specific promoter can be associated with the use of cAMP as
chemo-attractant molecule, which is specific for some Dictyostelium species. Expression at late developmental stages
indicates that adenylyl cyclase A might play a more important role in post-aggregative development than previously
considered.
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Introduction

Intercellular communication plays a central role in multi-

cellular development, coordinating processes such as cell migra-

tion, proliferation and differentiation that are the basis for

morphogenesis. One of the simplest organisms where these

processes have been studied is the social amoeba Dictyostelium

discoideum (for recent reviews, [1,2]). These organisms live as

individual amoebe in forest soils. Upon starvation, up to 100.000

cells aggregate together and form a fruiting body, composed of a

basal disk, a stalk and, on top of it, a sorus.

D. discoideum fruiting body formation is one of the more primitive

examples of multi-cellular development but, even so, is a complex

process that is tightly regulated [3]. Cell aggregation is mediated

by cAMP in D. discoideum [4]. Cells in the aggregation fields are

able to move towards increasing cAMP concentrations and to

secrete cAMP, so that the signal gets amplified [5]. Upon

aggregation, mounds are formed where cells differentiate in two

main alternative pathways: prestalk or prespore cells. Prestalk cells

associate together and move to the upper part of the mound,

where they emerge as a tip [6,7], while prespore cells remain in the

lower part of the mound [8]. The tip region acts as an organizing

center during later development [9,10]. Culmination takes place

when prestalk cells, located in the tip, migrate towards the

substrate through the mass of prespore cells, elongate and

synthesize a cellulose outer layer. As a consequence, prespore

cells are raised from the substrate to form a sorus, and complete

the differentiation process.

Several signaling molecules coordinate D. discoideum develop-

ment but, among them, cAMP plays a central role (reviewed in

[1,11]). As mentioned above, extracellular cAMP first mediates

aggregation [4]. Later on, cAMP secreted from the tip is required

for prestalk and prespore cells sorting in the mound [12].

Extracellular cAMP at a high, constant level is required for in

vitro prespore and prestalk differentiation [13,14], inducing or

repressing the expression of cell-type specific genes [15]. The

decision of initiating culmination is also dependent on extracellular

cAMP, that activates the STATa transcription factor at the tip

organiser region, in the anterior of the slug, initiating a regulatory

cascade that proceeds through activation of the CudA transcrip-

tion factor [16,17] and the tip-organiser-specific expression of their

targets genes, such as expl7[18]. Finally, high extracellular cAMP
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levels are required for spore differentiation [19], for GSK-3

mediated inhibition of stalk cell formation [20,21] and for

regulation of spore germination [22]. Additional signaling

molecules contribute to coordinate some of these processes. For

example, stalk cell differentiation is induced by the chlorinated

hexaphenone DIF-1, secreted by prespore cells, in addition to

cAMP, as shown in in vitro experiments [23]. Similarly, spore

differentiation is quickly induced by SDF1 and SDF2, produced

by prestalk cells, in the presence of high levels of extracellular

cAMP [24]. cAMP also plays an important role as an intracellular

signaling molecule. For example, cAMP-dependent activation of

protein kinase A is required for cAMP signaling at initiation of

development [25] and spore differentiation [26,27].

The extensive use of cAMP as signaling molecule requires a

tight control of its synthesis and degradation (reviewed by [11,28]).

Synthesis is catalyzed by three different adenylyl cyclases, encoded

by the genes acaA, acrA and acgA. Degradation is carried out by

both extracellular phosphodiestarases, such as PDE, and intracel-

lular ones, such as RegA or PdeE. The expression of these

enzymes is regulated during development. In addition, their

activity is regulated by extracellular signals, which allows precise

control of intra- and extracellular cAMP levels through develop-

ment [28].

Adenylyl cyclase A is a development-specific enzyme whose

synthesis is induced during aggregation [29]. The generation of

mutant strains has shown that acaA is required for this process [29].

This absolute requirement has impaired the study of the possible

involvement of this enzyme during post-aggregative development,

although acaA expression at the tip of early culminant structures

has been described [17].

Adenylyl cyclase B, encoded by the acrA gene, is expressed at

low levels in proliferating amoebas but its expression is strongly

induced from 6 hours of development in prestalk cells [30,31].

Mutant strains form normal structures up to the slug stage but acrA

is required for culmination and terminal differentiation of the

spores [31].

Expression of adenylyl cyclase G, encoded by the acgA gene, is

induced after 12 hours of development in prespore cells and

greatly increased during spore differentiation [29,32]. AcG activity

is regulated by osmolarity of the external media [22] and this

enzyme is required to avoid spore germination inside the sorus. It

has been recently described that AcG homologous enzymes play

similar roles in other Dictyostelium species during cyst formation

[33].

The analysis of the adenylyl cyclases described above indicates

that the three enzymes play complementary roles during

development. However, the present picture does not seem to be

complete. Most of the developmental functions of the three

enzymes have been deduced from the phenotype of single [29]

[22] [31] or double mutant strains [32] and early developmental

defects can preclude the observation of later ones, as can be the

case for acaA gene mutants, that are blocked at aggregation. In

addition, it has been shown that adenylyl cyclase genes regulate

each others’ expression [32], which could alter their function in

mutant strains, as compared with wild-type ones. As a conse-

quences, the function played by each or these enzymes in processes

such as prespore and prestalk differentiation, sorting of prestalk

and prespore cells in the mound and tip formation is not well

determined at the present time.

In this article the structure of the acaA promoter region has been

studied, showing that this gene is transcribed from three

alternative promoters. The use of alternative promoters specific

for different developmental stages or cell types has been previously

described for some D. discoideum genes [34,35,36]. In the case of the

acaA gene, the existence of alternative promoters allows expression

during aggregation and. later on, in the tip-organiser and posterior

regions of the structures. These results indicate that the spatio-

temporal pattern of acaA expression is broader than previously

considered and suggest the possibility that acaA might be involved

in the regulation of several developmental processes, in addition to

its well known role in aggregation.

Methods

Cell culture, transformation and development
D. discoideum cells were cultured in HL-5 media. Cells were

transformed by electroporation as described by Pang et al. [37].

Transformed cells were selected by treatment with neomycin

(G418). Filter development was induced by spreading 0.6-1.26106

cells/cm2 on Nitrocellulose filters (Millipore Co., Badford, MA,

USA) [38].

Rapid amplification of cDNA ends
RNA was isolated from AX4 cells at proliferation or after 8 hours

of multicellular development. The SMARTTM cDNA amplification

kit from Clontech (Clontech Laboratories, Inc, Montain View, CA,

USA) was used for amplification of the 59 untranslated region of

the acaA mRNA according to the manufacturer’s instructions.

The oligonucleotide 59-GGAGATCTACCACCACCATTTCCA-

TCATG-39, complementary to nucleotides 90 to 110 of the acaA

coding region, was used as primer in these experiments. Amplifica-

tion products were cloned in the pGEMT-Easy cloning vector

(Promega Co, Madison, WI, USA) and the insert of at least 10

different colonies of each product were sequenced.

Construction of reporter vectors
The three acaA promoter regions were amplified by PCR from D.

discoideum genomic DNA and cloned in the reporter vector PsA-

ialphaGal [39] in substitution of the XbaI/BglII PsA promoter

fragment. Oligonucleotides 59-GGTCTAGACTTGATGAGTGG-

CCAAAACC-39 and 59-GGAGATCTATTTTTTAAAGATCCA-

AGAATTCGTATC-39, that amplified the -3990 to -2472 genomic

region, were used to isolate promoter 1 region. The antisense

oligonucleotide included and ATG initiation codon cloned in frame

with the lacZ-coding region. Oligonucleotides 59-GGTCTAGA-

GTTTTTAGATACGAATTCTTGGATC-39 and 59-GGAGAT-

CTCATTTACAAAGATATATTTATGAAGTGAGG-39 ampli-

fied the 22500 to 21483 genomic region corresponding to Promoter

2. An ATG in frame initiation codon was also included in the

antisense oligonucleotide. Oligonucleotides 59-GGTCTAGACCT-

CACTTCATAAATATATCTTTG-39 and 59-GGAGATCTAC-

CACCACCATTTCCATCATG-39, that amplified the 21284 to

110 region were used to amplify promoter 3 region. This fragment

included a region coding for the 37 N-terminal AcA aminoacids that

were cloned in frame with the b-galactosidase protein. The complete

promoter region was cloned in two steps. Promoters 1 and 2 were first

cloned together using an internal XhoII site. To incorporate

Promoter 3 to this construct a longer fragment (nucleotides 21838

to 110) was generated by PCR using oligonucleotides 59-GGTCTA-

GAACCACATTTGTGTGAATTTGATTG-39 and 59-GGTCT-

AGACTTGATGAGTGGCCAAAACC-39. This fragment was

added to the Promoter1+promoter2 fragment using an internal

NdeI site.

Histochemistry and determination of b-galactosidase
acivity

Cells transformed with the different reporter vectors were

allowed to develop on Nitrocellulose filters for the periods or time

Dictyostelium acaA Promoters
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indicated in each experiment. Structures were fixed, permeabi-

lized and b-galactosidase activity was detected by hydrolysis of the

X-Gal (5-Bromo-4-chloro-3-indolyl b-D-galactopyranoside) as

previously described [40]. Spores were collected from structures

developed on Nitrocellulose filters for 24 hours, fixed and

permeabilized before detection of b-galactosidase activity as

previously described [40]. b-galactosidase activity was also

determined in extracts obtained at different developmental times.

26107 cells were developed on Nitrocellulose filters, collected and

lysed in Z Buffer (60 mM Na2HPO4; 40 mM NaH2PO4, 10 mM

KCl; 1 mM MgSO4, pH: 7.0) containing 0.2% NP40 (Nonidet

P40). The enzymatic activity was determined by incubation of the

extracts in Z Buffer containing 0.88 mg/ml of the ONPG (2-

Nitrophenyl b-D-galactopyranoside) substrate. The amount of

ONPG hydrolyzed was estimated by optical absorption at 410 nm

and normalized to the amount of protein present in each sample.

Determination of mRNA levels by quantitative RT-PCR
RNA was isolated from 26107 cells, either at growth or after

development on Nitrocellulose filters for the times indicated in

each experiment, using the TRI reagent (Sigma-Aldrich, Inc, St

Louis, MO, USA) according to the manufacturer’s instructions.

cDNAs were generated from 1 mg of total RNA using gene-specific

oligonucleotides as primers. cDNAs were used as substrates for

quantitative real-time PCR reactions using as primers the

oligonucleotides used for cDNA synthesis and a second oligonu-

cleotide from the upstream region of each transcript. In the case of

the acaA mRNAs, the oligonucleotide 59-GGAGATCTACCAC-

CACCATTTCCATCATG-39, complementary to nucleotides 90

to 110 of the gene, encoded in Exon 2, was used for cDNA

synthesis and as reverse primer for PCR amplification. The

oligonucleotides 59-CGTTTTTGATACGAATTCTTGGATC-

39 (nucleotides 22507 to 22483), 59-CCTCACTTCATAAATA-

TATCTTTG-39 (nucleotides 21284 to 21261) and 59-CTAG-

TAAAATTAATTTGTTGTACC-39 (nucleotides 2459 to 2436)

were used as forward primers for amplification of the cDNAs

corresponding to mRNAs 1, 2 and 3, respectively. The

oligonucleotide 59-GGCATCTAGCTCACCAATG-39 (nucleo-

tides 3 to 21) was used as forward primer for amplification of a

region of the cDNAs contained in Exon 2 that is common to the

three mRNAs. A region of the large mitochondrial ribosomal

RNA was amplified as a loading control using the oligonucleotides

59-CACTTTAATGGGTGAACACC-39 (used for reverse tran-

scription and as reverse PCR primer) and 59-GGGTAGTTT-

GACTGGGGCGG-39 (forward PCR primer). The iQ5 Real

Time PCR Detection System (Bio-Rad Lab. Inc., Hercules, CA,

USA) was used in these experiments. PCR products were labeled

with Sybr-green using the iQTMSYBRHGreen Supermix (Bio-

Rad) reaction mix following the manufacturer’s instructions. The

final volume of the reaction was of 20 ml, using a 0,16 mM

concentration of each primer. PCR conditions were as follows:

95uC, 3 m; (95uC, 10 s; 58uC, 30 s; 68uC, 50 s)640 for mRNA1

and Exon 2 expression; 95uC, 3 m; (95uC, 10 s; 60uC, 30 s; 72uC,

50 s)640 for mRNA2 and 95uC, 3 m; (95uC, 10 s; 54uC, 30 s;

68uC, 50 s)640 for mRNA3. The data, obtained in duplicates,

were analyzed using the iQ5 Optical system software, version 2.0

(Bio-Rad).

In situ hybridization and probe labelling
Whole-mount in situ hybridization of developmental structures

was performed according to the method described by Escalante

and Sastre [40] with minor modifications. Structures were

developed on teflonH filters (Omnipore TM, Millipore Co.,

Badford, MA, USA), fixed and hybridized as described. 500 ng/

mL of heat-denatured riboprobe were used for hybridization and

colour reaction was stopped after 2 (streams) to 5 (culminants)

hours. Pictures were taken (60X) with a camera (DFC420 Leica

Microsystems, Wetzlar, Germany) attached to a stereo-microscope

(MZ95 Leica Microsystems).

Both sense and antisense RNA probes were prepared by in vitro

transcription and digoxigenin labelling of the complete acaA ORF

(kindly supplied by P. Schaap) using a DIG RNA labelling kit

(Roche Diagnostics Mannheim, Germany) according to the

manufacturer’s protocol.

Results

1. Structure of the acaA gene promoter region
The study of the structure of the promoter region was initiated

by determining the transcription initiation site by primer extension

using the rapid amplification of the 59 cDNA ends (RACE)

method. Several amplification products were obtained using RNA

from growing cells and from structures isolated after 8 hours of

development, which pointed to the existence of more than one

transcription initiation site. Amplification products were cloned

and their nucleotide sequence determined. The comparison of the

nucleotide sequence of the RACE products (shown in Fig. 1) with

that of the D. discoideum genome indicated that the acaA gene is

transcribed from three different promoter regions distributed

along the 4 kb long lsm2-acaA intergenic region. The location of

the three alternative 59-untranslated regions is schematically

shown in Figure 1A. Each of the three promoters drove

transcription of a different non-coding first exon of the mRNA

(Fig. 1B). Splicing of the three different mRNAs joined these

specific exons to a common second exon where the translation

initiation codon is located (Fig. 1B). Therefore, the three different

mRNAs code for the same AcA protein.

2. Cell-type specific activity of the acaA promoters
The existence of different promoters regulating the expression

of one gene is often associated with complex patterns of

expression. In many cases each of the alternative promoters is

active in a particular cell type or at different stages of development

or cell differentiation [35,36,41]. To ascertain if that could be the

case for the acaA gene, the pattern of activity of each promoter

during multi-cellular development was determined by histochem-

istry. A lacZ gene coding for short-lived b-galactosidase was used as

reporter in these experiments. Each one of the three promoters,

and the intergenic region including all three promoters, was

cloned in the reporter vector, as schematically shown in Figure 1A.

These constructs were transfected in D. discoideum cells and b-

galactosidase activity determined at different developmental

stages. Pools of transformed cells were used in these experiments

to avoid possible differences due to clonal variations in plasmid

copy number or integration sites.

The histological pattern of b-galactosidase activity expressed

under control of promoter 1 is shown in Figure 2. This promoter

showed maximal activity during aggregation. Cells that are at the

streaming stage of aggregation showed high levels of b-galactosi-

dase expression (Fig. 2A,B). The activity of this promoter could be

still observed in cells located at the base of tight aggregates (Fig. 2C)

but was not detectable at later developmental stages, such as slug

structures (Fig. 2D) or in spores (Fig. 2E).

Promoter 2 showed expression in cells dispersed through mound

structures (Fig. 3A), and, later on, in cells located in the basal

region of tipped mounds (Fig. 3B). The cells where Promoter 2 was

active localized to the posterior region in slugs (Fig. 3C), with a

pattern compatible with anterior-like cell- or prespore- specific

Dictyostelium acaA Promoters
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Figure 1. Structure of the acaA gene promoter region. A. The 59 untranslated regions of three different acaA mRNAs were identified by rapid
amplification of cDNA ends and their nucleotide sequences compared to that of this region of the genome. The results are schematically shown in
the upper panel where transcribed exon regions are indicated as boxes. Protein coding regions are indicated as black boxes and untranslated regions
as open boxes. The upstream gene closest to acaA, lsm2, is located to the left of the scheme. The three promoter regions identified, Promoters 1, 2
and 3, are labeled in the upper part and transcription initiation sites indicated by arrows. Splicing events that generate the three different mRNAs are
indicated with thin lines in the lower part of the scheme. The position of transcription initiation sites and exon limits is shown underneath and
numbered in relation to the initiation codon. The lower part of the figure schematically shows the promoter fragments that were cloned in the Psa-
ialphaGal reporter vector for functional analysis: Pr1::lacZ, Pr2::lacZ, Pr3::lacZ and the complete promoter, cPr::lacZ. Numbers relate to the ATG
initiation codon. B. Nucleotide sequence of the three alternative first exons identified, Exons 1A, 1B and 1C, and the common second exon, Exon 2, as
determined from the products of Rapid Amplification of cDNA End reactions. Exon sequences are shown in capital letters and adjacent intron
sequences, obtained for the genome sequence, in small letters, showing the presence of conserved donor and acceptor splicing sites. The Exon 2
protein-coding region is shown in bold face characters.
doi:10.1371/journal.pone.0013286.g001
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expression, and to the mass of cells that migrate to the top of the

structures during culmination (Fig. 3D, E). Expression was also

observed in mature spores (Fig. 3F).

The more proximal promoter, Promoter 3, was active in a

group of cells with the characteristics of prestalk tip-organiser cells

and in prespore cells (Fig. 4). Expression was initially observed in

cells dispersed throughout mound structures (Fig. 4A). At the first

finger stage, Promoter 3 was active in cells at the tip of the

structure (Fig. 4B). In slugs Promoter 3-expressing cells were found

in the anterior part of the structure with a pattern similar to that of

tip-organiser cells, and in cells scattered through the posterior part

of the structure (Fig. 4C). During culmination, Promoter 3-

expresssing cells were located in the tip of the structure and in the

stalk that was formed from the tip, towards the substrate (Fig. 4D,

E). This pattern of staining was maintained until the last stages of

culmination (Fig. 4F). In addition, a weaker staining was observed

in prespore cells (Fig. 4E.F) and in mature spores (Fig. 4G).

The combined activity of the three promoter regions was

studied by cloning most of the intergenic region from the closest

upstream gene (lsm2) to the acaA second exon in the same reporter

vector used above. The complete promoter (cPr) showed a pattern

of cell-type specific activity corresponding to the addition of the

three individual promoters (Fig. 5). The complete promoter drove

b-galactosidase expression at aggregation (Fig. 5A) and in cells

evenly distributed in the mound (Fig. 5B) and tipped-mound

structures (Fig. 5C). At the slug stage and during culmination

maximal staining was observed in tip-organiser cells, located to the

tip of the structures, and in the stalk (Fig. 5D-H). However, b-

galactosidase activity was also observed in the prespore region of

slug (Fig. 5D), mid-culminant (Fig. 5E,F) and late culminant

(Fig. 5G, H) structures, and in spores (Fig. 5I). To ascertain these

results the reporter vector containing the complete promoter was

transfected in a different D. discoideum axenic strain, AX2 cells. The

pattern of b-galactosidase expression observed was similar to that

of AX4 cells. Although tip-organiser cells showed maximal

expression, staining at aggregation and in the prespore region of

slug (Fig. 5J) and culminant structures (Fig. 5K) was also observed.

3. Temporal pattern of promoter activity
The temporal pattern of activity was analyzed during

development for each of the promoters by measuring b-

galactosidase activity in cell extracts and the results are shown in

figure 6A. In structures developed on Nitrocellulose filters,

Promoter 1 was induced between 4 and 6 hours of development

and remained active until 16 hours. Promoter 2 was induced

between 6 and 10 hours of development and reached maximal

activity between 14 and 16 hours to decrease thereafter. Promoter

3 was activated after 10 hours of development to remain active

during the rest of the developmental process. The complete

promoter was active from 6 hours of development although the

main induction occurred between 10 and 14 hours, to reach a

constant level of activity thereafter.

The activity of acaA promoters was compared to mRNA levels,

estimated by quantitative RT-PCR. Oligonucleotides specific for

Figure 2. Activity of acaA Promoter 1 during D. discoideum development. D. discoideum AX4 cells were transformed with the reporter vector
expressing the lacZ gene coding for short-lived b-galactosidase under the control of acaA Promoter 1. lacZ expression was detected by X-Gal
hydrolysis and the structures were stained with eosine. Expression patterns obtained during cell aggregation (panels A and B), or at the early mound
(C) and slug (D) stages of development and spores (E) are shown.
doi:10.1371/journal.pone.0013286.g002

Dictyostelium acaA Promoters
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each of the three alternative first exons were designed and used in

conjunction with a reverse oligonucleotide complementary to a

region of the second exon that is common to all the mRNAs

detected previously. This approach allowed specific detection of

the mRNAs transcribed from promoters 1 (mRNA1), 2 (mRNA2)

and 3 (mRNA3). Total acaA mRNA was detected using

oligonucleotides that amplified a region of the common exon 2.

Induction of mRNA1 and mRNA3 during development correlated

well with the pattern of Promoter 1 and 3 activation, respectively.

However, mRNA2 was induced before any increase in Promoter 2

activity could be detected, indicating that regulatory regions not

present in this promoter region could regulate mRNA2 expression.

mRNA1 and mRNA3 steady-state levels were lower than those of

mRNA2. This difference was especially significant for mRNA3,

which could be due to the very localized expression of this mRNA

at the tip-organiser region. The levels of total mRNA expression

(Exon2) correlated well with the added expression of the three

specific mRNAs.

4. Analysis of acaA mRNA expression by in situ
hybridization

The results obtained in the study of the promoter region were

compared to the analysis of mRNA expression by in situ

hybridization. Antisense and sense RNA probes specific for the

acaA mRNA were generated and used for in situ hybridization of

structures at different developmental stages (Fig. 7). Intense,

scattered hybridization was first observed during early aggregation

and in mounds (Fig. 7A, B). Later on, strong specific hybridization

was observed at the prestalk and/or stalk region of tipped mounds

(Fig. 7C), slug (Fig. 7D) and early culminants (Fig. 7F,G). We could

Figure 3. Activity of acaA Promoter 2 during D. discoideum development. AX4 D. discoideum cells were transformed with a reporter vector
where the expression of a lacZ gene coding for short-lived b-galactosidase was under control of acaA Promoter 2. Transformed cells were allowed to
enter multi-cellular development and lacZ expression determined by X-Gal hydrolysis at the early mound (panel A), tipped mound (B), slug (C), early
culminant (D), late culminant (E) stages of development and spores (F). Structures were stained with eosine after X-Gal incubation.
doi:10.1371/journal.pone.0013286.g003

Dictyostelium acaA Promoters
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also observe moderate but specific hybridization in the prespore

region of tipped mounds and slugs (Fig. 7C, D) and very week

hybridization in the prespore region of early culminant structures

(Fig. 7F, G). Incubation with a sense acaA RNA probe showed no

specific hybridization (Fig. 7E,H). Both AX2 and AX4 develop-

mental structures were analyzed by in situ hybridization and gave

identical expression patterns.

Discussion

Primer extension analysis indicates that the acaA gene is

transcribed from three alternative promoters, although the three

mRNAs that are generated code for the same protein. Functional

analysis indicates that the more distal, Promoter 1, is specifically

active in aggregating cells. Promoter 2 is active in aggregates and

in the posterior region of developmental structures, while the most

proximal promoter, Promoter 3, is mainly active in prestalk cells.

Promoter 3 activity is not detected in all the cells of the prestalk

region but only in the more anterior ones, including the previously

described tip-organiser region. The study of the complete

promoter showed an integrated pattern of expression that included

all three promoters and displayed a general profile more similar to

Promoter 3.

The results obtained with the promoter analysis were supported

by the in situ hybridization experiments and by the temporal

patterns of expression observed for the three acaA transcripts.

Quantitative RT-PCR experiments using oligonucleotides specific

for each of the 59-untranslated regions were used to specifically

measure the level of expression of each one or the three mRNAs.

The results obtained indicated that the three mRNAs are

Figure 4. Activity of acaA Promoter 3 during D. discoideum development. D. discoideum AX4 cells were transformed with a vector where the
reporter gene lacZ, coding for short-lived b-galactosidase, was under transcriptional control of acaA Promoter 3. lacZ expression was detected by X-
Gal hydrolysis in the transformed strain at the early mound (A), finger (B), slug (C), early culminant (D), mid culminant (E), late culminant (F) stages of
multi-cellular development and spores (G). Structures were stained with eosine after b-galactosidase detection.
doi:10.1371/journal.pone.0013286.g004

Dictyostelium acaA Promoters
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Figure 5. Activity of the complete acaA promoter during D. discoideum development. AX4 cells were transformed with a reporter vector
where the complete acaA promoter region, covering most of the lsm2/acaA intergenic region, and including Promoters 1, 2 and 3, drives expression

Dictyostelium acaA Promoters
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expressed at different times during development. The mRNA

transcribed from promoter 1 (mRNA1) was induced early during

development to be repressed a few hours later, as also shown for

promoter 1 activity. Induction and repression of the mRNA

slightly preceded the observed variations in promoter activity. The

temporal correlation between Promoter 3 activity and mRNA3

expression was fairly close with a marked increase between 10 and

14 hours of development to reach a plateau thereafter. More

significant differences were found between the temporal pattern of

Promoter 2 activity and mRNA2 expression, which is the more

abundant and was induced six hours earlier than the observed

increase in promoter activity. This result could be due to

differences in the sensitivity of the detection method: Quantitative

RT-PCR versus histochemistry. A second explanation could be

the existence of interconnection between regulatory elements

located in the different promoter regions analyzed. The experi-

mental separation of the promoter in three regions according to

the three transcription start points observed, which give the three

alternative first exons, could be an oversimplification, even though

they have proven to contain enough regulatory elements to

regulate expression in different developmental structures. These

promoter regions probably do not function independently and it

could be expected that regulatory elements located in one

promoter region affect the function of the others. In that case,

b-galactosidase activity from the reporter constructs could differ

from mRNA expression to some degree. That could be the case for

Promoter 2 and mRNA2 where the early expression of the mRNA

could be regulated by elements located outside of the Promoter 2

region analyzed. Interaction between regulatory elements located

in different promoter regions could also explain the above-

mentioned small differences observed between promoter 1 activity

and mRNA1 expression.

Differences in the stability of lacZ and acaA mRNAs could also

explain some of the discrepancies observed between the temporal

patterns of promoter activity and mRNA levels during develop-

ment. The three acaA mRNAs, and total mRNA, show sharper

patterns of expression than those observed for promoter activity.

mRNA steady-state levels increase and decrease before the

corresponding levels of b-galactosidase activity. Given that a

short-lived form of b-galactosidase has been used in these

experiments, the differences could be explained if acaA mRNAs

have a half-life shorter than lacZ mRNA. This difference seems to

be especially significant at late developmental stages. Both

Promoter 3 and the complete promoter are very active between

14 and 24 hours of development, as determined by b-galactosidase

activity. However, acaA mRNA3 expression is maximal at

14 hours but decays markedly thereafter. The same decay is

observed in total acaA mRNA steady-state levels, as also observed

previously [29]. Since Promoter 3 activity is detected at the same

developmental stage when mRNA3 starts to be expressed, these

data could be explained by strong differences in lacZ and acaA

mRNA stability.

Two studies on the acaA promoter region have been published

previously. Verkerke-van Wijkt and collaborators [17] character-

ized an acaA promoter region isolated from a genomic clone. The

comparison of the nucleotide sequence of this promoter and that

of the genome indicates that the genomic clone contained an

internal deletion that included part of Promoters 2 and 3 so that

the promoter region studied was formed by a region of Promoter 2

(nucleotides 21838 to 21310) fused to the more proximal part of

Promoter 3 (nucleotides 286 to 1). This promoter was active in

cells at the mound stage and in tip-organiser cells, with a pattern of

expression similar to the one shown for Promoter 3. These results

could indicate the existence of a regulatory region activating gene

expression at tip-organiser cells between nucleotides 286 and 1,

that are also present in the Promoter 3 region analyzed in this

article.

In addition Siol et al. [42] have characterized the promoter

activity of a 773 bp fragment corresponding to the proximal

region of Promoter 3 (nucleotides 2739 to 34). This fragment

activated transcription in aggregates and was dependent on the

transcription factor CbfA. These authors also showed that CbfA

was required for acaA expression during aggregation [43]. Since

Promoter 1 is aggregation-specific, it will be of interest to

determine if this promoter, that presents several possible binding

sites for this transcription factor, is also dependent on CbfA for

activation.

The expression of the acaA gene in prespore and prestalk cells in

mound structures could be functionally relevant. An important

difference between the three adenylyl cyclases is that their activity

is regulated by different extracellular signals. Adenylyl cyclase A is

homologous to G-protein coupled enzymes and its activity is

regulated by G-protein coupled receptors through small G

proteins [29,44]. cAMP receptors, such as Car1 that mediate the

response to extracellular cAMP during aggregation belong to this

family of proteins. During aggregation the presence of extracel-

lular cAMP induces cAMP synthesis by AcA through Car1,

establishing a feed-forward loop that is essential for cAMP

signaling [45]. acaA mutant cells do not aggregate but the addition

of extracellular cAMP or of 29 deoxy cAMP, that does not activate

protein kinase A, or the presence of wild type cells, enables

aggregation of the mutant cells. Indeed, mutant acaA cells can

complete development with the addition of extracellular cAMP

suggesting that the main role of the encoded enzyme during

development is extracellular cAMP production [46].

This regulatory capacity is unique to AcA, because the other

two adenylyl cyclases are not activated by G proteins. AcG is an

osmosensor molecule activated by high osmotic pressure of the

extracellular media [22]. The mechanisms that activate AcB are

presently unknown but it does not depend on G proteins [31].

Some domains of the AcB N-terminal region present similarity to

proteins involved in two-component signaling pathways, indicating

that its activity could be regulated by phosphorylation in response

to extracellular signals.

As mentioned in the Introduction, despite detailed studies of

single and multiple adenylyl cyclases mutants, there are still

cAMP-dependent developmental processes where the respective

contribution of these enzymes is not clear. Some of them are

processes that occur between the acaA-dependent aggregation step

[29] and culmination, that is dependent on acrA [31]. For

example, the initiation of cell differentiation or the first

morphogenetic processes of cell sorting and tip formation. acrA

and acgA mutants can complete these developmental processes.

acrA and acgA double mutants are defective in spore formation but

still express significant levels of prestalk and prespore genes [32].

The contribution of acaA to these processes has been difficult to

of a lacZ gene coding for short-lived b-galactosidase. Transformed cells were starved and lacZ expression determined during aggregation (panel A), at
the mound (B), finger (C), slug (D), early culminant (E, F), mid culminant (G) and late culminant (H) stages of development and in spores (I). The same
vector was also transformed in D. discoideum AX2 cells and lacZ expression determined at the slug (J) and late culminant (K) stages of multi-cellular
development. Structures were stained with eosine after the determination of b-galactosidase activity.
doi:10.1371/journal.pone.0013286.g005
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Figure 6. Analyses of acaA promoters activity and mRNAs expression during D. discoideum development. Panel A. D. discoideum AX4 cells
were transformed with the reporter vectors where expression of a lacZ gene coding for short-lived b-galactosidase was under transcriptional control of
acaA promotes 1, 2, 3 or the complete promoter. Transformed cells were allowed to develop on Nitrocellulose filters for the indicated hours (0–24).
Collected samples were lysed and b-galactosidase activity determined using ONPG as substrate. A representative experiment where b-galactosidase
activity was normalized by the amount of protein present in each sample is shown. (l) Pr1::lacZ activity; (s) Pr2::lacZ activity; (u) Pr3::lacZ activity; (n)
cPr::lacZ activity. Panel B. RNA was extracted from growing cells (time 0) or from cells allowed to develop on Nitrocellulose filters for the indicated times
(times 2–24). Expression of the different acaA mRNAs was analyzed by quantitative RT-PCR using oligonucleotides specific for the 59 region of the three
mRNAs detected in the RACE analysis (mRNA-1 l, -2 s and -3 u). Oligonucleotides that amplify an exon 2 region common to the three mRNAs were used
to estimate total acaA mRNA expression (Exon 2 n). Relative expression levels, derived form the cycle when amplification is first detected, are indicated.
These levels have been multiplied by a factor of 5 for mRNA1 and of 100 for mRNA3, in relation to mRNA2 and Exon2 levels.
doi:10.1371/journal.pone.0013286.g006
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determine because acaA mutants are not able to complete

aggregation. However, the observation that acaA is expressed in

the mound and in the tip-organiser region of finger and slug

structures might indicate that AcA could be involved in cAMP

signaling during these developmental stages. For example, it has

been shown that cAMP waves continue to be formed from the

upper part of the mound directing migration during cell sorting

[47]. The expression of acaA at these structures and the regulatory

capacity of the AcA enzyme would be in agreement with its

implication in cAMP signaling during the formation of the tipped

mound and slug structures. Similarly, AcA could be involved in

the synthesis of the extracellular cAMP required for the first steps

Figure 7. In situ hybridization analysis of acaA mRNA expression during D. discoideum development. D. discoideum AX4 cells were
allowed to enter multi-cellular development on teflonH filters. Structures at the early aggregate (panel A), late aggregate (B), tipped mound (C), slug
(D, E), early (F) and late culminant (G, H) stages of development were collected and acaA mRNA expression analyzed by in situ hybridization using an
antisense RNA probe (A, B, C, D, F, G), or a sense RNA probe (E, H), as a control.
doi:10.1371/journal.pone.0013286.g007
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of prespore differentiation. The decrease of acaA expression in the

prespore region at later developmental stages and the data on the

acrA and acgA mutants [32] would indicate that AcB and AcG

could be more important for terminal spore differentiation.

The existence of a promoter region specifically active at the tip-

organiser region can be of interest to better understand the

regulation of culmination. Several elegant studies have contributed

to establish a cAMP-dependent gene transcription cascade that

regulates the initiation of culmination (reviewed in [3]). The

process is initiated by activation of the STATa transcription factor

by extracellular cAMP [17]. STATa induces expression of the

CudA transcription factor [16] that consequently activates

expression of tip-organiser genes such as expl7 [18]. Tip-

organiser-specific expression of acaA could be the first step,

necessary for extracellular cAMP synthesis that initiates this

culmination-inducing cascade.

The presence of a distal promoter (Promoter 1) specifically

active during aggregation might have interesting evolutionary

implications. Schaap et al [48] have shown that Dictyostelids can

be classified in four groups and that D. discoideum belongs to the

only group that uses cAMP as a signaling molecule at aggregation

[49]. In contrast, all Dictyostelids use cAMP as a signaling

molecule for the last steps of multi-cellular development and cell

differentiation [50]. Therefore, the regulation of aggregation by

extracellular cAMP seems to be a recent adaptation of a group of

Dictyostelids, including D. discoideum. Alvarez-Curto et al [50]

found that this adaptation involved significant changes in the

expression pattern of the car1 gene, coding for the cAMP receptor

involved in chemotaxis. Car1 is expressed at aggregation only in

species that use cAMP as signaling molecule and this change was

associated with the acquisition of a new distal promoter region

specifically active during aggregation [41]. Another gene required

for cAMP signaling, pdsA coding for a extracellular phosphodies-

terase, also has an aggregation-specific distal promoter [51]. These

data impelled Alvarez-Curto et al [50] to propose that the

adaptation of Dictyostelids to the use of cAMP at aggregation had

involved the acquisition of new transcriptional regulatory

capacities through the incorporation of new promoter regions.

In agreement with this hypothesis, acaA would be the third

example of a gene involved in cAMP signaling that has an

aggregation-specific distal promoter. The determination of the

nucleotide sequence of the genome of more Dictyostelids will allow

us to determine if this distal promoter is only present in species that

use cAMP for aggregation.

In summary, the observation that acaA is transcribed from three

different promoters, during aggregation and multicelular develop-

ment indicates that this gene can be involved in more

developmental processes than the previously known aggregation

step. The identification of these promoter regions makes possible

to approach the study of the mechanisms that regulate acaA

expression at the different developmental stages. In addition, the

study of the contribution of acaA to the different developmental

processes can be approached by complementation studies using

each of the specific promoters.

Acknowledgments

The authors would like to thank Pauline Schaap for plasmids, comments

and critical reading of the manuscript.

Author Contributions

Conceived and designed the experiments: TS LS. Performed the

experiments: MGC AG. Analyzed the data: MGC TS LS. Wrote the

paper: LS.

References

1. Chisholm RL, Firtel RA (2004) Insights into morphogenesis from a simple

developmental system. Nat Rev Mol Cell Biol 5: 531–541.

2. Annesley SJ, Fisher PR (2009) Dictyostelium discoideum - a model for many reasons.

Mol Cell Biochem In press.

3. Williams JG (2006) Transcriptional regulation of Dictyostelium pattern

formation. EMBO Rep 7: 694–698.

4. Konijn TM, van de Meene JGC, Bonner JT, Barkley DS (1967) The acrasin

activity of adenosine-39,59-cyclic phosphate. Proc Natl Acad Sci USA 58:

1152–1154.

5. Jin T, Hereld D (2006) Moving towards understanding eukaryotic chemotaxis.

Eur J Cell Biol 85: 905–913.

6. Siegert F, Weijer CJ (1995) Spiral and concentric waves organize multicellular

Dictyostelium mounds. Curr Biol 5: 937–943.

7. Weijer CJ (2004) Dictyostelium morphogenesis. Curr Opin Genet Dev 14:

392–398.

8. Esch RK, Firtel RA (1991) cAMP and cell sorting control the spatial expression

of a developmentally essential cell-type-specific ras gene in Dictyostelium. Genes

Devel 5: 9–21.

9. Raper KB (1940) Pseudoplasmodium formation and organization in Dictyos-

telium discoideum. J Elisha Mitchell Sci Soc 56: 241–282.

10. Smith E, Williams K (1980) Evidence for tip control of the ‘‘slug/fruit’’ switch in

slugs of Dictyostelium discoideum. J Embryol Exp Morphol 57: 233–240.

11. Saran S, Meima ME, Alvarez-Curto E, Weening KE, Rozen DE, et al. (2002)

cAMP signaling in Dictyostelium. Complexity of cAMP synthesis, degradation

and detection. J Muscle Res Cell Motil 23: 793–802.

12. Dormann D, Vasiev B, Weijer CJ (2000) The control of chemotactic cell

movement during Dictyostelium morphogenesis. Phil Trans R Soc Lond B 355:

983–991.

13. Barklis E, Lodish HF (1983) Regulation of Dictyostelium discoideum mRNAs

specific for prespore or prestalk cells. Cell 32: 1139–1148.

14. Mehdy MC, Ratner D, Firtel RA (1983) Induction and modulation of cell-type

specific gene expression in Dictyostelium. Cell 32: 763–771.

15. Wang B, Shaulsky G, Kuspa A (1999) Multiple developmental roles for CRAC,

a cytosolic regulator of adenylyl cyclase. Dev Biol 208: 1–13.

16. Fukuzawa M, Williams JG (2000) Analysis of the promoter of the cudA gene

reveals novel mechanisms of Dictyostelium cell type differentiation. Develop-

ment 127: 2705–2713.

17. Verkerke-van Wijk I, Fukuzawa M, Devreotes PN, Schaap P (2001) Adenylyl

cyclase A expression is tip-specific in Dictyostelium slugs and directs StatA

nuclear translocation and CudA gene expression. Dev Biol 234: 151–160.

18. Wang HY, Williams JG (2010) Identification of a target for CudA, the

transcription factor which directs formation of the Dictyostelium tip organiser.

Int J Dev Biol 54: 161–165.

19. Hopper NA, Anjard C, Reymond CD, Williams JG (1993) Induction of terminal

differentiation of Dictyostelium by cAMP-dependent protein kinase and

opposing effects of intracellular and extracellular cAMP on stalk cell

differentiation. Development 119: 147–154.

20. Berks M, Kay RR (1988) Cyclic AMP is an inhibitor of stalk cell differentiation

in Dictyostelium discoideum. Dev Biol 126: 108–114.

21. Schilde C, Araki T, Williams H, Harwood A, Williams JG (2004) GSK3 is a

multifunctional regulator of Dictyostelium development. Development 131:

4555–4565.

22. van Es S, Virdy KJ, Pitt GS, Meima M, Sands TW, et al. (1996) Adenylyl cyclase

G, an osmosensor controlling germination of Dictyostelium spores. J Biol Chem

271: 23623–23625.

23. Berks M, Kay RR (1990) Combinatorial control of cell differentiation by cAMP

and DIF-1 during development of Dictyostelium discoideum. Development 110:

977–984.

24. Anjard C, Chang WT, Gross J, Nellen W (1998) Production and activity of spore

differentiation factors (SDFs) in Dictyostelium. Development 125: 4067–4075.

25. Schulkes C, Schaap P (1995) cAMP-dependent protein kinase activity is essential

for preaggregative gene expression in Dictyostelium. FEBS Lett 368: 381–384.

26. Harwood AJ, Hopper NA, Simon MN, Driscoll DM, Veron M, et al. (1992)

Culmination in Dictyostelium is regulated by the cAMP-dependent protein

kinase. Cell 69: 615–624.

27. Mann SKO, Firtel RA (1993) cAMP-dependent protein kinase differentially

regulates prestalk and prespore differentiation during Dictyostelium develop-

ment. Development 119: 135–146.

28. Kriebel PW, Parent CA (2004) Adenylyl cyclase expression and regulation

during the differentiation of Dictyostelium discoideum. IUBMB Life 56:

541–546.

29. Pitt GS, Milona N, Borleis J, Lin KC, Reed RR, et al. (1992) Structurally distinct

and stage-specific adenylyl cyclase genes play different roles in Dictyostelium

development. Cell 69: 305–315.

Dictyostelium acaA Promoters

PLoS ONE | www.plosone.org 12 October 2010 | Volume 5 | Issue 10 | e13286



30. Kim HJ, Chang WT, Meima M, Gross JD, Schaap P (1998) A novel adenylyl

cyclase detected in rapidly developing mutants of Dictyostelium. J Biol Chem
273: 30859–30862.

31. Soderbom F, Anjard C, Iranfar N, Fuller D, Loomis WF (1999) An adenylyl

cyclase that functions during late development of Dictyostelium. Development
126: 5463–5471.

32. Alvarez-Curto E, Saran S, Meima M, Zobel J, Scott C, et al. (2007) cAMP
production by adenylyl cyclase G induces prespore differentiation in Dictyos-

telium slugs. Development 134: 959–966.

33. Ritchie AV, van Es S, Fouquet C, Schaap P (2008) From drought sensing to
developmental control: evolution of cyclic AMP signaling in social amoebas. Mol

Biol Evol 25: 2109–2118.
34. Podgorski GJ, Franke J, Faure M, Kessin RH (1989) The cyclic nucleotide

phosphodiesterase gene of Dictyostelium discoideum utilizes alternate promotors
and splicing for the synthesis of multiple mRNAs. Mol Cell Biol 9: 3938–3950.

35. Escalante R, Vicente JJ, Moreno N, Sastre L (2001) The MADS-box gene srfA is

expressed in a complex pattern under the control of alternative promoters and is
essential for different aspects of Dictyostelium development. Dev Biol 235:

314–329.
36. Galardi-Castilla M, Pergolizzi B, Bloomfield G, Skelton J, Ivens A, et al. (2008)

SrfB, a member of the Serum Response Factor family of transcription factors,

regulates starvation response and early development in Dictyostelium. Dev Biol
316: 260–274.

37. Pang KM, Lynes MA, Knecht DA (1999) Variables controlling the expression
level of exogenous genes in Dictyostelium. Plasmid 41: 187–197.

38. Shaulsky G, Loomis WF (1993) Cell type regulation in response to expression of
ricin-A in Dictyostelium. Dev Biol 160: 85–98.

39. Detterbeck S, Morandini P, Wetterauer B, Bachmair A, Fischer K, et al. (1994)

The ‘prespore-like cells’ of Dictyostelium have ceased to express a prespore gene:
Analysis using short-lived beta-galactosidases as reporters. Development 120:

2847–2855.
40. Escalante R, Sastre L (2006) Investigating gene expression: In situ hybridization

and reporter genes. In: Eichinger L, Rivero F, eds. Dictyostelium discoideum

protocols. TotowaNJ: Humana Press. pp 230–247.

41. Louis JM, Saxe III CL, Kimmel AR (1993) Two transmembrane signaling

mechanisms control expression of the cAMP receptor gene CAR1 during

Dictyostelium development. Proc Natl Acad Sci USA 90: 5969–5973.

42. Siol O, Dingermann T, Winckler T (2006) The C-module DNA-binding factor

mediates expression of the dictyostelium aggregation-specific adenylyl cyclase

ACA. Eukaryot Cell 5: 658–664.

43. Winckler T, Iranfar N, Beck P, Jennes I, Siol O, et al. (2004) CbfA, the C-

module DNA-binding factor, plays an essential role in the initiation of

Dictyostelium discoideum development. Eukaryot Cell 3: 1349–1358.

44. Parent CA, Devreotes PN (1995) Isolation of inactive and G protein-resistant

adenylyl cyclase mutants using random mutagenesis. J Biol Chem 270:

22693–22696.

45. Maeda M, Lu J, Shaulsky G, Miyazaki Y, Kuwayama H, et al. (2004) Periodic

signaling controlled by and oscillatory circuit that includes protein kinases ERK2

and PKA. Science 304: 875–878.

46. Pitt GS, Brandt R, Lin KC, Devreotes PN, Schaap P (1993) Extracellular cAMP

is sufficient to restore developmental gene expression and morphogenesis in

Dictyostelium cells lacking the aggregation adenylyl cyclase (ACA). Genes Devel

7: 2172–2180.

47. Siegert F, Weijer CJ (1992) Three-dimensional scroll waves organize

Dictyostelium slugs. Proc Natl Acad Sci USA 89: 6433–6437.

48. Schaap P, Winckler T, Nelson M, Alvarez-Curto E, Elgie B, et al. (2006)

Molecular phylogeny and evolution of morphology in the social amoebas.

Science 314: 661–663.

49. Schaap P (2007) Evolution of size and pattern in the social amoebas. Bioessays

29: 635–644.

50. Alvarez_Curto E, Rozen D, Ritchie A, Fouquet C, Baldauf SL, et al. (2005)

Evolutionary origin of cAMP-based chemoattraction in the social amoebae. Proc

Natl Acad Sci U S A 102: 6385–6390.

51. Faure M, Franke J, Hall AL, Podgorski GJ, Kessin RH (1990) The cyclic

nucleotide phosphodiesterase gene of Dictyostelium discoideum contains 3

promoters specific for growth, aggregation, and late development. Mol Cell Biol

10: 1921–1930.

Dictyostelium acaA Promoters

PLoS ONE | www.plosone.org 13 October 2010 | Volume 5 | Issue 10 | e13286



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


