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Abstract

Background: Plaque vulnerability to rupture has emerged as a critical correlate to risk of adverse coronary events but there
is as yet no clinical method to assess plaque stability in vivo. In the search to identify biomarkers of vulnerable plaques an
association has been found between macrophages and plaque stability—the density and pattern of macrophage
localization in lesions is indicative of probability to rupture. In very unstable plaques, macrophages are found in high
densities and concentrated in the plaque shoulders. Therefore, the ability to map macrophages in plaques could allow
noninvasive assessment of plaque stability. We use a multimodality imaging approach to noninvasively map the distribution
of macrophages in vivo. The use of multiple modalities allows us to combine the complementary strengths of each modality
to better visualize features of interest. Our combined use of Positron Emission Tomography and Magnetic Resonance
Imaging (PET/MRI) allows high sensitivity PET screening to identify putative lesions in a whole body view, and high
resolution MRI for detailed mapping of biomarker expression in the lesions.

Methodology/Principal Findings: Macromolecular and nanoparticle contrast agents targeted to macrophages were
developed and tested in three different mouse and rat models of atherosclerosis in which inflamed vascular plaques form
spontaneously and/or are induced by injury. For multimodal detection, the probes were designed to contain gadolinium (T1
MRI) or iron oxide (T2 MRI), and Cu-64 (PET). PET imaging was utilized to identify regions of macrophage accumulation;
these regions were further probed by MRI to visualize macrophage distribution at high resolution. In both PET and MR
images the probes enhanced contrast at sites of vascular inflammation, but not in normal vessel walls. MRI was able to
identify discrete sites of inflammation that were blurred together at the low resolution of PET. Macrophage content in the
lesions was confirmed by histology.

Conclusions/Significance: The multimodal imaging approach allowed high-sensitivity and high-resolution mapping of
biomarker distribution and may lead to a clinical method to predict plaque probability to rupture.
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Introduction

Atherosclerosis is a progressive disease characterized by the

formation of arterial plaques. However, the origin of most acute

vascular events is atherothrombosis, the formation of life-

threatening clots and it is currently accepted that plaque rupture

and erosion are the major causes for atherothrombosis[1].

Vulnerable plaques are defined to be any lesions prone to

thrombose [2]. Intense interest in the pathology of vulnerable

plaques has lead to the recognition that plaque composition, more

than degree of vessel occlusion, is the primary determinant of

stability. Plaques prone to rupture are generally characterized by

thin fibrous caps (,65 mm), large, lipid-rich cores, with high

macrophage content (.25 macrophages/3 mm diameter field of

view)[2,3,4,5,6]. Macrophages present in the developing plaque

release cytokines and other factors that can weaken the fibrous

cap, eventually leading to plaque instability and rupture[7,8,9].

In the coronary arteries, numerous reports have observed that

high macrophage density is characteristic of lesions vulnerable to

rupture [3,4,5,9,10,11]. Furthermore, it has been observed that

the pattern of distribution of macrophages in the plaque correlates

with degree of instability. An ex vivo study of human coronary

artery plaque specimens showed that the extent of inflammation at

the plaque shoulders appears to correlate with degree of

vulnerability—slightly unstable plaques have little or no inflam-

mation at the plaque shoulders, while highly unstable plaques have

extensive inflammation at the plaque shoulders [10]. Therefore,

the ability to image plaques at high resolution to determine

macrophage content and distribution could provide a means to

noninvasively assess plaque vulnerability and degree of risk to

rupture in inflamed arteries. There is currently no clinical method

to assess plaque vulnerability in vivo; the ability to do so could

provide a critical diagnostic to guide management of patients with

vascular disease.
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The gold standard for imaging atherosclerotic disease is

angiography. Angiographic images provide information on

decreasing of vessel lumen as plaques invade the luminal space.

Highly stenotic plaques may be revealed by this technique;

however angiography cannot provide direct assessment of the

extent of disease in the vessel wall, nor can it detect disease in

vessels that have positive remodeling to enlarge vessel diameter in

response to plaque growth. The recognition that the majority of

clots leading to acute coronary events occur in plaques that are not

highly stenotic [12] highlighted the need for alternative imaging

methods that can directly image the vessel wall.

There are a number of alternative techniques to image plaques

including invasive modalities such as intravascular ultrasound,

angioscopy, thermography, optical coherence tomography, raman

spectroscopy, near infra-red spectroscopy and intravascular

MRI[12,13,14,15]. These invasive techniques involve intravascu-

lar transceivers that must be threaded into the vessel being

examined and therefore are unsuitable for exploratory imaging to

assess overall plaque burden in the patient. Noninvasive methods

are better suited for examining larger regions; ultrasound,

computed tomography and magnetic resonance imaging have

received the most attention[16,17]. Ultrasound and computed

tomography can provide information about cap thickness and

plaque calcification but MRI shows the most promise for assessing

both structure and lipid composition to evaluate plaque stabili-

ty[12,16,18]. However, MRI lacks the sensitivity to screen large

regions and atherosclerotic disease can occur anywhere in the

vascular system. Therefore, we have developed multimodal

imaging methods to screen for inflamed lesions with high

sensitivity using PET and visualize macrophage localization in

plaques at high resolution using MRI.

Methods

Ethics Statement
All animal experiments were performed under a protocol

approved by the UC Davis Institutional Animal Care and Use

Committee (approved protocol #12115). Anaesthesia was admin-

istered for all imaging and surgical procedures. Post-procedural

analgesics were given post-surgery and as needed. The animals

were monitored regularly for pain or discomfort.

Synthesis of copper-64 (64Cu) labeled dextran sulfate
coated iron oxide nanoparticles

Dextran coated particles were synthesized as described

previously[19,20]; the dextran coated particles were then cross-

linked and aminated[21,22]. Detailed methods and source

information are provided in Materials and Methods S1. Briefly,

cross-linked iron oxides (CLIO) were synthesized by adding

epichlorohydrin (510 molar equivalents to Fe) to an aqueous

solution of dextran coated particles in 2.5 M NaOH (0.5 mol

NaOH:12 mmol Fe), and stirring at room temperature (RT) over

night. CLIO was purified by dialysis against nanopure water, then

aminated by addition of ammonium hydroxide (NH4OH, 28–

30%) in a 10:1 (volume:volume) NH4OH/particle solution. This

solution was stirred overnight at RT and then purified by dialysis.

The purified product was then filtered with 0.2 mm pore

membranes to yield a black, translucent solution.

Radiolabeling of the dextran particles was achieved by first mixing
64CuCl2 in 10 mM HCl with 1 M triethanolamine acetate to form a
64Cu-OAc complex in a 0.1 M TEAA solution with a pH of 7.0

(6 mL, 2.84 mCi64CuOAc used for reaction). The copper-64 acetate

solution was mixed with p-SCN-Bz-DOTA (p-benzyl isothiocyanate-

1,4,7,10-tetraazacyclododecane-1,4,7, 10-tetraacetic acid, 0.2 mmol,

10 mL) at 55uC for 30 min. p-SCN-Bz-DOTA(64Cu) (2.84 mCi) was

then reacted with CLIO-NH2 nanoparticles (150 mL, 0.1 M TEAA

(triethyl ammonium acetate), pH 7, 28.7 mmol Fe) at 55uC for

60 min. The nanoparticles were purified by size exclusion chroma-

tography (SEC) on a Sephadex G25 column equilibrated with 0.9%

NaCl using centrifugation (2000 rpm, 2 min). This was repeated 3

times to yield CLIO-DOTA(64Cu).

Synthesis of gadolinium/64Cu labeled maleylated bovine
serum albumin

Copper-64 labeling of maleylated bovine serum albumin (Mal-

BSA) was performed as described previously[23] and is described

in detail in Materials and Methods S1.

In vivo MRI/PET
All animal experiments were performed under a protocol

approved by the UC Davis International Animal Care and Use

Committee. The temperature inside the coil where the animal was

placed was maintained at 37uC, electrocardiogram (ECG) and

respiration were monitored (MP150, Biopac, Goleta, CA). During

imaging the animals were anesthetized by isoflurane inhalation

(2% in 100% oxygen, IsoFlo; Abbott Laboratories).

Rat imaging
Sprague Dawley rats (100–125 g, Charles River Laboratories,

Wilmington, MA) were used as a mechanical injury model of

vascular inflammation. Two models were used, (1) a carotid crush

injury of the carotid, or (2) implantation of a copper cuff.

For the crush injury, rats (n = 7) were anaesthetized by

ketamine/xylazine (88 mg/kg and 2.5 mg/kg) and approximately

1 cm of the common carotid artery was isolated from the carotid

sheet and the carotid artery was crushed with tweezers for 10

seconds. One week was allowed for progression of inflammation

and recruitment of macrophages, as it has been shown that

inflammatory events at the endothelial layer (e.g. expression of

inflammatory cell adhesion molecules E-selectin and P-selectin)

begin as early as one hour after induction of the injury[24].

For the copper cuff model, rats (n = 4) were anaesthetized by

ketamine/xylazine (75–100 mg/kg and 5 mg/kg) and a silicone-

copper cuff was implanted around the right carotid artery[25].

The copper cuffs were prepared by looping copper wire (0.1 mm)

3 to 4 times around a 1.8 mm mold and embedding in a thin layer

silicone. After curing, the cuffs were cut longitudinally and

carefully peeled away and sterilized for implantation. The total

size of each cuff was about 5 to 6 mm in length and 4 mm in

diameter. For implantation, approximately 1.5 cm of the right

common carotid artery was isolated from the carotid sheet and the

copper cuff carefully place around the vessel before closing the

wound site. Up to three weeks were allowed for progression of

inflammation and recruitment of macrophages before imaging, as

it was shown that inflammatory events in the vessel wall after

copper cuff implantation progress over three to 42 days[25].

For proof of principle that PET/MR imaging can reveal

plaques using scavenger targeted probes, a maleylated-BSA/

DOTA(gadolinium/copper-64) contrast was used[26]. One week

following the crush injury, or at one (n = 4), two (n = 3), and three

(n = 2) weeks after implantation of the copper cuff the dual MRI/

PET contrast agent was administered; 400–800 mCi of copper was

injected via the tail vein. As a control, uninjured Sprague Dawley

rats (n = 3) were injected with 400–500 mCi of the maleylated-

BSA/DOTA(Gd/64Cu) via tail vein.

24 hours after contrast agent injection the rats were anesthetized

with isoflurane and scanned with a custom built microPETII[27]
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and then imaged by MRI using a 7T BioSpec (Bruker, Billerica,

MA). For the PET imaging, the axial and transaxial field-of views

(FOVs) were 4.9 cm and 8.5 cm, with an energy window of 250–750

keV, a timing window of 6 ns, a scan time of 60 minutes, and a fully

3D maximum a posterioi (MAP) reconstruction was performed resulting

in a spatial resolution of 0.460.460.58 mm3 for a 1286128683

matrix[28]. For MR imaging, a respiratory gated T1 weighted

FLASH sequence was used with repetition time TR = 690 ms, echo

time TE = 3.7 ms, flip angle = 45u, 59 slices, 0.75 mm slice

thickness, a FOV = 5.564.0 cm2, and a matrix of 5126256 resulted

in an in-plane resolution of 0.10760.156 mm2. Three fiducial

markers (glass bulbs filled with an aqueous solution of ,0.5 mCi
64Cu each) were positioned on the animal and used as land markers

to co-register the MRI and PET data.

Mouse imaging
ApoE2/2 mice (n = 3), average age 13 weeks (Jax West

Laboratories, West Sacramento, CA), underwent the carotid

artery ligation and after ligation of the right carotid artery were

placed on a high cholesterol diet (20.1% fat, 1.25% cholesterol

Harlan Teklad, TD.02028) for two weeks prior to imaging using

separate PET and MRI scanners; 24 hours after contrast agent

injection (18–20 mg Fe/kg and 20–25 uCi/g). the mice were

anesthetized with isoflurane and scanned with a custom built

microPETII [27] and imaged by MRI using a 7T BioSpec

(Bruker, Billerica, MA). For the PET imaging, the axial and

transaxial FOVs were 4.9 cm and 8.5 cm, with an energy window

of 250–750 keV, a timing window of 6 ns, a scan time of 60

minutes, and a fully 3D maximum a posterioi (MAP) reconstruction

was performed resulting in a spatial resolution of

0.460.460.58 mm3 for a 1286128683 matrix[28]. For MR

imaging, a respiratory gated T2* weighted Fast Low Angle SHot

(FLASH) sequence was used with TR = 540 ms, TE = 5 ms, flip

angle = 30u, 40 slices, 0.5 mm slice thickness, a FOV

= 3.563.5 cm2, and a matrix of 2566256 resulted in an in-plane

resolution of 0.13760.137 mm2. Three fiducial markers (glass

bulbs filled with an aqueous solution of ,0.5 mCi 64Cu each) were

positioned on the animal and used as land markers to co-register

the MRI and PET data.

Image Analysis
For both rat and mouse image data sets, MRI and PET data

were analyzed on a commercial 64bit PC workstation. The MRI

and PET data coregistered and three-dimensional (3D) volumes

corresponding to probe uptake (PET) and vasculature (MRI) were

traced manually in the axial, coronal, and sagittal planes using

Amira 5 (Mercury Computer Systems, Visage Imaging, Carlsbad,

CA). Alternatively, the MRI and PET data was exported into

Amide version 0.8.22 (Medical Data Image Analyzer) and co-

registered. Signal to noise ratio (SNR) and contrast to noise ratio

(CNR) of the raw MRI and PET data were determined using

ImageJ (National Institutes of Health, version 1.38x). For the MRI

data, CNR was defined as abs[Signalinjury-Signaltissue]/Signalnoise,

where the absolute value of the signals is taken to obtain a positive

CNR. In the CNR measurements, the regions of interest (ROI)

used were the same size for all areas and the normal tissue signal

used for contrast determination was the adjacent vessel tissue to

the probe uptake. Regions of interest were selected manually on

individual slices that comprise the 3D data set. For vessel structure

the ROI were selected based on user perception of the anatomical

boundries of vessel or valve walls. For probe localization, the ROI

were selected based on user perception of contrast between pixels.

Details of the methods for three-dimensional rendering, which did

not use segmentation for probe localization, are provided in

Materials and Methods S1.

Histology
To confirm the presence of macrophages, tissue samples were

prepared for immunohistochemistry following the imaging exper-

iments. After the 24 hour imaging point, the animals were

euthanized and the vasculature was rinsed with heparinized saline

via cardiac perfusion. The vessels were then isolated and placed in

10% buffered formalin containing 0.2% trypsin (for membrane

permiabilization, necessary for antibody treatment). The copper

cuff was carefully removed from the artery before removing the

artery from the animal and placing in fixative. Tissue was put into

fixative for 8 hours at 4uC before transferring to 70% ethanol, and

stored in ethanol at 4uC until all radioactive decayed before

embedding. Samples were embedded in paraffin and 4 micron

thick slices were obtained. Samples were then deparaffinized,

rehydrated, and then antigen retrieval was performed by heating

the samples in 10 mM citrate buffer (pH 6) for 1 hour in a steam

chamber, then incubating the samples (still in the citrate buffer) at

4uC overnight.

After antigen retrieval, endogenous enzyme activity was blocked

with peroxide (10 min, RT, 0.3% H2O2/methanol), followed by

non-specific blocking with BSA (1.2 mg/mL, 4uC overnight).

Samples were then incubated with the macrophage specific

primary antibody anti-CD68 (Serotec, Oxford, UK) at a 1:100

dilution overnight at 4uC (rat anti-mouse CD68 for apoE2/2 mice

or mouse anti-rat CD68 for the copper cuff rats). For the rats, a

goat anti-mouse secondary antibody coupled to dyelight647

(Serotec) was then incubated at a 1:100 dilution for 1.5 hours at

RT and counterstained with DAPI (300 nM, 5 min). Then a glass

cover slip was mounted with Vectashield H-1000 mounting

medium (Vector Laboratory, Burlingame, CA), and samples were

imaged by fluorescent microscopy on a Nikon Eclipse TE2000-S

scope using a 100x (Nikon PlanApo, NA1.4) oil immersion lens. A

Nikon mercury arc lamp was used to excite samples with chroma

dichroic filter sets for DAPI (Ca2+ 380 nm excitation pass), BSA-

TAMRA (FITC/TRITC bandpass), and goat anti-mouse IgG-

Dyelight647 (FITC/CY5 bandpass).

For the apoE2/2 mice a rabbit anti-rat secondary antibody

coupled to horseradish peroxidase (HRP, Serotec) was incubated

with the samples at a 1:100 dilution for 1.5 hours at RT. The

bound antibody was visualized by counterstaining with diamino-

benzidine (DAB); samples were incubated for 10 min at RT in a

glass jar with 200 ml of Tris-HCl buffer (pH, 7.5) containing

40 mg DAB and 34 mL 30% H2O2. After thurough washing to

remove excess DAB, the slides were counterstained for iron using

the Perl’s Prussian blue stain. A coverslip was mounted

(Vectashield) and images were acquired with a Canon Cybershot

MPEG Movie EX 5.0 megapixel camera with a Scopetronix

Maxview 40 plus adapter attached to a Olympus BX51 scope

using a 10x (UPlanFluor, 0.3 NA) or 60x (PlanApo, 1.4 NA) oil

immersion objective.

Results and Discussion

Positive contrast macromolecular and negative contrast nano-

particulate multimodal probes were synthesized that are targeted

to macrophages through the macrophage scavenger receptor A

type 1 (SRA), a cell surface receptor found on macrophages

[20,26]. SRA are highly expressed by activated macrophages but

are not otherwise present in normal blood vessels as discussed in

our previous works [19,20,26]. Two classes of probes were

developed: 1. Macromolecular probes loaded with gadolinium
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PLoS ONE | www.plosone.org 3 October 2010 | Volume 5 | Issue 10 | e13254



(MRI), 64Cu (PET), and fluorescent dye (TAMRA, Molecular

Probes). 2. Iron oxide nanoparticles loaded with 64Cu. The first

class of probes provides positive contrast in MR images and is

targeted to macrophages by using the SRA ligand maleylated

bovine serum albumin (Mal-BSA) as the macromolecule carrier for

conjugation of imaging probes, while the second provides negative

MRI contrast and is nonspecifically taken up by macrophages.

Both also are labeled for detection by PET imaging. We

synthesized both T1 and T2 agents to evaluate the ability for

each type of probe to visualize inflammation at high resolution in

living systems. These probes were utilized for multimodality

imaging of vascular plaques in animal models of vascular

inflammation to demonstrate the feasibility of using PET screening

to guide selection of volumes for high resolution MRI in order to

map macrophage distributions in arterial lesions.

While no single animal model ideally recreates the human

condition, a number of models have shown sufficient parallel to

the human disease to justify their use as models for specific disease

traits. The difficulty with modeling vulnerable plaques has been

that although stenotic lesions can be induced in animal models,

they have not been observed to spontaneously rupture as human

lesions do [29]. Recent observations of ApoE knockout mice has

indicated that in this model, plaques can and do spontaneously

rupture [30,31,32]. This knockout mouse also has been observed

to form lesions similar to the vulnerable human case which are

rich in macrophage content [33,34]. While this model can

produce plaques with unstable phenotype, we found it to be

inconsistent, producing macrophage-rich plaques in only a

fraction of examined animals. Macrophage laden plaques were

more reliably produced if a carotid artery was ligated. We used the

ApoE ligation model, therefore, as one of the testbeds for our

probes.

MRI/PET with multimodal negative contrast MRI probes
Macrophage targeted multimodal PET/MRI probes were

synthesized based on iron oxide nanoparticles as previously

described that were targeted to macrophages by coating them

with dextran; 64CuDOTA was then conjugated to the dextran

surface (CLIO-DOTA(64Cu))[19,20]. Materials and methods are

available in Materials and Methods S1. ApoE2/2 mice that had

undergone carotid ligation (n = 3) were imaged 24 hours post

injection of dextran coated iron oxide nanoparticles, CLIO-

DOTA(64Cu). Inflamed lesions were found in all animals and a

representative animal is shown in Figure 1.

Temporally, the PET data was acquired first and used to guide

volume selection for the MRI images shown in A–D. Fig. 1A shows

the aortic arch in an axial MR slice (the 3 valve leaflets can be seen,

outlined in Fig. 1B) before administration of CLIO-DOTA(64Cu).

Twenty four hours post injection of the iron oxide agent the MR

signal intensity is observed to decrease, which is attributed to

accumulation of iron oxide particles in this region, Fig. 1C, circled

area; the contrast-to-noise ratio (CNR) at the aortic valve increased

by 68610%. Upon dissection, the valve itself was observed to be

black with accumulated particles. In Fig. 1C the darkened region on

the right (v) corresponds to the vena cava, which was further out of

the plane of view in panel 1B. Videos including the slices above and

below this plane are provided as Videos S1, S2 to confirm that the

postinjection contrast changes occurred around the valve and that

other apparent contrast differences were due to structures that

appear in the plane of view for 1C that were not in the plane for 1B

(due to animal position).

Coregistration of the PET signal with the MRI signal at

24 hours, Fig. 1D, confirms that the PET signal correlates with the

change in MR signal, verifying localization of the multimodal

agent at aortic valve. The three dimensional rendering shown in

Fig. 1E reveals the typical relationship between the PET and MRI

data where in PET signal, due to lower resolution capability and

partial volume effects, is a diffuse cloud over a relatively large

region encompassing the carotids while MRI shows discrete maps

of macrophage localization. Video version of 1E available in

Video S3. It is evident in 1E that the exact anatomical location of

probe accumulation would have been difficult to discern from

PET alone; indeed, it is difficult to distinguish which artery carries

the lesion(s).

Figure 1. Multimodal nanoparticle probes are taken up by
macrophages in the aortic valve of ApoE2/2 mice with vascular
inflammation induced by ligation. (A) The aortic valve before
administration of probes. Scale bar = 2.5 mm. (B) Position of the aortic
valve is indicated by the dotted purple lines. The three leaflets of the
valve are clearly evident. (C) The MR signal intensity in and around the
aortic valve (dotted outline) decreases after introduction of the
multimodal PET/T2-MRI probes, shown 24 h post injection. (D)
Coregistration of the PET data with the MRI data illustrates that the
PET signal correlates with a broad region including and around the
aortic valve. In A–D to determine the grayscale intensity of each pixel in
the image and the color intensity of the PET signal, we use bilinear
interpolation between the four nearest voxels in the slice. This
resampling provides a smoother reconstruction without excessive
blurring or loss of data. (E) 3D reconstruction of MRI and PET data
shows that the PET signal intensity is a diffuse cloud (orange-yellow)
broadly localized around the aortic arch and carotid arteries. This 3D
image was generated by combining three different rendering models;
details provided in Materials and Methods S1. F) Immunohistochemistry
demonstrates that the nanoparticulate probes are localized to
macrophages in the aortic arch. Macrophage presence in the aortic
valve leaflets is confirmed by positive HRP reaction with DAB,
macrophages = brown stain (10X magnification). The region in the
red box is shown at higher magnification in the inset image (60X) and
demonstrates that the iron oxide particles, stained blue, overlap with
regions staining for macrophages (brown).
doi:10.1371/journal.pone.0013254.g001
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Labeling of the aortic valve is consistent with a recent MRI

study on apoE2/2 mice that were imaged after administration of

dextran coated iron oxide particles where particle uptake was seen

at the aortic root 48 hours post injection of 30 mg Fe/kg iron

oxide particles [35]. These images support that PET guided

selection of volumes allows high resolution MRI visualization of

small cardiovascular features, such as the aortic valve in living

systems. The valve shown is ,1.5 mm diameter and the three

leaflets are clearly resolved.

To further support that the changes in MR and PET signal

intensities were due to accumulation of the particles at sites of

vascular inflammation, 4 micron sections of the aortic valve were

challenged with anti-CD68 monoclonal antibodies, a macrophage

marker, and Perl’s Prussian blue for iron. Fig. 1F demonstrates

that macrophages were present at the aortic valve (the brown stain

from the secondary antibody conjugated to HRP, original

magnification = 10X). In the higher magnification image (inset

Fig. 1F) one can discern that the iron oxide particles, stained blue,

colocalized with macrophages (brown stain).

MRI/PET of with multimodal positive contrast MRI probes
To validate that these effects were not animal-model-specific,

nor imaging-method-dependent we also examined rat models of

vascular inflammation using the multimodal macromolecular

probes (positive MRI contrast). We utilized both the crush[24]

injury and copper cuff[25] models, to ensure that our methods

could label inflamed plaques regardless of model. The multimodal

probes were synthesized as previously described and consisted of
64CuDOTA, Gd3+ DOTA, and TAMRA-labeled maleylated

bovine serum albumin (64Cu/Gd/TAMRA-mal-BSA). [23] Rats

with unilateral carotid crush injuries were imaged 24 hours after

injection of the multimodal probes (number of animals = 7). A

representative animal is shown is Figure 2. Fig. 2 demonstrates

uptake of the MRI/PET probe in plaques resulting from carotid

crush injury. The PET image clearly shows an accumulation of

contrast agent (Fig. 2A), but without anatomical reference it is

difficult to determine the tissue of origin. A high resolution MR

image that is zoomed in on the volume enhanced in the PET

image confirms that the PET signal overlaps with a broad area in

and around the injured carotid artery on the left (Fig. 2B). No PET

signal is associated with the uninjured contralateral side; similarly

control uninjured animals do not show any accumulation of PET

signal in the vessels.

From the MR image it can be observed that the vessel wall is

thicker for the injured carotid and the contrast is enhanced relative

to the uninjured control. Fig. 2C presents a 3D reconstruction of

the PET and high resolution MRI data and illustrates how

macrophage accumulations can be mapped by MRI to detailed

distributions (green regions at arrows) on the vessel wall (purple =

injured carotid, yellow = uninjured contralateral carotid). For

example, a ring-shaped lesion (white arrow) was observed, this

would be the expected pattern for a highly vulnerable plaque

where the macrophages are concentrated in the plaque periphery.

The PET signal again covers a larger volume (rendered as an

isosurface). This model validates the ability for the multimodal

agent to be used for screening by PET followed by high-resolution

visualization of the pattern of macrophage distribution by MRI.

To confirm that labeling of inflammation was independent of

injury methodology a second rat model was used that implanted a

copper cuff around the right carotid artery (number of animals

= 4). A representative animal is shown in Figure 3. Fig. 3A shows

overlaid 3D PET and MR images in the copper cuff model 3

weeks after cuff implantation (Video S4). The PET signal resides

over a broad region correlating with the cuffed carotid; MR signal

reveals the contours of the animal for anatomical reference, and

the position of the cuff and carotid vessels. Overlap of the PET

and MRI signals is also apparent in the axial view (Fig. 3B). A

hypointense region corresponding to the clavicle is indicated at the

white arrow. Fig. 3C shows, in an axial view slice, the increased

MRI signal (yellow arrow) from the walls of the right carotid artery

(artery at red arrow) in a region superior to the copper cuff, 3

weeks post implantation and 24 hours post injection of 64Cu/Gd/

TAMRA-mal-BSA. The signal-to-noise (SNR) of the entire vessel

wall increased from 10.8 to 17.8 (6566.8% increase) and the CNR

from 0.05 to 2.1 (380061800% increase), before and 24 hours

post administration of the Gd based agent, respectively. Three-

dimensional rendering of the vessels, Fig. 3D, again illustrate how

MRI is able to discriminate small accumulations of macrophages

Figure 2. Multimodal macromolecular probes accumulate in
the injured vessel of the rat carotid clamp injury model. (A)
Coronal view PET image of the rat thorax shows a region of high signal
intensity indicating probe accumulation in macrophages, however it is
difficult to interpret the tissue of origin for the signal without
anatomical information. Scale bar = 20 mm (B) ‘‘Zoomed in’’ MR
images for the volume indicated by the boxed area in A reveal that the
PET signal correlates to the carotid artery on the left. Scale bar = 5 mm.
This vessel also shows elevated MR contrast and thicker vessel walls
compared to the vessel on the right, (C) 3D reconstruction of MRI and
PET data from the carotids is shown protruding from a plane in the MR
image. This view illustrates that the probes are localized to the vessel
wall of the injured carotid artery (purple), MR signal intensities elevated
relative to vessel background signal are rendered in green, and PET
intensities are in orange. The contralateral uninjured vessel is yellow.
Images rendered by segmentation. MRI high contrast region, in green
donut shape, at white arrow is 0.661.8 mm (volume is
0.462.660.6 mm3; volume includes regions out of view in this 2D
image). MRI high contrast signal at yellow arrow, in green horseshoe
shape, is 0.861.2 mm, each arm is ,0.2 mm wide (volume is
160.2263.8 mm3). PET volume (orange) is 4.568.364.0 mm3. Scale
bar = 5 mm.
doi:10.1371/journal.pone.0013254.g002
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on the vessel wall while PET provides highly sensitive detection of

injured vessel.

To confirm that the imaging probes accumulated in sites of

vascular inflammation, immunohistochemistry was performed,

using a primary monoclonal antibody against the macrophage

marker CD68 along with a secondary antibody conjugated to

Dyelight649. A representative field of view at high magnification

(100X) is shown in Figure 4. Probe uptake could be tracked using

the attached TAMRA dye. DAPI for nuclear staining (Fig. 4A),

allowed identification of the intima (I). A single cell in the intima is

circled and it also referenced in the rest of the panels in Fig. 4.

TAMRA signal (Fig. 4B) showed that the probes accumulated in

the intima, particularly in an intense region correlating with the

circled cell, and in several punctate spots in the intima. CD68

labeling identified the circled cell to be a macrophage (Fig. 4C).

Coregistration of the images labeled for cell nuclei (DAPI), probes

(TAMRA), and macrophages (antibody) show that the signals

overlap, consistent with uptake of the multimodal probes by

macrophages (Fig. 4D).

These results demonstrate the efficacy of combined MRI/PET

imaging of plaques in living animal models using a multimodal

MRI/PET contrast agent for vascular inflammation. MRI and

PET imaging of the probes showed sufficient probe uptake for

generation of MRI and PET contrast. Two types of agents were

developed to evaluate the ability for each to visualize inflamed

lesions in the vasculature. As shown here, both T1 and T2-

weighting methods were able to detect relatively small lesions in

arteries in vivo. In general it was easier to identify regions of signal

enhancement and the demarcation of enhanced regions was

sharper for the positive contrast agents (T1). This is not

unexpected given the mechanisms of contrast enhancement for

gadolinium versus iron oxide. Because iron oxide affects signal

through a local magnetic field effect, it has lower resolution

capability than T1 agents, which affect contrast effect through

direct interaction with water protons. In addition, the visual

identification of signal increases above background features are

typically simpler to interpret than signal decreases. For these

reasons, positive contrast agents may be preferable for imaging

smaller vessels, where the vessel wall may be only a few voxels

Figure 3. Multimodal macromolecular probes localize to the
injured vessel in the rat copper cuff model. (A) Overlay of PET with
MRI for nearly whole body 24 h post injection of the PET/T1-MRI probes
(head at top, out of field of view). Probe accumulation as monitored by
PET is found in a diffuse cloud (red-orange) around the vessel that was
clamped by the copper cuff, left (rendered in black and white). The PET
and MR signal from vessels was rendered in color using the assignments
shown in the scale bar, and MR signal from rest of the body is given in
black-and-white for anatomical reference. The plane through the image
indicates the position of the image slice given in (B), a view zoomed in
around the carotid artery at the superior end of the copper cuff. This
coregistered MRI/PET image shows diffuse cloud of PET signal in the
region around the injured vessel (clavicle is the dark region indicated by
the white arrow) and region of higher MR intensity on the right side of
the vessel. scale bar = 2.5 mm. (C) The MR image from the same plane
clearly shows that the vessel (red arrow) has elevated MR contrast in the
walls of the vessel (yellow arrows). (D) 3D reconstruction of MRI and PET
data in an oblique orientation demonstrates the mapping capabilities for
MRI, which is able to identify discrete accumulations of macrophages on
the vessel wall. The indicated MR volume (green) at the white arrow is
0.7460.5760.46 mm3. The volume at the yellow arrow is
0.6860.6060.32 mm3. Scale bar = 5 mm. This view is zoomed out from
the FOV in panels B and C to include both vessels. Injured carotid artery is
purple, increased MR signal intensity relative to vessel background is
green, PET signal is orange, and contralateral vessel is gold.
doi:10.1371/journal.pone.0013254.g003

Figure 4. Immunohistochemistry demonstrates that the multi-
modal probes accumulate in macrophages found in the intimal
layer (I) of the injured vessel wall. (A) Cell nuclei stained with DAPI
(100X). A single cell is circled in yellow that will be referenced in the
other panels. (B) The TAMRA signal from the multimodal agent is found
in several locations in the intima. It can be seen in places to be in a
punctate patern (arrowheads), suggesting internalization. A pro-
nounced accumulation is shown for the circled cell. (C) Anti-CD68
monoclonal antibody staining also highlights a region in the intima
(circled cell at white arrow). (D) Overlay of the three channels, A-C,
demonstrates that the TAMRA signal colocalizes with the CD68 positive
cell with the nucleus indicated in A, supporting macrophage labeling by
the probes. Scale bar = 25 microns.
doi:10.1371/journal.pone.0013254.g004
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thick. The robustness of the method is demonstrated in that

localization of the probe to plaques could be observed in several

different animal models of vascular inflammation. We envision

that these methods could be used as a clinical diagnostic tool

wherein PET is used for screening large volumes to identify broad

vascular regions that accumulate the macrophage targeted probes.

This information is used to guide MR imaging at high resolution

to visualize the vessel walls, plaques, and macrophage distribution

patterns. Videos are available for this article (Videos S5, S6) that

demonstrate how the resulting MR data can be presented to

provide a type of noninvasive ‘‘endoscopy’’. Together the

information about macrophage density and distribution can be

used to estimate plaque probability to rupture and guide patient

management decisions.

Alone, PET can provide a rough location for macrophage rich

plaques and allow some quantitation, but typical plaques are much

smaller than the resolution limit of PET, so this method provides

only an averaged assessment over all plaques in a given volume,

specific information about individual plaque vulnerability is not

possible. Human plaques at their largest are a few millimeters

thick, up to ten millimeters long and disease is often diffuse

throughout vessels. At a resolution of 8–16 mm for whole body

scans PET alone is unable to reveal plaque structure but will

primarily give general localization[36]. At this resolution it would

be difficult to correlate the PET signal with individual stenoses or

to determine which regions, specifically, are at risk to rupture.

PET is also unable to provide information on exactly where in the

vessel wall the macrophages reside or their distribution pattern,

important criteria for assessing degree of vulnerability. MRI has

the resolution to map macrophage distribution in plaques but lacks

the sensitivity for screening. For high resolution scans, smaller

volumes must be addressed to avoid excessively long scan times

but without guidance, it can be challenging to select volumes to

focus upon. We believe that cardiovascular imaging of plaques is

an ideal application for multimodal imaging where clearly the

combination of the imaging methods works synergistically to

maximize diagnostic potential from each method.

Supporting Information

Materials and Methods S1 Extended synthetic and methods

information.

Found at: doi:10.1371/journal.pone.0013254.s001 (0.09 MB

DOC)

Video S1 The aortic valve before administration of probes.

Slices above and below the plane of Fig 1B are provided in this

video clip. Fig 1B is center slice from the set, sandwiched by three

slices on either side. Video moves through the image stack to show

other structures in the volume around the valve, including the

vena cava (dark circular void appearing on right side near end of

video).

Found at: doi:10.1371/journal.pone.0013254.s002 (2.22 MB

MOV)

Video S2 The aortic valve after administration of probes. Slices

above and below the plane of Fig 1C are provided in this video

clip. Fig 1C is center slice from the set, sandwiched by three slices

on either side. Vena cava becomes visible as above, negative

contrast centered around the valve.

Found at: doi:10.1371/journal.pone.0013254.s003 (2.40 MB

MOV)

Video S3 Multimodal nanoparticle probes are taken up by

macrophages in the aortic valve of ligated ApoE2/2 mice. Fig 1E

three-dimensional view.

Found at: doi:10.1371/journal.pone.0013254.s004 (2.93 MB

MOV)

Video S4 Multimodal macromolecular probes localize to the

injured vessel in the rat copper cuff model. Figure 3A three-

dimensional view.

Found at: doi:10.1371/journal.pone.0013254.s005 (3.20 MB

MOV)

Video S5 Multimodal imaging of the inflamed plaque. Alternate

view of Figure 3. Injured vessel is depicted in fuschia. The PET

signal, in orange, overlays with a large region of the injured vessel.

As the PET signal fades, it becomes apparent from the MR signal

(green) that the probe is localizing to discrete regions in the injured

vesssel, which represent focal accumulations of macrophages. As

the vessel wall signal fades, one can observe that the MRI (green)

signal is found through the full thickness of the vessel wall.

Found at: doi:10.1371/journal.pone.0013254.s006 (2.26 MB

MOV)

Video S6 Noninvasive, PET-guided, MRI endoscopy. Alternate

view of Fig 3. With the guidance of PET we were able to identify

which region of the vessel to image using MRI. These images can

allow us to perform high resolution ‘‘noninvasive endoscopy’’ as

shown in the clip below. The point of view travels through the

lumen of the vessel, revealing in green the sites of macrophage

accumulation (as marked by our probes).

Found at: doi:10.1371/journal.pone.0013254.s007 (0.58 MB

MOV)
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