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Abstract

Background: Coat protein complex I (COPI) vesicles, coated by seven coatomer subunits, are mainly responsible for Golgi-
to-ER transport. Silkworm posterior silkgland (PSG), a highly differentiated secretory tissue, secretes fibroin for silk
production, but many physiological processes in the PSG cells await further investigation.

Methodology/Principal Findings: Here, to investigate the role of silkworm COPI, we cloned six silkworm COPI subunits
(a,b,b9, d, e, and f-COP), determined their peak expression in day 2 in fifth-instar PSG, and visualized the localization of COPI,
as a coat complex, with cis-Golgi. By dsRNA injection into silkworm larvae, we suppressed the expression of a-, b9- and c-
COP, and demonstrated that COPI subunits were required for PSG tube expansion. Knockdown of a-COP disrupted the
integrity of Golgi apparatus and led to a narrower glandular lumen of the PSG, suggesting that silkworm COPI is essential for
PSG tube expansion.

Conclusions/Significance: The initial characterization reveals the essential roles of silkworm COPI in PSG. Although silkworm
COPI resembles the previously characterized coatomers in other organisms, some surprising findings require further
investigation. Therefore, our results suggest the silkworm as a model for studying intracellular transport, and would
facilitate the establishment of silkworm PSG as an efficient bioreactor.
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Introduction

The silkworm, Bombyx mori, produces silk, and is considered as

one of the best-characterized biological model organisms [1,2].

Because of the economic significance and benefit of silk

production, the composition and secretion of silk has been

intensively investigated. Fibroin, one of the major silk components,

is composed of heavy chain proteins, light chain proteins, and P25,

and is secreted by the posterior silkgland (PSG) [3,4]. The fibroin-

containing vesicles are potentially transported by BmKinesin-1

from the Golgi apparatus to the apical cytoplasm, and finally the

fibroin is released into the glandular lumen [5]. In addition,

silkworm has been proposed to be a potential ‘‘bioreactor’’ for

biotechnology and pharmacy [1,6,7]. PSG cells devote 85% of

their protein synthesis to silk production [8]. Recombinant human

procollagen has been successfully expressed in the PSG by

transgenesis, raising the possibility of efficiently and abundantly

expressing pharmaceutical proteins in this system [6]. To achieve

this, it is necessary to understand the molecular mechanisms of

various intracellular transport processes in PSG, including fibroin

secretion, which are still largely elusive.

Eukaryotic cells possess an elaborate endomembrane system,

which is responsible for protein biogenesis. In this system, various

membrane-enclosed organelles communicate with each other

through vesicular transport. These coated vesicles, generated at

donor compartments and then fused with the destination

compartments, are enveloped by distinct sets of coats and are

responsible for highly selective transport [9–12]. They can mainly

be classified into clathrin-coated vesicles and non-clathrin-coated

vesicles [13,14]. Coat protein complex I (COPI) vesicles belong to

the non-clathrin-coated vesicles, and are well-characterized for

retrogradely delivering proteins from the Golgi apparatus to the

endoplasmic reticulum (ER) [9,10,15].

The COPI complex is composed of coatomer subunits [16],

named a- (160 kDa), b- (107 kDa), b9- (102 kDa), d- (60 kDa), e-
(36 kDa), c- (97 kDa), and f-COP (20 kDa). Based on the

sequential and structural similarities with adaptor protein 2

(AP2) complexes, the structure of the COPI heptamer is predicted
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to have an inner subcomplex (bdcf) and an outer subcomplex (ab9

e) [17,18]. In higher eukaryotes, there exist two versions of c- and

f-COP: c1, c2, f1, and f2, which form three main types of

heptamer c1f1,c1f2,and c2f1 [19]. Significant localization

differences for these COPI-isoforms were found [20], suggesting

that different COPI isoforms carry out distinct physiological

functions.

COPI vesicles are best characterized as carriers participating in

retrograde transport from cis-Golgi back to ER [21,22]. However,

the COPI vesicles were originally reported to be involved in intra-

Golgi transport [13], though the mechanism has long been in

debate [12,23]. COPI is also reported to be associated with the

endosomal activities, endocytosis, and autophagy [24,25]. During

transport, cargo proteins with sorting signals can be recognized

and further captured into COPI-coated vesicles [9,22]. Coatomer

subunits in different organisms, including yeast, plants, insects, and

mammals, have been cloned and demonstrated to be highly

conserved [10]. However, the role of COPI in some specific

tissues, such as the silkworm PSG, is yet to be studied.

Here, we cloned six silkworm coatomers, including a-, b-, b9-,

d-, e-, and f-COP, and selected the RNA interference (RNAi)

technique, which is well documented in fly and silkworm [26–28],

to investigate the physiological functions of COPI in the silkworm

PSG. We found that COPI deficiency disrupts the Golgi apparatus

and causes narrower PSG glandular lumen, indicating that COPI

is essential for the integrity of endomembrane system in PSG cells

and for PSG tube expansion.

Results

Cloning of silkworm coatomer subunits
From yeast to mammals, the COPI complex is composed of seven

coatomer subunits. However, only the c-COP sequence has been

reported in silkworm [29]. Therefore, we cloned the other six

silkworm coatomers. The reported coatomer sequences in various

organisms share a high sequence similarity, especially within several

conserved domains [10,30]. Based on the sequence conservation

between the silkworm and its evolutionary partner Drosophila

melanogaster, we searched for coatomers in the silkworm genome

[31] and cDNA databases [32] using Basic Local Alignment Search

Tool (BLAST). The entire nucleotide sequences of silkworm a-, b-,

b9-, d-, e-, and f-COP subunits, including the start codon, the stop

codon, the 59-untranslated region (UTR), and the 39-UTR, were

successfully predicted. Based on these predictions, we further

designed primers and amplified the six subunits from silkworm PSG

cDNA by reverse transcription PCR (RT-PCR). We named these

six coatomer subunits Bm-a-COP (BmCOPA), Bm-b-COP

(BmCOPB), Bm-b9-COP (BmCOPB2), Bm-d-COP (BmCOPD),

Bm-e-COP (BmCOPE), and Bm-f-COP (BmCOPZ) (GenBank

Accession Numbers: GU322815 - GU322820) (Table S1).

Bioinformatic analysis
We deduced the amino acid sequences of the six coatomers from

complete cDNA sequences. Bm-a-COP contains 1230 amino acids

with a predicted molecular mass of 138 kDa, Bm-b-COP has 573

amino acids and is 64 kDa, Bm-b9-COP has 935 amino acids and is

105 kDa, Bm-d-COP has 507 amino acids and is 56 kDa, Bm-e-
COP has 302 amino acids and is 33 kDa, Bm-f-COP has 183

amino acids and is 20 kDa. To systematically analyze the

coatomers, we examined the sequence identity of the six coatomers

between silkworm and other organisms (Table S1), and further

demonstrated that the coatomer sequences were highly conserved

throughout evolution (Figure 1). The sequence identities of Bm-a-

COP were 62% with its homologues in Drosophila, 60% with human,

and 35% with S. cerevisiae (Table S1). However, it is worth

mentioning that identified silkworm b-COP lacks nearly 400 amino

acids in the middle region compared with its homologues in other

organisms. We speculate that this silkworm b-COP is an isoform

produced by alternative splicing. However, as far as we know, no

isoform of b-COP has been reported previously in other organisms.

Therefore, to identify the b-COP with the 400 amino acids in

silkworm, or to look for potential b-COP splicing variants in

mammals, will extend the information about coatomer isoforms and

different COPI heptamers.

We then constructed phylogenic trees for each coatomer, all of

which were arbitrarily rooted using coatomers from S. cerevisiae

(Figure 1). Both phylogenic trees and sequence alignments

demonstrated the sequence conservation of coatomer subunits

between silkworm and other organisms, especially between

silkworm and Drosophila. This evolutionary conservation further

suggests similar roles of silkworm coatomers as coat proteins

during intracellular transport.

Tissue distribution during developmental stages
We performed relative real-time PCR analysis to examine the

relative expression levels of the six coatomers in different tissues

during different developmental stages. Ribosomal protein L3 (RpL3),

which exhibits the most ubiquitous expression in silkworm [33],

was used as a quantity reference. The mRNA transcripts of all the

six coatomer subunits were detected in brain, Malpighian tubule,

fat body, anterior silkgland (ASG), middle silkgland (MSG), PSG,

and midgut of fifth-instar day-3 larvae, with the highest expression

in midgut (Figure 2A–F, left). Their expression patterns in the

tissues were nearly the same, except that the a, b, and b9 subunits

exhibited lower levels in the brain (Figure 2A–C, left), whereas the

transcripts of d, e, and f subunits were enriched in the brain

(Figure 2D–F, left). This variation implies that d, e, and f subunits

have specific physiological functions in silkworm brain.

To determine the mRNA changes in different developmental

stages, we collected the MSGs and PSGs from fifth-instar larvae

from day 0 (shortly after the fourth ecdysis) to day 7 (one day

before cocooning), and performed real-time PCR. During this

stage, the expression patterns of all six coatomers in the MSG were

similar: increasing during the first three days, reaching a peak at

days 3–4, and then decreasing slightly (Figure 2A–F, middle). In

the PSG, the transcripts of these coatomers accumulated during

the first three days, but exhibited a similar trend of decrease in the

following five days (Figure 2A–F, right).

Next, to examine the protein expression patterns of COPI

subunits, we produced rabbit and mouse polyclonal antibodies

(Figure S1). These coatomer proteins were abundant in PSG, but

lower in the brain using tubulin as a reference (Figure 2G). In the

MSG, a-, b9-, and c-COP proteins maintained a relatively stable

expression level but fluctuated slightly from day to day (Figure 2H).

In the PSG, COPI coatomer proteins increased and reached a

peak during the first three days (Figure 2I). Besides, we observed

an evident degradation of tubulin in PSGs from days 6–7

(Figure 2I), which may be due to programmed cell death caused

by pupal metamorphosis [2,34,35].

Subcellular distribution of silkworm COPI
Previous biochemical and kinetic analysis shows that the fusion

protein e-COP-GFP can be stably assembled into coatomer

complexes [36]. To test the immunofluorescence staining

efficiency of the anti-Bm-a-COP antibody, we overexpressed

Bm-e-COP-GFP in BmN cells under the hr5-enhancer/IE-1

promoter [37,38], and immunolabeled the transfected BmN cells

with this antibody. Endogenous immunolabeled a-COP

Silkworm Coatomers in PSG
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(Figure 3A–B, red) localized in a manner indistinguishable from

that of e-COP-GFP (Figure 3B, green), showing that the produced

anti-Bm-a-COP antibody efficiently labeled the endogenous

COPI complex. To further confirm this result, we overexpressed

d-COP-Myc and d-COP-GFP in BmN cells. The subcellular

distributions of d-COP-GFP (Figure 3C, green) and d-COP-Myc

(Figure 3D, green) were also nearly the same as that of endogenous

a-COP (Figure 3C–D, red). Therefore, the anti-Bm-a-COP

antibody can effectively label the endogenous silkworm COPI

complex.

We further used this anti-Bm-a-COP polyclonal antibody to

trace the native subcellular localization of the COPI complex in

BmN cells. As shown, in BmN cells, COPI complexes were

enriched and distributed throughout the cytoplasm (Figure 3E).

Co-immunostaining of a-COP with the cis-Golgi marker GM130

[39] showed that a significant proportion of Bm-a-COP dots

colocalized with or localized adjacently to cis-Golgi in BmN cells

(Figure 3E). Indirect immunofluorescence of PSG cryosections

further demonstrated the partial overlapping of Bm-a-COP with

cis-Golgi protein GM130 (Figure 4A). In the high magnification

figures of both BmN cells and PSG cryosections, some COPI

complexes colocalized with the cis-Golgi, while others localized

adjacent to the cis-Golgi marker GM130 (red) (Figure 3E and 4A).

The findings in silkworm fat body and midgut were the same

Figure 1. Phylogenic trees of six silkworm coatomer subunits. Six phylogenic trees of a-COP (COPA) (A), b-COP (COPB) (B), b9-COP (COPB2)
(C), d-COP (COPD) (D), e-COP (COPE) (E), and f-COP (COPZ) (F) are shown. Each tree contains several coatomer homologues from different organisms
and is arbitrarily rooted using coatomers from S. cerevisiae. The red borders indicate the silkworm coatomer subunits. Bm, Bombyx mori; Ce,
Caenorhabditis elegans; Dm, Drosophila melanogaster; Dr, Danio rerio; Hs, Homo sapiens; Mm, Mus musculus; Rn, Rattus norvegicus; and Sc,
Saccharomyces cerevisiae.
doi:10.1371/journal.pone.0013252.g001

Silkworm Coatomers in PSG

PLoS ONE | www.plosone.org 3 October 2010 | Volume 5 | Issue 10 | e13252



(Figure 4B–C). In normal rat kidney (NRK) cells, c1-, and f2-

COPs are reported to localize at the cis half of the Golgi apparatus;

the c2-COPs are mostly restricted at trans-Golgi; and the

endogenous b9-COPs are observed throughout the whole Golgi

areas [20]. In Drosophila, a discrete colocalization of c-COP with

cis-Golgi and ER was reported, but no colocalization with median-

or trans-Golgi markers [40]. Our results are consistent with

previous reports, and demonstrate that silkworm COPI is also

partially colocalized with cis-Golgi (Figure 3E and 4).

To better characterize the silkworm COPI complex, we

detected the distribution of COPI using immunogold electron

microscopy (EM) in PSG cells with mouse anti-Bm-a-COP and

rabbit anti-GM130 (cis-Golgi marker) antibodies (Figure 5).

Immunogold labeling showed that gold-labeled Bm-a-COPs

(5 nm) resided in the cytosol and accumulated around the cis-

Golgi marker GM130 (10 nm). Some Bm-a-COPs were also

attached to the cytosolic side of the Golgi apparatus and ER

(Figure 5). These results indicate that silkworm coatomers act as

vesicle coats participating in intracellular transport between

different cellular compartments.

COPI is required for PSG tube expansion
To test our hypothesis that silkworm COPI is involved in PSG

development, we knocked down the expression level of previously

identified c-COP [29] (Table S1) and examined its effect on PSG

morphology. We injected c-COP dsRNA (nucleotide 751–1500

base pairs) and GFP dsRNA (as a control) into the second-instar

larvae. Five days later, we assessed the expression level of native c-

COP using the mouse anti-c-COP antibody (Figure S1). The

silkworms injected with c-COP dsRNA exhibited a significant

reduction on native c-COP protein, to a level of ,40% in those

silkworms injected with GFP dsRNA (Figure 6A). Meanwhile, we

found that the down-regulation of c-COP led to a narrower PSG

glandular lumen (Figure 6B). The average diameter of the

glandular lumen in silkworms injected with c-COP-dsRNA

decreased from 60 mm to 42 mm (Figure 6B), showing that

knockdown of c-COP affected PSG tube expansion.

Accordingly, we speculated that the COPI complex, which

contains c-COP as one of its seven subunits, is required for PSG

tube expansion. To examine whether knockdown of a- and b9-

COP repress PSG tube expansion like c-COP, the synthesized

dsRNAs of a- (nucleotide 13–660 and 3061–3720 base pairs), b9-

COP (nucleotide 1–660 and 661–1200 base pairs), and GFP were

injected into third-instar larvae (Figure 6C–D). In the silkworms

injected with a-COP dsRNA, a statistically significant reduction

(,48%) of a-COP expression level was observed five days later

(Figure 6C, left). The PSG luminal diameter in these silkworms

was significantly narrower (Figure 6D), averaging approximately

69 mm, compared with 91 mm in controls. In the silkworms

injected with b9-COP dsRNA, the result was similar: ,52%

reduction of b9-COP protein (Figure 6C, right) led to ,31%

decrease of average PSG luminal diameter (Figure 6D). Further-

more, it is worth mentioning that the knockdown of COPI

subunits in both second- and third-instar larvae suppressed the

diameter increase of the PSG glandular lumen, implying that

COPI is essential for PSG tube expansion throughout the larval

stage. Moreover, during the first three days of the fifth-instar larval

stage, the PSG develops very rapidly, and the diameter of the PSG

Figure 2. Expression patterns of six silkworm coatomers. (A–F) Relative mRNA expression patterns of Bm-a-COP (A), Bm-b-COP (B), Bm-b9-COP
(C), Bm-d-COP (D), Bm-e-COP (E), and Bm-f-COP (F). The three bar graphs from left to right are respectively the relative mRNA expression levels in
seven different tissues of silkworm, in eight different days (Day 0–7) of the fifth-instar MSG, and in eight different days of the fifth-instar PSG. (G–I)
Protein expression levels of Bm-a-COP, Bm-b9-COP, and Bm-c-COP were detected in different tissues (G), the fifth-instar developmental MSG (H), and
the fifth-instar developmental PSG (I). The seven tissues are Brain (Br), Malpighian tubule (Mal), fat body (Fat), anterior silkgland (ASG), middle
silkgland (MSG), posterior silkgland (PSG), and midgut (Mg). Day 0–7 indicates day 0–7 of the fifth-instar larvae.
doi:10.1371/journal.pone.0013252.g002
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Figure 4. a-COP partially colocalized with cis-Golgi in PSG, midgut and fat body. (A–C) Cryosections of PSG (A), midgut (B) and fat body(C)
co-immunostained with anti-a-COP antibody (green) and anti-GM130 antibody (red). Boxed areas ‘a’ and ‘b’ are magnified. The colocalized green and
red dots are indicated by arrowheads; and adjacent dots are indicated by double arrows. Scale bars represent 10 mm.
doi:10.1371/journal.pone.0013252.g004

Figure 3. Subcellular distribution of silkworm COPI. (A–D) The e-COP-GFP, d-COP-GFP and d-COP-Myc colocalized with endogenous a-COP in
BmN cells. The BmN cells transfected with GFP (A, green), or e-COP-GFP (B, green), or d-COP-GFP (C, green) were immunolabeled with anti-a-COP
antibody (red). (D) BmN cells transfected with d-COP-Myc were co-immunostained with anti-Myc (green) and anti-a-COP (red) antibodies. (E)
Subcellular distribution of a-COP in BmN cells. BmN cells were co-immunostained with anti-a-COP antibody (green) and anti-GM130 antibody (red).
Three different cells are presented separately, and the rectangle is magnified in the left lower panel. Arrowheads point to colocalized dots, while
double arrows indicate adjacent green/red dots. Scale bars represent 10 mm.
doi:10.1371/journal.pone.0013252.g003

Silkworm Coatomers in PSG

PLoS ONE | www.plosone.org 5 October 2010 | Volume 5 | Issue 10 | e13252



increases dramatically [41]. During that period, most coatomer

subunits are expressed at elevated levels in PSG cells, also

suggesting that COPI is associated with PSG growth during the

fifth-instar larval stage (Figure 2). Taken together, these findings

that a narrower PSG lumen corresponds to lower coatomer

expression levels suggest that silkworm COPI is required for the

tube expansion of PSG.

COPI deficiency disrupts the integrity of Golgi apparatus
To elucidate the underlying mechanism of tube expansion failure

in COPI-deficient PSG, we first stained the dsRNA-treated PSG

cryostat sections. The relative fluorescence intensity of a-COP was

dramatically reduced after a-COP dsRNA treatment, while the

fluorescence intensity of tubulin did not change (Figure 7A–B),

which were consistent with the Western blotting (Figure 6C). We

further examined the cis-Golgi apparatus by immunolabeling

GM130. In wildtype PSG cells, the GM130 exhibited a punctate

cytoplasmic signal (Figure 4A). However, a-COP dsRNA injection

decreased the punctate staining of GM130, compared with the GFP

dsRNA-treated samples (Figure 7C). Statistic data showed a drastic

reduction in the staining intensity of GM130 in the a-COP

knockdown PSGs compared with the control PSGs (Figure 7C–D).

These data suggest that the knockdown of a-COP in PSG causes the

structural defects of Golgi apparatus.

To further confirm our results, we observed the detailed

subcellular structure in dsRNA-treated PSG by electron micros-

copy. The electron micrographs showed abundant Golgi appara-

tus and ER in the fourth-instar PSG cells (Figure 8A). In contrast

to the numerous and apparent Golgi particles and ER network,

the endomembrane system in the a-COP knockdown PSGs

appeared indistinct and disordered. Especially, the bubble-like

Golgi structure after a-COP dsRNA treatment became less and

fragmentated (Figure 8A–B). We calculated the number and area

of Golgi particles, and further demonstrated that knockdown of a-

COP decreased the population and volume of Golgi apparatus in

PSG cells (Figure 8C). Taken together, in a-COP deficient PSGs,

the integrity of endomembrane system, especially the structure of

Golgi apparatus, is disrupted, suggesting that the defect in tube

expansion may be due to the collapsed endomembrane system.

Discussion

Here, we demonstrated that the absence of silkworm COPI led

to tube expansion deficiency of the PSG, and further established

that COPI deficiency disrupts the integrity of the Golgi apparatus.

COPI vesicles play a well-established role in the Golgi-to-ER

retrograde transport [21,22], and may also transport anterogra-

dely between different cisterns of the Golgi apparatus [13,23], or

Figure 5. Immunoelectron microscopy of a-COP in PSG cells. Immunogold labeling of PSGs. Representative electron micrographs of
endomembrane system double-labeled with anti-a-COP (bound to 5-nm protein A-gold) and anti-GM130 antibodies (bound to 10-nm protein A-
gold). The rectangles are magnified, along with schematic diagrams. Scale bars represent 100 nm.
doi:10.1371/journal.pone.0013252.g005
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be associated with endosome-related activities [24,25]. Therefore,

the COPI defects interrupt the Golgi-ER communication, widely

disrupt protein shuttling in silkworm PSG, and dramatically affect

the integrity and balance of endomembrane system (Figure 9).

It is reported previously that the structural defects of secretory

apparatus (Golgi and ER) reduces the secretion of the luminal protein

[40,42]. Moreover, in Drosophila and zebrafish, the accumulating

luminal matrix or fluid generates a distending force to expand the tube

diameter [43,44]. Here, we provided evidence that the PSG tube

expansion deficiency in COPI knockdown silkworms was due to the

abnormal and disrupted endomembrane system. In COPI-knock-

down PSG, the intracellular transport is interrupted, disrupting the

integrity of endomembrane system, suppressing the luminal matrix

secretion, and leading to a subsequent decrease of the distending force

generated inside the PSG lumen. Considering that fibroin is the most

abundant luminal matrix in silkworm PSG [4], we hypothesized that it

is the significant reduction of the secreted fibroin that results in the

dropped distending force. Therefore, the PSG lumen fails to expand in

the COPI-knockdown PSG (Figure 9).

A fibroin secretion-deficient silkworm mutant, Nd-sD, is previ-

ously reported to possess an immature PSG [45], which is similar to

the phenotype in COPI-knockdown silkworm. It is also due to the

dramatic decrease of the secreted fibroin, we speculate, that results

in the reduced distending force and following narrower PSG lumen.

Most reports suggest that COPI subunits exhibit highly

conserved localization and physiological function. Although this

study of silkworm COPI suggests its conservation throughout

evolution, some of our results revealed some surprising differences

between the coatomer subunits of silkworm and other organisms.

First, the sequence of Bm-b-COP identified by RT-PCR lacks 400

amino acids compared with its homologues in other organisms.

However, the predicted b-COP cDNA sequence from the

silkworm genome contains the lost 400 amino acids (data not

shown), suggesting our identified b-COP may be produced by

alternative splicing. Considering that no splicing variant of

coatomers has been reported in any organisms, the silkworm b-

COP isoforms with or without the 400 amino acids seem worth

further investigation. Second, we noted different expression levels

of coatomer subunits in silkworm brain (Figure 2A–F, left), with

lower mRNA levels for a, b, and b9-COP (Figure 2A–C, left), but

higher for d, e, and f-COP (Figure 2D–F, left). Therefore, it is

logical to speculate that d, e, and f subunits have a specific role in

silkworm brain, which also needs further investigation.

The silkworm PSG may have several advantages for studying

intracellular transport [2]. The PSG tubule, surrounded by two

PSG cells, is responsible for silk production and secretion [5,8]. In

the PSG cells, there exists an extensive endomembrane system,

including Golgi apparatus, ER, and secretory granules [41]. It is

likely that COPI-mediated intracellular transport may be

abundant in this highly differentiated secretory tissue compared

with other tissues. Meanwhile, PSGs are easily dissected for

biochemical analysis; silkworm genomic sequences and the cDNA

database are available [1,31,32]; RNAi technology established in

silkworm recently [27], in combination with the BmNPV

baculovirus transfection system [2], transgenic silkworm technique

[6], and micromanipulation tools [46], offer researchers a great

opportunity to assess the physiological functions of COPI vesicles.

Moreover, many coat proteins have still not been identified in

Figure 6. COPI is required for PSG tube expansion. (A) Western blotting of second-instar silkworm larvae injected with GFP dsRNA (left two
lanes) or c-COP dsRNA (right three lanes). Relative protein expression levels of c-COP, with tubulin as a reference control, are shown as the column.
(B) Second-instar silkworm PSG microphotographs, with arrows indicating the glandular luminal diameter. Calculated diameters of PSG lumen in
silkworms injected with GFP or c-COP dsRNAs are shown in the right bar graph. (C) Western blotting shows suppressed expression of the a-COP (left)
and b9-COP (right) by RNAi in third-instar silkworm larvae. Relative protein expression levels of a- and b9-COP, with tubulin as a reference control, are
shown. (D) Silkworm PSG microphotographs in third-instar silkworms injected with GFP, a-COP, or b9-COP dsRNAs. Arrows indicate glandular luminal
diameter. Statistical calculation of PSG luminal diameters are shown in the right bar graph. Scale bars represent 100 mm.
doi:10.1371/journal.pone.0013252.g006
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silkworm, such as COPII coats [10,14] and adaptors for clathrin

coats [47]. These coat proteins, in combination with COPI coats,

envelop the transported vesicles, and form an interconnected

network to capture different types of cargoes. We believe that

identifying more vesicle-associated coat proteins and more coat-

omer isoform would further advance our understanding of the

intracellular vesicle transport in silkworm PSG.

Although much progress has been made on elucidating COPI

vesicle formation, the mechanism of COPI transport is still elusive

and controversial [48]. Kinesin-1 is reported to participate in

COPI transport [49], but some data suggest the dispensability of

Kinesin-1 in COPI movement [50]. Recently, Kinesin-2 is

reported to participate in the COPI-dependent Golgi-to-ER

retrograde transport [51]. Therefore, with the help of identifica-

Figure 7. Immunohistofluorescence of dsRNA-treated PSG cryosections. (A) Cryosections of PSGs from GFP/a-COP dsRNA injected
silkworms are co-immunostained with anti-a-COP antibody (green) and anti-tubulin antibody (red). DAPI stains nuclei. Scale bar represents 50 mm. (B)
Relative fluorescence intensities of a-COP and tubulin in (A) are shown. (C) Cryosections of PSGs from GFP/a-COP dsRNA injected silkworms are
immunostained with anti-GM130 antibody. The rectangles in the upper panel (scale bar represents 50 mm) are magnified in the lower panel (scale bar
represents 10 mm). (D) Relative fluorescence intensity of GM130 in (C) is shown. GL represents glandular lumen.
doi:10.1371/journal.pone.0013252.g007
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tion of silkworm COPI complex, we will investigate the molecular

mechanism of vesicle transport in silkworm PSG. In PSG cells,

whether COPI vesicles are transported by BmKinesin-1 or other

motor proteins? What are the cargoes transported by COPI

vesicles in PSG cells? Could we identify any novel proteins

involved in COPI formation or transport? Future answers to these

questions may deepen and broaden our understandings of COPI-

related processes in silkworm and in mammals.

Materials and Methods

Bombyx mori strain
The embryos of B. mori strain (p50) were hatched and reared as

previously described [2], and the artificial diet was provided by the

Chinese Academy of Agricultural Sciences.

Bioinformatic analysis
Sequences for cloning analysis were obtained from http://

silkworm.genomics.org.cn/ [31] and http://papilio.ab.a.u-tokyo.

ac.jp/silkbase/ [32]. The amino acid sequences of coatomers in

organisms were derived from NCBI, and were aligned using

MAFFT [52]. The neighbor-joining trees were inferred and

decorated by MEGA 3.1 [53].

RNA isolation and cDNA cloning
The RNA was isolated and reverse-transcripted according to

previous reports [34]. Six silkworm coatomer subunits, a-, b-, b9-,

d-, e-, and f-COP, were amplified (30 cycles of 94uC for 30 s and

60uC for 30 s and 72uC for 3 min) using LA Taq DNA

polymerase (Takara) (see Table S2 for primer information). Then,

the PCR products were cloned into pCR2.1 vector (Invitrogen)

Figure 8. Detailed subcellular structures of COPI-deficient PSG. (A) A representative electron micrograph of PSGs from GFP dsRNA-injected
silkworms. (B) A representative electron micrograph of PSGs from a-COP dsRNA-injected silkworms. Scale bars represent 500 nm. (C) Statistic graphs
of number (Y coordinate) and area (X coordinate) of Golgi particles in GFP/a-COP dsRNA-injected silkworms, according to the electron micrographs.
doi:10.1371/journal.pone.0013252.g008
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and were delivered for sequencing (Invitrogen). To rule out errors

introduced by PCR, we delivered at least three clones of each

band for sequencing.

Real-Time quantitative PCR
Real-time quantitative PCR was performed by an ABI 7300

Detection System (Applied Biosystems) using the SYBR Green

PCR Master Mix (Applied Biosystems) as previously described

[34]. Ribosomal protein L3 (RpL3) was served as a reference control

[33] and the 22DDCT method [54] was used (see Table S2 for

primer information).

Antibody production
Regions (amino acids 1021–1240 for a-COP; 221–400 for b9-

COP; 251–500 for c-COP) of silkworm a-, b9-, and c-COP were

amplified and cloned into the EcoRI/XhoI site in the expression vector

pGEX-6P-1, respectively (see Table S2 for primer information). The

fusion proteins were collected and purified as previously described

[34], and were used as antigens to immunize both rabbits and mice.

Immunoblotting analysis
After gel separation by SDS-PAGE, the proteins were transferred

onto PVDF membranes (Millipore) in a semidry transfer cell (Bio-

Rad). The membranes were blocked and subsequently probed with

primary antibodies at 4uC overnight. HRP-conjugated goat anti-

mouse/rabbit IgG (Jackson ImmunoResearch Laboratories, Inc.)

were used as secondary antibodies. Primary antibodies used were

mouse anti-a-COP polyclonal antibody, anti-b9-COP polyclonal

antibody, anti-c-COP polyclonal antibody, anti-a-tubulin mono-

clonal antibody (B-5-1-2, Sigma), rabbit anti-a-COP polyclonal

antibody, and rabbit anti-b9-COP polyclonal antibody.

Transfection and immunofluorescence
The d-, e-, f-COP were cloned into the BamHI/XhoI site of the

pFastBac-1-based pFastBac-hr5/IE1-GFP vector [34] (see Table

S2 for primer information). Vector pFastBac-hr5/IE1 was

constructed with both IE-1 promoter [37] and hr5 enhancer

[38] sequentially inserted into pFastBac-1 vector (Invitrogen)

between SnaBI and BamHI.

BmN cells were maintained as in previous reports [34] and

transfected by Cellfectin II Reagent (Invitrogen). Cells were fixed 24–

48 hours post-transfection, and then subjected to immunofluorescence

staining. After permeabilization and blocking [34], the cells were

incubated with primary antibodies (anti-a-COP polyclonal antibody,

mouse anti-Myc monoclonal antibody, 9E10 Upstate, and/or rabbit

anti-GM130 polyclonal antibody, Abcam) and secondary antibodies

(Alexa Fluor 488- and/or 568-conjugated goat anti-mouse and/or

anti-rabbit IgG, Molecular Probes). The samples were observed under

a TCS SP2 confocal microscope (Leica) equipped with a 1006/1.4

numerical aperture oil-immersion objective lens.

For immunofluorescence of cryosections, the whole third-instar

larvae or the dissected PSGs were fixed and prepared for sectioning

on a Leica cryostat CM1850. This sectioning and immunofluores-

cence process has been described previously [34]. The primary

antibodies used were mouse/rabbit anti-a-COP polyclonal anti-

body, rabbit anti-GM130 polyclonal antibody (Abcam), and mouse

anti-tubulin monoclonal antibody (Sigma). Samples were subse-

quently observed under a confocal microscope (Leica).

Electron microscopy
For electron microscopy, we fixed the dissected PSGs and

processed the samples as previously reported [55]. For immunoe-

lectron microscopy, whole third-instar larvae were fixed in 3%

paraformaldehyde in PBS containing 0.1% glutaraldehyde and

4% sucrose. After gradient dehydration in 30–100% methanol, the

samples were infiltrated by resin (Lowicryl K4M) at 220uC and

embedded in capsules fully filled with resin. The embedded

samples were polymerized under UV light, followed by ultrathin

section preparation and post-embedding immunolabeling. The

primary antibodies used were mouse anti-a-COP polyclonal

antibody and rabbit anti-GM130 polyclonal antibody (Abcam).

The secondary antibodies were 5 nm or 10 nm gold-conjugated

goat anti-mouse/rabbit IgG (Sigma).

DsRNA synthesis and injection
The templates for dsRNA synthesis were amplified by PCR

using gene-specific primers containing T7 polymerase sites as

previously described [26,27] (see Table S2 for primer informa-

Figure 9. Schematic illustration of PSG cross-section in wild type and COPI-knockdown silkworm. In wild type (left), efficient COPI
retrograde transport (thicker red arrow) and ER-to-Golgi anterograde transport (brown arrow) maintain the integrity of the endomembrane system
and abundant luminal protein secretion (thicker green arrow). The accumulating luminal matrix generates a distending force to expand tube
diameter. In COPI-knockdown silkworm (right), the disruption of COPI transport (thinner red arrow) leads to structural defects of the endomembrane
system and subsequent inefficient secretion (thinner green arrow), causing a failure in the tube expansion.
doi:10.1371/journal.pone.0013252.g009
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tion). DsRNAs were synthesized using a MEGAscript Kit

(Ambion) and extracted according to the manufacturer’s instruc-

tions. In detail, the dsRNA of a-COP corresponds to nucleotides

13–660 and 3061–3720; the dsRNA of b9-COP corresponds to

nucleotides 1–660 and 661–1200; the dsRNA of c-COP

corresponds to nucleotides 751–1500 base pair; and GFP dsRNA

served as a control. The concentrations of dsRNAs diluted in

DEPC-treated H2O were measured. Based on previous reports

[56,57], 1 mg dsRNAs were respectively injected into larval

hemolymph using pulled-glass capillary needles. Five days after

injection, the silkglands were dissected out. After being photo-

graphed under a microscope (IX71 inverted fluorescence micro-

scope, Olympus), the PSGs were homogenized for Western

blotting analysis, or were fixed for frozen sectioning and electron

microscopy. The amounts of coatomers and tubulin were

estimated by Western blotting analysis. From the snapshots of

PSG, we measured the luminal diameters of the PSGs from more

than eight silkworms at similar sites (approx. 200 mm from the

curve between MSG and PSG).

Supporting Information

Figure S1 Production of silkworm coatomer antibody. Western

blotting analysis showed that produced mouse and rabbit

polyclonal antibodies of a-COP, b9-COP, and c-COP could

detect specific bands.

Found at: doi:10.1371/journal.pone.0013252.s001 (3.27 MB TIF)

Table S1 The detailed information of seven silkworm coat-

omers. The gene name, accession number, nucleotide/amino acid

length, predicted molecular weight, and identities between

different organisms are listed in this table.

Found at: doi:10.1371/journal.pone.0013252.s002 (8.40 MB TIF)

Table S2 The primers we used.

Found at: doi:10.1371/journal.pone.0013252.s003 (0.11 MB

PDF)
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