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Abstract

Background: The GXGD-type diaspartyl intramembrane protease, presenilin, constitutes the catalytic core of the c-secretase
multi-protein complex responsible for activating critical signaling cascades during development and for the production of
b-amyloid peptides (Ab) implicated in Alzheimer’s disease. The only other known GXGD-type diaspartyl intramembrane
proteases are the eukaryotic signal peptide peptidases (SPPs). The presence of presenilin-like enzymes outside eukaryots
has not been demonstrated. Here we report the existence of presenilin-like GXGD-type diaspartyl intramembrane proteases
in archaea.

Methodology and Principal Findings: We have employed in vitro activity assays to show that MCMJR1, a polytopic
membrane protein from the archaeon Methanoculleus marisnigri JR1, is an intramembrane protease bearing the signature
YD and GXGD catalytic motifs of presenilin-like enzymes. Mass spectrometry analysis showed MCMJR1 could cleave model
intramembrane protease substrates at several sites within their transmembrane region. Remarkably, MCMJR1 could also
cleave substrates derived from the b-amyloid precursor protein (APP) without the need of protein co-factors, as required by
presenilin. Two distinct cleavage sites within the transmembrane domain of APP could be identified, one of which coincided
with Ab40, the predominant site processed by c-secretase. Finally, an established presenilin and SPP transition-state analog
inhibitor could inhibit MCMJR1.

Conclusions and Significance: Our findings suggest that a primitive GXGD-type diaspartyl intramembrane protease from
archaea can recapitulate key biochemical properties of eukaryotic presenilins and SPPs. MCMJR1 promises to be a more
tractable, simpler system for in depth structural and mechanistic studies of GXGD-type diaspartyl intramembrane proteases.
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Introduction

Regulated intramembrane proteolysis is an ancient mechanism

to control cell metabolism, differentiation and development in

organisms ranging from bacteria to humans [1]. In intramem-

brane proteolysis, single-pass membrane proteins are cleaved

within their transmembrane domain (TMD) to liberate soluble

fragments that can then act as molecular effectors. Examples

include the release of transcriptional activators in the Notch [2]

and ErbB-4 [3] signaling cascades; the production of the

neuropathogenic b-amyloid peptides (Ab) [4]; the liberation of

cellular growth factors [5]; and the regulation of cholesterol

biosynthesis [6]. The intramembrane-cleaving proteases (known as

i-CLiPs) constitute a novel class of integral membrane proteins. In

analogy to their water-soluble counterparts, i-CLiPs can be

divided into aspartic proteases, metalloproteases and serine

proteases [7]. GXGD-type diaspartyl intramembrane proteases

are arguably the most relevant i-CLiPs from the perspective of

human biology and health [8,9].

Presenilins are the founding members of GXGD-type diaspartyl

intramembrane proteases. These enzymes are human polytopic

integral membrane proteins with nine predicted TMDs [10], and

with conserved YD and GXGD signature motifs in adjacent

TMDs (Fig. 1A) providing the two catalytic aspartate amino acid

residues [11]. A third conserved short stretch (PAL motif) is

typically present in the C-terminal region of presenilin genes and is

also considered to have a functional role [12]. Presenilins received

early attention due to genetic studies showing that rare, early-onset

autosomal dominant forms of familial Alzheimer’s disease (AD) are

caused by the inheritance of gene variants of this enzyme [13].

Subsequent studies demonstrated that presenilins constituted the

catalytic core of c-secretase [14,15], a multi-protein complex [16]

composed of presenilin, nicastrin, anterior pharynx defective

(APH-1) and presenilin enhancer 2 (PEN-2). To date, c-secretase
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has been shown to be responsible for the processing of a growing

number of type I integral membrane proteins including APP, APP-

like proteins, E-Cadherin, CD44, lipoprotein receptor related

protein, Notch, interferon response element and activated

transcription factor 6 [17]. As c-secretase consists of four

hydrophobic proteins totaling at least 19 TMDs its structural

and functional characterization is particularly challenging [18].

Presenilins were initially considered to be an isolated protein

family present only in vertebrates. However in a more recent study,

Ponting et al. suggested the presence of presenilin-like proteins

throughout eukaryotes, in fungi as well as in plants [19]. Shortly

after, one of the human candidates was identified as signal peptide

peptidase (SPP) and shown to exert intramembrane protease activity

on the signal sequence of polymorphic major histocompatibility

complex class I molecules [20]. Human SPP is a polytopic integral

membrane protein with seven predicted TMDs. Like presenilin, the

two catalytic aspartates in SPP are found within the conserved YD

and GXGD motifs located in adjacent TMDs [20]. In addition, SPP

can be photolabeled by a c-secretase transition state analog

inhibitor, suggesting a possible conservation of active-site structure

within the two enzymes [21], and even Ab modulators affect SPP

activity [22]. These findings have provided strong evidence that SPP

and presenilin share significant biochemical properties and have

promoted the use of SPP as a model system to study presenilin [9].

However, SPP has significant differences with presenilin. For

example, SPP appears to have a membrane topology opposite to

that of presenilin [20], a characteristic that could be related to the

fact that presenilin cleaves type I membrane proteins whereas SPP

cleaves type II ones. In addition, contrary to presenilin, SPP does

not require complexation with additional proteins for activity.

The above mentioned bioinformatics study by Ponting et al. also

raised the hypothesis that archaea might contain presenilin-like

proteins [19]. To date however, archaeal GXGD-type diaspartyl

intramembrane proteases with biochemical similarities to pre-

senilins or SPPs have not been reported. Here, we screened twelve

commercially available archaeal genomes for the presence of

putative intramembrane proteases harboring the YD and GXGD

presenilin and SPP signature motifs within adjacent TMDs.

Expression and purification trials of cloned targets identified the

protein MCMJR1 from the euryarchaeon Methanoculleus marisnigri

JR1, as an optimal expressor that was stable during purification in

detergent. Using in vitro proteolytic assays, site-directed mutagen-

esis experiments and cleavage site determination by mass

spectrometry we demonstrated that MCMJR1 is indeed an

archaeal GXGD-type intramembrane protease with significant

biochemical similarities compared to presenilins and the SPPs.

Figure 1. Identification of GXGD-type diaspartyl intramembrane proteases in archaea. A. Multiple sequence alignment (CLUSTAL) of
presenilin 1 (PS1) homologs, signal peptide peptidase (SPP) homologs and MCMJR1 around the TMD regions encompassing the two catalytic
aspartates (Asp 1 and Asp 2) and the loop region containing the C-terminal PAL motif. A star marks absolutely conserved amino acids. The catalytic
aspartates (blue) and the proline in the PAL motif (gray) are numbered. B. Genomic expansion of archaeal GXGD-type diaspartyl intramembrane
protease targets. The target proteins purified from a 100 mL bacterial culture, bearing either N or C terminal His10-tags (Panels 1, 3 and 2, 4
respectively) were purified by metal affinity chromatography. Purification was performed in DDM (Panel 1 and 2) and FC-12 (Panel 3 and 4).
Homologues from 12 different genomes were screened: 1, Haloarcula marismortui; 2, Methanosarcina mazei; 3, Archaeoglobus fulgidus; 4, Ferroplasma
acidarmanus; 5, Picrophilus torridus; 6, Methanospirillum hungatei; 7, Thermoplasma volcanium; 8, Methanoculleus marisnigri; 9, Thermoplasma
acidophilum; 10, Methanosarcina barkeri; 11, Methanococcoides burtonii; 12, Methanosarcina acetivorans. MCMJR1 corresponds to lane 8. C. A
coomassie stained 10% SDS-PAGE analysis of MCMJR1 purification. Samples corresponding to purified MCMJR1 incubated with ULP1 protease (lane
1), after re-passing the preparation through Ni-NTA resin (lane 2) and after SEC over a HR200 superdex column (lane 3). The molecular weight marker
positions are shown on the left. D. Elution profile from MCMJR1 run on a SEC column.
doi:10.1371/journal.pone.0013072.g001
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Results

Identification of putative GXGD-type diaspartyl
intramembrane proteases from archaea

Despite limited areas of direct sequence homology [19], presenilins

and SPPs share a multispanning membrane topology and identical

YD and GXGD signature motifs carrying the two catalytic aspartates

on adjacent TMDs, as well as a PAL motif near their C-termini

(Fig. 1A). We used these signature motifs as seeds to identify putative

GXGD-type diaspartyl intramembrane proteases among a total of 12

commercially available genomes from archaea (Results S1). We

selected and cloned 12 targets as fusion proteins containing His10-tags

at either the N- or C-termini. We expressed these in small scale in E.

coli and purified them by Ni-NTA chromatography in either Fos-

choline 12 (FC-12) or dodecyl-b-D-maltopyranoside (DDM), two

non-denaturing detergents commonly used as efficient solubilizers of

bacterial inner membranes (Fig. 1B). One candidate (we termed it

MCMJR1), from Methanoculleus marisnigri strain JR1, could be

expressed and purified in much greater yields relative to all the

other targets. For scaled-up production, MCMJR1 was expressed in

E. coli carrying a N-terminal SUMO-tag. This strategy yielded

milligram quantities (Fig. 1C) of highly pure protein (Fig. 1D) for in

vitro functional characterization. Analysis of the MCMJR1 sequence

using several membrane protein topology prediction softwares

postulated a multispanning membrane topology with eight predicted

TMDs. The signature YD and GXGD catalytic motifs of presenilin

and SPP were predicted to be in adjacent TMDs 5 and 6, which were

joined by a long loop.

MCMJR1 is a GXGD-type diaspartyl intramembrane
protease

To determine if MCMJR1 displays protease activity we used

an in vitro assay. In vitro cell-free assays using detergent-solubilized

components constitute reliable tools to monitor intramembrane

protease activity. For example, in vitro c-secretase activity is

measured routinely using a recombinant substrate derived from

APP [23]. In another example, the activity of SPP [22] has been

probed by incubating the purified protease with chimeric

proteins based on physiological substrates and following their

degradation by western blotting and SDS-PAGE. Here we used a

comparable approach, originally developed in our laboratory to

assay the activity of rhomboid serine intramembrane proteases.

The chimeric substrates are genetically engineered as fusion

proteins between bacterial maltose binding protein (MBP) and

the TMDs of physiological Drosophila rhomboid-1 substrates

Gurken, Keren and Spitz (Fig. 2A). In this assay, purified

substrate and enzyme are incubated in a detergent-containing

buffer at 37uC for a defined length of time, typically 8 hours or

overnight. Intramembrane protease activity produces a ,42 kDa

MBP fragment which can be identified either by direct staining of

SDS-PAGE gels or by blotting using anti-MBP antibodies, and

efficiently distinguished from the undigested ,50 kDa substrate.

Incubation of MCMJR1 with the substrates Gurken-TMD and

Keren-TMD, in the presence of amino-peptidase (bestatin) and

cysteine/serine protease (E-64/PMSF) inhibitors, produced a

,42 kDa band representative of the MBP moiety, as judged by

anti-MBP western blotting (Fig. 2B). The TMD of Gurken

Figure 2. Proteolytic activity of MCMJR1. A. Sequence detail of the chimeric substrates Gurken-TMD, Keren-TMD and Spitz-TMD. A thrombin
cleavage site (discontinuous underline) separates MBP from the amino acid sequence corresponding to the natural substrate (bold) and the C-
terminus includes a His6-tag (H6) for purification. The predicted TMD is underlined. Specific amino acid residues are numbered according to the wild-
type protein. B. An anti-MBP western blot analysis of Gurken-TMD, Keren-TMD and Spitz-TMD after incubation in 0.1% DDM at 37uC for 8 hours in the
absence (lane 1) and presence of MCMJR1 (lane 2). Protein bands corresponding to the undigested (black arrowhead) and digested (white
arrowhead) substrates are indicated on the right and the molecular weight marker position is shown on the left side. C. An anti-MBP western blot
analysis of the pH dependence of MCMJR1 activity. MCMJR1 purified in 5 mM NaHepes at pH 7.0 was diluted 8-fold (to a final concentration of
0.5 mM) into a solution containing Gurken-TMD (0.5 mM) in either a 50 mM Bicine buffer at pH 9.0, 50 mM NaHepes buffer at pH 8.0–7.0, 50 mM Bis-
Tris buffer at pH 6.0, and 50 mM Sodium Acetate-Acetic acid buffer at pH 5.0–3.0. As negative and positive controls Gurken-TMD was incubated at
pH 7.0 in the absence (co 2) and presence (co +) of MCMJR1.
doi:10.1371/journal.pone.0013072.g002
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appears to be the most efficiently cleaved substrate. Moreover,

although Spitz-TMD and Keren-TMD display high sequence

homology, Spitz-TMD was poorly processed compared to

Keren-TMD. The pH dependence of MCMJR1 activity

(Fig. 2C) indicated a pH optimum of ,7.0, which is similar to

the pH optimum displayed by detergent solubilized c-secretase

[23] and SPP [24].

To confirm the observed proteolytic activity was MCMJR1-

specific and to probe the role of aspartic acid residues in the

function of this protein, we carried out a site-directed mutagenesis

study. In addition to D162 and D220 located in the YD and

GXGD motifs respectively, there are another five aspartic acid

residues in MCMJR1 (D5, D40, D128, D195 and D236; Fig. 3A).

Each one was mutated into alanine and the resulting single amino

Figure 3. Identification of catalytic aspartic acid residues in MCMJR1. A. A prediction of the membrane-spanning regions and their
orientation was obtained from the amino acid sequence of MCMJR1 using three independent topology prediction softwares TMpred, Toppred, and
HMMTOP. Horizontal lines delimit the lipid bilayer. All the aspartic acid residues (D5, D40, D128, D162, D195, D220 and D236) in MCMJR1 are shown.
Amino acids flanking the candidate catalytic aspartic acid residues (in red) are also depicted. B. A coomassie stained 10% SDS-PAGE analysis of a 32-
hour incubation of Gurken-TMD in the absence of MCMJR1 (co 2) and in the presence of wild-type MCMJR1 (wt) and aspartate-to-alanine single
mutants. Digestion products (white arrowhead) could be detected for wild-type MCMJR1, as well as D5A, D40A, D128A, D195A and D236A mutants.
In contrast, the D162A and D220A mutants (in red) showed no activity. A 8-hour incubation with wild-type MCMJR1 (8 h) is also included to show
that the additional product bands observed after a 32-hour incubation are the result of an extended reaction time. C. An anti-MBP western blot
analysis of the incubation of Gurken-TMD in the absence of MCMJR1 (Co2) and in the presence of wild-type MCMJR1 (wt), and D162N, D162E, D220N
and D220E mutants. Digestion products (white arrowhead) could be detected for wild-type MCMJR1 but not for the mutants. D. Slowed rate of
intramembrane proteolysis by the G219A MCMJR1 mutant. An anti-MBP western blot analysis of Gurken-TMD following incubation with wild-type
(wt) MCMJR1 and the mutant G219A. Aliquots of the digestion reaction were analyzed after 30 min, 2, 3, 4, 6 and 8 hours. Co 2 denotes Gurken-TMD
in the absence of MCMJR1. Protein bands corresponding to the undigested (black arrowhead) and digested (white arrowhead) substrate Gurken-TMD
are indicated and the molecular weight marker positions are shown on the left.
doi:10.1371/journal.pone.0013072.g003
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acid variants were expressed, purified and tested for activity

against chimeric substrates (Fig. 3B). The yield and purity of each

Asp-to-Ala MCMJR1 mutant was comparable to that obtained for

the wild-type protein. Mutation of either D162 or D220 to alanine

completely abolished enzymatic activity. In contrast, the five other

Asp-to-Ala mutants had no apparent effect on the proteolytic

function of MCMJR1. We note that under the 32-hour incubation

time employed to ascertain the lack of activity of the catalytic

mutants, two additional bands appear around the region where

the product migrates. These two bands are not apparent under our

typical 8-hour incubation (Fig. 3B; 8 h) and they do not react with

anti-MBP (Fig. 3C), and thus we believe they might constitute

unspecific cleavage products. In the event that the effect observed

for the Asp-to-Ala mutations of D162 and D220 was structural

rather than functional, we introduced an isosteric asparagine and a

glutamic acid to conserve the negative charge. These mutations

abolished MCMJR1 activity (Fig. 3C), demonstrating that

aspartates are specifically required at these two positions. All

together, these data demonstrate that the observed protease

activity is indeed MCMJR1 specific, and offer strong support to

the notion that the enzyme is a GXGD-type diaspartyl protease

harboring its two catalytic residues in the same YD and GXGD

amino acid motifs that are the signatures for presenilin and SPP.

To further evaluate the role of the GXGD motif in MCMJR1,

we mutated the glycine immediately preceding the second catalytic

aspartate to alanine (G219A). In presenilin, the corresponding

mutant (G384A) significantly decreases the rate of production of

Ab40 [25] and a similar effect was also reported in the SPP

homolog SPPL2b [26]. The G219A mutant (GXG219D) in

MCMJR1 also decreased its rate of proteolysis (Fig. 3D),

suggesting that the role of this residue adjacent to the catalytic

D220 might be similar to that reported for SPP and presenilin.

MCMJR1 cleaves at multiple sites within the hydrophobic
TMD of the substrate

Next, we addressed the question of whether MCMJR1 cleaves

substrates within their TMD. To determine the proteolytic profile

of MCMJR1 we used matrix-assisted laser desorption/ionization

time-of-flight (MALDI-TOF) mass spectrometry. Cleavage of the

chimeric substrates by MCMJR1 generates an N- and C-terminal

product. The C-terminal product contains the majority of the

TMD and thus will bind substantial amounts of detergent, which

can hamper mass spectrometry analysis [27]. We therefore focused

our analysis on the N-terminal product, the bulk of which is

constituted by MBP followed by a hydrophilic C-terminal linker.

As an example, figures 4A–C show the cleavage site determination

procedure for MCMJR1 in its reaction with Gurken-TMD.

Following incubation, using a concentration of substrate and

enzyme that maximizes the yield of the reaction, an efficient

degradation of the substrate could be achieved. Ni-NTA resin was

added to this reaction mixture to sequester the uncleaved substrate

and the C-terminal fragment (both containing His6-tags), and thus

yield a purified N-terminal product. TCA precipitation of this

species followed by MALDI-TOF mass spectrometry analysis

(Fig. 4B) yielded a mass spectrum showing four main peaks at m/z

values, corresponding to single, double, triple and quadruple

protonated species with mass of ,46011 Da. Comparison of the

calculated masses of possible N-terminal reaction products

suggests that MCMJR1 cleaves Gurken-TMD after Leu256

(Table 1). To verify the location of the cleavage, the N-terminal

species derived from the digestion of Gurken-TMD was incubated

with thrombin. Thrombin treatment of this product produces a

small peptide spanning from the engineered thrombin site to the

MCMJR1 cleavage site (Fig. 4A), which can be measured with

increased accuracy due to its relatively small mass. The mass

spectrometry analysis of this product of double digestion (Fig. 4C)

confirmed the identity of the cleavage site after Leu256 and

identified two additional sites after Leu255 and Met257 (Table 1).

An identical procedure was employed to analyze the cleavage of

Keren-TMD by MCMJR1. In this case, mass spectrometry

analysis again revealed one main cleavage site after Leu133 and

two additional secondary sites after Leu131 and Phe134 (Table 1;

Fig. 4D). These data suggest that MCMJR1 cleaves within the

TMD region of the substrate, with the existence of secondary

cleavage sites.

Inhibition of MCMJR1 by an established presenilin
transition state analog inhibitor

SPP and presenilin share pharmacological similarities as they

are targeted by many of the same small molecules, including

transition state analogs, non-transition state inhibitors, and

modulators [28]. Moreover, both enzymes apparently have a

substrate-binding site that is distinct from the active site and

certain nonsteroidal anti-inflammatory drugs known to shift the

site of proteolysis by c-secretase also affect SPP [22]. Here we

asked the question of whether established inhibitors of presenilin

and SPP could also have an effect on MCMJR1. Figure 5A shows

inhibition of MCMJR1 activity against Gurken-TMD by 31C, a

transition state analog inhibitor known to target presenilin [29]

and SPP [22]. Complete inhibition of activity was achieved with

,100 mM 31C, as judged by densitometry. These data further

reinforce the notion that MCMJR1 displays relevant biochemical

similarities to presenilin and SPP. Remarkably however, L-

685,458 [15], another established presenilin and SPP inhibitor

that is structurally similar to 31C, failed to impact MCMJR1

activity under the same assay conditions.

MCMJR1 displays proteolytic activity against substrates
derived from the amyloid precursor protein

Given the biochemical similarities between MCMJR1 and

presenilin we questioned whether MCMJR1 could cleave bona fide

presenilin substrates, unique to this enzyme. c-Secretase cleaves at

multiple sites within the TMD of its physiological substrate bCTF,

derived from the processing of the APP by BACE [30]. A

recombinant form of bCTF, known as C100Flag and originally

designed by Li et al [23], has been used extensively to assay c-

secretase activity both in vitro and in vivo [23,29,31]. Incubation of

C100Flag with MCMJR1 resulted in the appearance of an anti-

Flag immunoreactive band at ,8 kDa, which was consistent with

the expected molecular weight of intramembrane proteolysis

products (Fig. 5B). To map the profile of this cleavage, we

designed a chimeric substrate (APP-TMD) containing the TMD of

APP fused to MBP. Incubation of MCMJR1 with APP-TMD

resulted in the appearance of a ,42 kDa band corresponding to

the MBP moiety of the chimeric substrate (Fig. 5C). The product

of this reaction was purified and analyzed by MALDI-TOF mass

spectrometry (Fig. 5D). Two cleavage sites within the TMD of

APP were observed (Table 1). Remarkably, these sites corre-

sponded to the Ab38 and Ab40 c-secretase cleavage sites (Fig. 5E).

Discussion

In this report we introduce MCMJR1 as a novel GXGD-type

diaspartyl intramembrane protease from archaea. A key question

is how does MCMJR1 compare to the eukaryotic GXGD-type

diaspartyl intramembrane proteases, presenilin and SPP. The

overall sequence homology between presenilins and SPPs is very

low, except for the fact that they both share a common

Characterization of MCMJR1
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architecture with multiple TMDs (Fig. 6), an absolute conservation

of the signature YD and GXGD catalytic motifs present in

adjacent TMDs and a C-terminal PAL motif [19]. Remarkably,

despite low sequence homology with the eukaryotic enzymes, there

appears to be a conservation of these signature motifs and

topological features in MCMJR1. Indeed, mutation to alanine of

Table 1. Observed and calculated masses of MCMJR1 cleavage products.

Substrate Product sequence Calculated mass of products (Da) Observed mass of products (Da)

Gurken-TMD MBP-PRGS–PVLL256 46014.1 46011

GS–PVL255 3409.9 3411.3

GS–PVLL256 3523.1 3524.5

GS–PVLLM257 3654.3 3655.6

Keren-TMD MBP-PRGS–TLALL133 46332.4 46338

GS–TLA131 3615.1 3615.8

GS–TLALL133 3841.4 3842.2

GS–TLALLF134 3988.6 3989.5

APP-TMD MBP-PRGS–VGG709 43680.4 43674

MBP-PRGS–VGGVV711 43878.7 43860

doi:10.1371/journal.pone.0013072.t001

Figure 4. MCMJR1 cleaves within the TMD of the substrates. A. Schematic of the processing of MBP-based chimeric substrates by MCMJR1 and
generation of samples for mass spectrometry analysis. The wider cylinder represents the TMD region and the engineered thrombin site (LVPR/GS) is
colored in red. P1 denotes the N-terminal MBP containing product of the digestion of the substrate chimera by MCMJR1. P2 denotes the product of the
digestion of P1 by thrombin. B. Mass spectrum recorded in positive ionization mode of the N-terminal product (corresponding to P1 in A) after digestion
of Gurken-TMD by MCMJR1. The observed m/z for selected peaks is given. Single, double, triple and quadruple charged species are also indicated. C.
Mass spectrum recorded in positive ionization mode of the peptide (corresponding to P2 in A) between the thrombin cleavage site and the MCMJR1
cleavage site in Gurken-TMD. D. Schematic representation of the proteolytic profile of MCMJR1 against the substrates Gurken-TMD and Keren-TMD.
doi:10.1371/journal.pone.0013072.g004
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Figure 5. MCMJR1 can cleave c-secretase substrates derived from APP. A. An anti-MBP western blot analysis of MCMJR1 inhibition. The
substrate Gurken-TMD was incubated with MCMJR1 in the presence of increasing amounts of the c-secretase inhibitors 31C (upper panel) and
L685,458 (lower panel). Co2 denotes Gurken-TMD in the absence of MCMJR1. The chemical structures of these inhibitors are depicted on the right.
B. Anti-Flag immunoblot analysis of C100Flag in the absence (lane 1) and presence of MCMJR1 (lane 2). Proteolysis by MCMJR1 is indicated by the
presence of a band that cross-reacts at a lower molecular weight (white arrowhead) compared to the intact substrate (black arrowhead). A band
corresponding to C100Flag dimer also cross-reacts at ,27 kDa. C. A coomassie stained 10% SDS-PAGE analysis of APP-TMD alone (lane 1) and after
incubation with MCMJR1 (lane 2). The full-length substrate (black arrowhead) and N-terminal product (white arrowhead) generated after cleavage by
MCMJR1 are marked. D. Mass spectrum recorded in positive ionization mode of the N-terminal product after digestion of APP-TMD by MCMJR1. The
observed m/z for selected peaks is given. Single, double, triple and quadruple charged species are also indicated. E. Schematic showing the
proteolytic profile of MCMJR1 on APP-TMD (black arrows) along with the calculated (calc) and observed (obs) mass. The region corresponding to the
TMD of APP is underlined. The thrombin cleavage site following MBP is also shown. The known cleavage sites of c-secretase to generate Ab at
positions 38, 40, 42 and 49 are marked (backslash) for comparison.
doi:10.1371/journal.pone.0013072.g005

Figure 6. Topologies of presenilin, SPP and MCMJR1. A schematic of the predicted topologies of presenilin [10], SPP [20] and MCMJR1.
Cylinders across the lipid bilayer (a continuous slab) depict the predicted TMD regions. Stars mark the positions of the catalytic aspartic acid residues.
doi:10.1371/journal.pone.0013072.g006
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any of the aspartic amino acid residues within the sequences

YD162 or GXGD220 abolishes MCMJR1 proteolytic activity, as

does the corresponding mutations in presenilins [11] and SPPs

[20]. In addition, the mutation G219A - adjacent to D220 in the

GXGD motif - slows down proteolytic activity considerably, in

clear analogy to the effect observed when the corresponding

mutation was introduced in both presenilin [25] and SPP [26].

The apparent reason for the observed reduction in activity of the

Gly-to-Ala mutant in presenilin is that this glycine is key to allow

rotational freedom of the adjacent catalytic aspartate [25]. The

role of this residue in MCMJR1 might be comparable to that

reported for presenilins. Thus, we suggest that the function of the

signature YD and GXGD motifs in presenilins and SPPs is

conserved also in MCMJR1. Although we cannot at this point be

fully confident about the validity of the predicted topology of

MCMJR1 (Fig. 6), we note that in analogy to presenilins and SPPs

these two motifs are located towards the C-terminal of MCMJR1,

in adjacent TMDs that are joined by a relatively long loop. The

proteolytic activity of presenilin is dependent on the loop between

the two TMDs that harbor the catalytic motifs undergoing

endoproteolysis to yield N- (NTF) and C-terminal (CTF)

fragments of the enzyme [32]. This endoproteolytic event in

presenilin is thought to cut and remove a helix that otherwise

obstructs the active site in the immature enzyme [33]. In analogy

to SPP [20], MCMJR1 does not appear to depend on

endoproteolysis for catalysis. We note however that the integrity

of this loop appears to be critical for MCMJR1 activity, as multiple

loop truncation mutants were found to be inactive in our in vitro

assay (Fig. S1). As a salient difference, MCMJR1 does not contain

an obvious C-terminal PAL motif. Biochemical studies with

presenilin and SPP have suggested this motif to be functionally

important and to contribute to the architecture of the active site

[34]. Instead, a tantalizing PPL sequence is present just before the

last TMD of MCMJR1. The functional role of this sequence in

MCMJR1, if any, remains to be determined.

From a biochemical perspective significant similarities and

differences between MCMJR1 and presenilins and SPPs are also

evident. To date, presenilin has been found responsible for the

intramembrane cleavage of a growing list of type I integral

membrane proteins, which appear not to share any consensus

sequence around their transmembrane cleavage sites [35] and the

main prerequisite for proteolysis seems to be prior enzymatic

removal of an ectodomain [36]. In contrast, substrate ectodomain

shedding appears unlikely to be a pre-requisite for SPP-mediated

intramembrane proteolysis, although there is evidence that it may

facilitate cleavage [37,38,39]. In analogy to SPP, ectodomain

removal appears not to be a requisite for MCMJR1-catalyzed

proteolysis. In further analogy to SPPs, MCMJR1 appears to be

active in the absence of accessory proteins. Remarkably,

MCMJR1 displays a certain degree of specificity towards the

TMD region of the substrates. Indeed, Keren-TMD could be

more efficiently hydrolyzed than Spitz-TMD, despite the two

substrates having comparable TMD regions. A salient feature of

presenilin is its ability to cleave substrates at multiple sites within

their TMD [4]. In contrast, SPP-catalyzed intramembrane

proteolysis seems to occur predominantly at one position after a

helix-breaking amino acid residue [22]. Our mass spectrometry

data suggest that in analogy to presenilin, MCMJR1 displays

promiscuous peptide bond specificity as processing of the chimeric

substrates was shown to occur at multiple positions within the

hydrophobic region of the predicted TMD. Perhaps the single

most remarkable feature distinguishing MCMJR1 from SPP, is its

unique ability to hydrolyze substrates derived from APP. Indeed,

MCMJR1 was able to cleave the established in vitro presenilin

substrate C100Flag [23]. Moreover, the chimera containing the

TMD of APP was hydrolyzed at two transmembrane sites, which

correspond to known presenilin cleavage positions. To the best of

our knowledge the ability of SPP to cleave APP-derived substrates

has not been reported. This feature of MCMJR1 deserves further

investigation with enzyme and substrates reconstituted in lipid

bilayers to best mimic an in vivo situation. However, it is

remarkable that an enzyme from archaea can produce Ab40,

and do so without the apparent need of the co-factors APH-1,

nicastrin, and PEN-2 that are required for c-secretase function.

The discussed features distinguish MCMJR1 from prokaryotic

type 4 prepilin peptidases (TFPP; [40]), which are also GXGD-

type diaspartyl proteases, but contain their catalytic aspartates

within soluble regions that are separated by several TMDs and

cleave their substrates outside the membrane [40,41]. Sequence

database searches suggest that presenilin and SPPs are well

conserved throughout eukaryotes with putative homologues

present in yeast, plants, mollusks, insects, fish, birds and mammals

[19]. The very limited sequence homology suggests that these two

families might have evolved by convergence and are probably not

directly related. The existence of presenilin-like proteins in

archaea had been suggested [19], but never proven biochemically.

The demonstration that archaeal MCMJR1 is a GXGD-type

diaspartyl intramembrane protease with biochemical similarities to

presenilin and SPP suggests that this type of proteolytic activity

might have an older origin than previously anticipated.

Presenilin is currently the subject of intense investigation due

to its relevance to human biology and to the pathogenesis of AD

[8]. However, as presenilin is active only when in complex with

APH-1, nicastrin, and PEN-2 [16], and also has to undergo

endoproteolytic activation [32], the pace in our mechanistic and

structural understanding of this enzyme has been understand-

ingly slow. The discovery of human SPP has contributed

significantly to our knowledge of this type of proteases in general,

and on presenilin in particular [9]. Still, the lack of more

tractable and presumably simpler GXGD-type diaspartyl

intramembrane proteases from prokaryotic sources has ham-

pered the implementation of adequate biophysical and structural

approaches to study this important class of membrane enzymes.

Indeed, the availability of prokaryotic homologs has resulted in

structural and functional breakthroughs in the related field of

rhomboid [42,43,44,45] and S2P [46] intramembrane proteases.

Despite the fact that the physiological substrates of MCMJR1 are

hitherto unknown, its ability to recapitulate key biochemical

properties of eukaryotic presenilins and SPPs make this archaeal

enzyme an optimal system for high-resolution structure deter-

mination and in depth studies on the mechanism of GXGD-type

diaspartyl intramembrane proteases.

Materials and Methods

Identification and expression trials of putative GXGD-
type diaspartyl intramembrane protease genes from
archaeal genomes

A simple genomic expansion was performed by BLAST based

on published sequences of putative GXGD-type diaspartyl

intramembrane proteases [19]. The search was confined to

commercially available archaeal genomes. Short (21 bp) oligonu-

cleotides were designed to match the 59 and 39 ends of the coding

regions, and the target genes amplified by PCR using standard

procedures, cloned into a shuttle vector (pGEM-T easy system,

Promega, Inc.) and sequenced from both directions to confirm

their identity before being re-cloned into appropriately designed

expression vectors.

Characterization of MCMJR1

PLoS ONE | www.plosone.org 8 September 2010 | Volume 5 | Issue 9 | e13072



Target archaeal GXGD-type diaspartyl intramembrane protease

genes were cloned into two variants of T7 promoter-based and

isopropyl-b-D-thio-galactoside (IPTG) inducible pET19a (Nova-

gen, Inc.) vectors for expression as either N or C terminal His10-tag

fusion proteins. For subsequent scale-up experiments the MCMJR1

gene was transferred to a variant of pET-28b for expression of a

genetically engineered N-terminal fusion with the small ubiquitin

modifying protein (SUMO; [47]), preceded by a His6-tag. All

expression experiments were performed in E. coli strain Rosetta

(DE3) pLysS (Novagen, Inc.). Transformed cells were grown to mid-

log phase at 37uC in 2xTY medium before lowering the

temperature to 18uC and inducing protein expression with the

addition of IPTG to a final concentration of 0.1 mM. Protein

expression was allowed to continue for 18 hours at 18uC. Initial

expression tests were performed on a 100 mL scale. Scale-up of

protein production was instead carried out on 800 mL scale, using

2 L baffled flasks as vessels (Bellco Glass, Inc.). Cells were harvested

by centrifugation at 6,0006g. Single aspartate MCMJR1 mutants

were generated using the QuickchangeTM (Stratagene, Inc.) site-

directed mutagenesis kit, following protocols provided by the

manufacturer. Expression and purification of these mutants was

carried out essentially as for the wild-type protein.

A model for the topology of MCMJR1 was obtained by analyzing

its sequence using three independent topology prediction softwares

TMpred (http://www.ch.embnet.org/software/TMPRED_form.

html), Toppred, (http://mobyle.pasteur.fr/cgi-bin/portal.py?form =

toppred) and HMMTOP (http://www.enzim.hu/hmmtop/html/

submit.html). We selected the N-terminus to be cytosolic, because the

N-terminal SUMO-tag used for expression in E. coli does not have a

signal sequence and it is cytosolic.

Expression of chimeric substrates in E. coli
The chimeric protein substrates used for the in vitro activity assay

contained the predicted TMD region of the 695-amino acid long

isoform of APP (bAPP695; GeneBank accession number

CAA68374; TMD region Gly625-Met647) and that of EGFR

ligands of Drosophila melanogaster, namely Spitz (GeneBank acces-

sion number NP_476909; TMD region Ala142-Leu164), Keren

(GeneBank accession number NP_524129; TMD region Ala122-

Leu144) and Gurken (GeneBank accession number NP_476568;

TMD region Ile248-Leu271). The cDNAs for Gurken, Keren and

Spitz were obtained from the Drosophila Genomics Resource

Center and MBP (without a signal sequence) was amplified from

plasmid H-MBP-3C [48]. The TMD region of APP695 was

cloned from a synthetic duplex DNA fragment. The chimeras also

included a unique thrombin cleavage site (LVPR/GS) to aid in the

ensuing mass spectrometry experiments and a C-terminal His6-tag

for purification. These chimeras termed Gurken-TMD, Keren-

TMD, Spitz-TMD and APP-TMD were subcloned into pET-29b

plasmids for expression in E. coli strain BL21 (DE3). Colonies were

picked and grown to mid-log phase at 37uC in 1 L of growth

medium (0.85% Na2HPO4, 0.03% KH2PO4, 0.5 g/L NaCl,

0.01% NH4Cl, 10 g/L Tryptone, 5 g/L Yeast Extract, 2 mM

MgSO4.7H2O, 1 mM CaCl2, 0.6% Glucose, 10 mg/mL Thia-

mine) supplemented with 40 mg/mL Kanamycin. Cell growth was

allowed to continue for 4 hours at 37uC following induction of

protein expression with 0.4 mM IPTG.

The pET21 expression vector (Novagen, Inc.) carrying the

recombinant C100Flag [23] substrate (108 amino acid residues;

MW = 12.3 KDa), which corresponds to the C-terminal fragment

(CTF; residues Met596-Asn695) derived from APP695 (GeneBank

accession number CAA68374) with an extra C-terminal Flag-tag,

was a kind gift from Dr. Yueming Li (Sloan-Kettering, New York).

This plasmid was used to transform E. coli host strain BL21 (DE3).

The cell culture was grown at 37uC to an OD at 600 nm of ,0.7

before protein expression was induced by addition of IPTG to

0.4 mM final concentration. Following induction, cell growth was

allowed to continue for 4 hours at 37uC.

Protein purification
All procedures were performed on ice or at 4uC. Cells were

resuspended in buffer A (20 mM NaHepes pH 7.5, 250 mM

NaCl, 1 mM MgSO4, 1 mM b-mercaptoethanol containing

0.1 mg/mL DNAse, 4 mg/mL of E-64 (Alexis biochemicals, Inc.),

14 mg/mL of Bestatin (Alexis biochemicals, Inc.) and 100 mM of

PMSF (Sigma-Aldrich). Cells were then lysed in a 35 mL French

pressure cell operating at 11,000 psi. Cell debris was cleared by

centrifugation at 10,0006 g for one hour. Cytoplasmic mem-

branes were isolated by centrifugation at 100,0006 g for 1 hour,

resuspended at ,5 mg/mL total protein concentration in buffer A

and solubilized with 1% (w/v) detergent. Alternatively, the crude

lysate was solubilized directly by addition of 1% (w/v) detergent at

a ratio of 10:1 (wet cell mass to detergent). Solubilization was

performed at 4uC under gentle rotation for one hour with either

DDM (Anatrace, Inc) or FC-12 (Anatrace, Inc.). Insoluble

material was removed by ultracentrifugation at 148,0006 g for

1 hour and the supernatant containing the detergent-solubilized

membranes was supplemented with imidazole buffered at pH 7.0

to a final concentration of 50 mM and added to pre-equilibrated

Ni-NTA resin (Qiagen) at a ratio of 1:50 (resin to solution, v/v).

After 2 hours of incubation under gentle rotation, the affinity resin

was poured onto a disposable column and washed with 4 column

volumes of buffer B (20 mM Na-Hepes pH 7.5, 250 mM NaCl,

1 mM b-mercaptoethanol) supplemented with 50 mM imidazole

and either 0.1% DDM or 0.125% FC-12. Histidine-tagged

proteins were eluted in buffer B supplemented with 250 mM

imidazole and either 0.1% DDM or 0.125% FC-12. For SUMO

fusion constructs, the samples were treated overnight with ULP1

(added at ,1:20 protease to substrate ratio, w/w) to allow the

proteolytic release of the SUMO-tag while dialyzing against a

20 mM Na-Hepes pH 7.0 buffer containing 250 mM NaCl,

2 mM b-mercaptoethanol and either 0.05% DDM or 0.0625%

FC-12. After re-passing the mixture through pre-equilibrated Ni-

NTA resin, histidine-tagged ULP1 protease, SUMO tag and any

impurities were retained, while the proteins of interest were

collected in the flow-through. Finally, an aliquot from the this

sample was use for in vitro activity assays or, to increase purity even

further, the entire preparation was concentrated to under 500 mL

before loading onto a superdex 200 HR10/30 (GE Healthcare,

Inc) size-exclusion chromatography column equilibrated in buffer

B containing either 0.05% DDM or 0.08% FC-12.

Substrate production
Cells expressing MBP chimeric substrates were collected by

centrifugation and resuspended in 15 mL of buffer C (50 mM

Tris-HCl pH 7.4, 300 mM NaCl, 10 mM Imidazole, 10%

glycerol) containing 0.1 mg/mL DNAse, 4 mg/mL of E-64,

14 mg/mL of Bestatin and 100 mM of PMSF. Cells were then

lysed in a 35 mL French pressure cell operating at 11,000 psi., and

the intact cells and cellular debris spun down at 43,0006g for 15

minutes. Bacterial membranes were isolated by ultracentrifugation

at 100,0006g for 45 minutes and solubilized in a total volume of

25 mL of buffer C containing 2% Triton X-100 (Anatrace, Inc.;

TX-100) for 4 hours. The insoluble material was separated by

ultracentrifugation at 100,0006 g for 45 minutes and the

supernatant incubated with 0.5 mL of Ni-NTA resin pre-

equilibrated in buffer C. After 4 hours at 4uC, the resin was

packed onto a disposable column and the detergent exchanged to
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0.1% DDM by washing the resin with buffer C containing 0.2%

TX-100 first, then with buffer C containing 0.1% DDM and

finally with 3 mL of buffer D (50 mM Tris-HCl pH 7.4, 300 mM

NaCl, 20 mM Imidazole, 10% glycerol) containing 0.1% DDM.

The substrate was eluted with buffer E (50 mM Tris-HCl pH 7.4,

300 mM NaCl, 250 mM Imidazole, 10% glycerol) with 0.1%

DDM. Finally, the protein-containing solution was dialyzed

against phosphate buffered saline (PBS) at pH 7.4 with the

addition of 10% glycerol and 0.1% DDM.

Bacterial membranes containing C100Flag were isolated and

solubilized as described above. The insoluble material was

separated by ultracentrifugation and the supernatant incubated

with 300 mL of pre-equilibrated anti-flag M2 affinity resin (Sigma,

Inc.). After 1 hour of slow rotation at 4uC, the M2 resin was first

washed with 365 mL PBS containing 0.2% TX-100 and then

with 365 mL of PBS with 0.1% DDM. Finally, chimeric

C100Flag substrate was eluted by competition with a flag peptide

(Sigma, Inc.) diluted in PBS containing 0.1% DDM.

In vitro cleavage assay
Chimeric membrane protein substrates (1.5 mM) were mixed

with detergent-purified MCMJR1 (4 mM) in a final volume of

25 mL in PBS at pH 7.4 containing 0.1% DDM, and in the

presence of 4 mg/mL of E-64, 14 mg/mL of Bestatin and 100 mM

of PMSF. The reaction was allowed to continue for 8 hours at

37uC. Proteolytic activity generated a N-terminal product

(,46 KDa) containing the MBP-tag and a C-terminal product

carrying the His6-tag (,4 KDa). Detection of the former was

achieved directly by either coomassie blue staining of a 10% SDS-

PAGE gel or by immunoblotting with anti-MBP specific

antibodies (NEB, Inc).

Identification of the cleavage sites by mass spectrometry
The chimeric substrate (10 mM) was incubated at 37uC with

MCMJR1 (2 mM) in a final volume of 1 mL in PBS (pH 7.4)

supplemented with 0.1% DDM, and in the presence of 4 mg/mL

of E-64, 14 mg/mL of Bestatin and 100 mM of PMSF. Following

overnight incubation, 500 mL of pre-equilibrated Ni-NTA resin

was added to the reaction mixture to remove undigested chimeric

substrate and C-terminal cleavage product, both His6-tagged. For

mass spectrometry analysis, the flow through containing the N-

terminal cleavage product was concentrated to 200 mL and

precipitated at 220uC with 1 mL of 10% Trichloroacetic acid

(TCA) in acetone. The precipitated protein was collected by

centrifugation at 17,0006 g for 5 minutes and the pellet washed

with 1 mL of acetone at 220uC. The pellet was solubilized in 8 M

urea and the suspension passed through a 30 KDa cut-off

centrifugal device (Millipore, Inc.) to exchange the urea for an

ammonium bicarbonate buffer at pH 7.4. The protein was then

concentrated to a final volume of 40 mL. Thrombin cleavage was

carried with a 20 mL aliquot of the concentrated protein sample

with 0.1 U of enzyme (Roche) to release a small peptide defined by

the thrombin site at the N-terminus and the MCMJR1 cleavage

site at the C-terminus. The N-terminal cleavage products, without

and with thrombin treatment were analyzed by MALDI-TOF

mass spectrometry using a Voyager DE-STR (Applied Biosys-

tems). Each mass spectrum was averaged from 500 measurements

and calibrated with myoglobin as an internal standard. The

spectra were smoothed and further analyzed using the software M-

over-Z (Genomic Solutions, Inc.).

Inhibition of MCMJR1
MCMJR1 diluted in dialysis buffer to a final concentration of

(0.8 mM) was first pre-incubated for 2 hours at 37uC with c-

secretase transition-state analog inhibitors L-685,458 [15] and

31C [29,49] purchased form Sigma and Calbiochem, respectively.

The final inhibitor concentrations were 10, 25, 50, 75, 100 and

200 mM for L-685,458, and 10, 50, 75 and 100 mM for 31C. The

substrate Gurken-TMD (0.8 mM) was added following pre-

incubation with the inhibitors and the reaction was quenched

with SDS-PAGE sample loading buffer 8 hours later.

Supporting Information

Figure S1 Activity of MCMJR1 loop deletion variants. A

coomassie stained 12% SDS-PAGE analysis of purified (left panel)

variants D 169-203 (the amino acids 169-203 have been deleted),

D 169–217, D 176–196 and D 176–203. The wild-type enzyme

was included for comparison. The right panel shows a coomassie

stained 10% SDS-PAGE analysis of the incubations of the loop

deletion variants with Gurken-TMD. Protein bands corresponding

to the undigested (black arrowhead) and digested (white arrow-

head) substrates are indicated on the right and the molecular

weight marker positions are shown on the left side.

Found at: doi:10.1371/journal.pone.0013072.s001 (0.35 MB TIF)

Results S1 Identification of putative GXGD-type diaspartyl

intramembrane proteases from archaea.

Found at: doi:10.1371/journal.pone.0013072.s002 (0.04 MB

DOC)
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