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Abstract

Emerging evidence supports that cooked rice (Oryza sativa L.) contains metabolites with biomedical activities, yet little is
known about the genetic diversity that is responsible for metabolite variation and differences in health traits. Metabolites
from ten diverse varieties of cooked rice were detected using ultra performance liquid chromatography coupled to mass
spectrometry. A total of 3,097 compounds were detected, of which 25% differed among the ten varieties. Multivariate
analyses of the metabolite profiles showed that the chemical diversity among the varieties cluster according to their defined
subspecies classifications: indica, japonica, and aus. Metabolite-specific genetic diversity in rice was investigated by
analyzing a collection of single nucleotide polymorphisms (SNPs) in genes from biochemical pathways of nutritional
importance. Two classes of bioactive compounds, phenolics and vitamin E, contained nonsynonymous SNPs and SNPs in
the 59 and 39 untranslated regions for genes in their biosynthesis pathways. Total phenolics and tocopherol concentrations
were determined to examine the effect of the genetic diversity among the ten varieties. Per gram of cooked rice, total
phenolics ranged from 113.7 to 392.6 mg (gallic acid equivalents), and total tocopherols ranged between 7.2 and 20.9 mg.
The variation in the cooked rice metabolome and quantities of bioactive components supports that the SNP-based genetic
diversity influenced nutritional components in rice, and that this approach may guide rice improvement strategies for plant
and human health.
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Introduction

Rice (Oryza sativa L.) is a valuable model system for cereal plant

genetics due to its sequenced and annotated genome, capacity for

transformation, and similarity to other major cereal crop species.

Most importantly, rice is a vital source of calories as a food crop.

Cereals are the primary source of energy for over 50% of the

global population, of which rice is the third largest contributor

[1]. The global dependence on rice has led to the development of

thousands of varieties with large genetic and morphological

diversity. Rice is structured into several well-defined gene pools

via the subspecies classification of indica, japonica, and aus. This

classification was recently confirmed with the genome resequen-

cing of 20 representative varieties and subsequent documentation

of single nucleotide polymorphisms (SNPs), referred to as the

OryzaSNP set [2]. Across and within each classification, rice

contains significant diversity in plant architecture and growing

habits [3], and in grain phenotypes such as width, weight,

cooking properties, aroma, and texture [4]. The extensive

phenotypic and genotypic variation within the OryzaSNP set

makes these varieties a powerful tool to study rice chemical

diversity such that methods can be developed to enhance health

promoting qualities of rice.

Metabolites present in the rice grain have demonstrated human

disease protective activities following dietary intake, and also have

beneficial effects on the immune system [5–7]. Specific rice

components, such as phenolics (mono- and polyphenols), vitamin

E (tocopherols and tocotrienols), phytosterols, and linolenic acid,

have nutrient value to human health [8–11]. Phenolic bioactivity is

largely due to the efficiency of donating hydrogen atoms to oxygen

radicals [12], a process associated with anticancer activity [13].

Unlike phenolics, tocopherols are lipid-soluble antioxidants

incorporated into lipoproteins, and are predicted to counteract

the inflammatory effects of lipoprotein oxidation in blood [14].

While brown rice is an efficient source of both phenolics and

tocopherols, little is known regarding the genetic basis for the

variation in type and quantity of these components in cooked rice

across genetically diverse varieties.
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The functional impact of SNP-derived genetic variation in

pathways that regulate the production of dietary bioactive

compounds in rice is also unclear. Metabolomics, the compre-

hensive analysis of low-molecular-weight compounds in biological

samples, provides a high-throughput and sensitive approach to

assess the outcome of different genotypes on metabolites in the

cooked grain. New evidence supports the utility of this technique

to capture the complexity of the rice metabolome and to evaluate

changes in metabolic responses [15,16]. However, there has been

minimal integration of the rice metabolomic signature with

genomic data sets and the use of this information to assess

components of dietary importance. A systems biology approach

was applied herein to reveal the synthesis and metabolic regulation

of nutritionally important phytochemicals, by profiling multiple

rice varieties for pathway-specific SNPs with metabolomics.

Results

Metabolite variation in rice varieties and subspecies
A comparison of metabolite profiles was conducted to

determine the extent of variation in cooked brown rice across

ten varieties from the OryzaSNP set (Table 1). The subset of

OryzaSNP varieties used in this study represent the extensive

phenotypic and genetic diversity present in the three subspecies

(aus, japonica, indica) of consumed rice varieties [2]. They also

represent different levels of improvement through breeding [3].

Metabolites from cooked brown rice were extracted in 80:20

methanol:water and detected by ultra performance liquid

chromatography coupled with mass spectrometry (UPLC-MS). A

metabolomic profile for each rice variety was resolved as a sum of

its features, and each feature (assumed here to be a unique

metabolite) consists of a retention time, mass, and quantity. Across

the ten varieties, 3,097 metabolites were detected, and these

metabolites were distributed across a wide range of molecular

masses (Figure 1A). Approximately 25% (763 out of 3,097) of the

metabolites differed in quantity among the ten varieties (Kruskal-

Wallis test, P,0.001) (Figure 1B). A z-score analysis applied to the

set of 763 metabolites showed extensive metabolite variation

relative to Nipponbare, a Japanese variety with a sequenced

genome (Figure 1C). A sum of squares for the 763 z-scores showed

that the metabolite profiles of all nine varieties were different from

the profile of Nipponbare, and that profiles of indica subspecies

varieties show larger differences from Nipponbare than did japonica

subspecies profiles (Table 2). Based on a partial least squares

discriminant analysis (PLS-DA), metabolite profiles cluster accord-

ing to subspecies (indica, japonica, aus) (Figure 2A). The first

component of the PLS-DA model explained approximately 64%

of the variation, and the second component explained an

additional 35% of the variation. Varieties were then clustered

into the indica, japonica, and aus subspecies, and 194 metabolites

were determined to be significantly different among the three

subspecies (Kruskal-Wallis test, P,0.001) (Figure 2B). Hierarchical

clusters were determined using Euclidian distances, and the

metabolite profiles of the aus varieties were nearer to the japonica

than the indica varieties. The differences in the chemical profiles

among the ten varieties suggest the potential for variation in

metabolites important for human nutrition.

SNP analysis reveals allelic differences in phytochemical
pathways of nutritional importance in rice

Relevant metabolic pathways, including those involved in the

biosynthesis of phenolics, vitamin E, phytosterols, and linolenic

acid, were chosen for functional genomic analysis of SNPs across

the diverse rice varieties. The RiceCyc database (www.pathway.

gramene.org/rice) was used to align the four classes of metabolites

to biochemical pathways, and then to identify genes from the

associated chemical reactions (Table S1). Pathways for phenolics

combined both phenylpropanoid and flavanoid synthesis due to

conservation of structure and function, and also included

isoflavone-7-O-methytransferase 9 and leucodelphinidin biosyn-

thesis genes that synthesize tricin, a phenolic unique to rice [17].

Vitamin E genes encode components of the tocopherol and

tocotrienol synthesis pathways, which includes a-, b-, c-, d-

tocopherol and tocotrienol-related enzymes, as well as tocopherol

O-methyltransferase and homogentisic acid geranylgeranyl trans-

ferase genes [18]. Genes involved in phytosterol synthesis were

derived from sterol synthesis pathways [19], and linoleic acid genes

were derived from lipid desaturation pathways [20]. Genes were

screened for SNPs using the rice OryzaSNP database (www.

oryzasnp.org), which classified rice SNPs based on up to four gene

models.

SNPs, base calls, and SNP classifications were associated to their

respective class of metabolites by cross-referencing locus identifiers

to the metabolite pathway database. A number of SNPs were

detected in pathways associated with synthesis of metabolites

important to human health (Table 3). SNPs in gene pathways

Table 1. Rice materials.

Variety Country of Origin Subspecies IRGC Accession ID Breeding Classification Traits of interest

Azucena Philippines japonica 117264 Landrace Fragrant, tall stature, unique root
structure

Dular India aus 117266 Landrace Drought resistant, seed-shattering

Dom-Sufid Iran japonica 117265 Landrace Similar to Basmati rice (aromatic)

IR64-21 Philippines indica 117268 Advanced Widely grown, semidwarf, high yielding,
abiotic and biotic stress tolerance

M 202 United States japonica 117270 Advanced Erect leaf type, modern variety

Minghui 63 China indica 117271 Advanced Parent used in hybrid breeding

Moroberekan Guinea japonica 117272 Landrace Abiotic and biotic stress tolerance

N22 India aus 117273 Landrace Red seed coat, stress tolerance

Nipponbare Japan japonica 117274 Advanced First sequenced variety, short grain type

Zhenshan 97B China indica 117280 Advanced Parent used in hybrid breeding

doi:10.1371/journal.pone.0012915.t001

Rice Metabolite Diversity
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responsible for the synthesis of phenolics were evenly distributed

among synonymous, nonsynonymous, and intron classes. Pheno-

lics also contained a greater amount of nonsynonymous SNPs per

gene than phytosterols, vitamin E, or linolenic acid, and had a

higher probability of a change in enzymatic function or regulation.

One large-effect SNP is predicted to alter the function of the

ferulate 5-hydroxylase enzyme (gene: LOC_Os06g24180) and was

classified as potentially altering regular intron splicing events. A

larger percentage of SNPs in the sterol, vitamin E, and linoleic

acid pathways were within introns compared to phenolics.

To identify the unique nonsynonymous SNPs in our rice

collection, allele frequencies were calculated for genes involved in

the phenolics and vitamin E biochemical pathways (Figure 3).

Only two alleles existed for each of the 28 SNPs. Seven SNPs

(25%) had one variety that contained its own unique allele. The

remaining 21 SNPs (75%) had alleles that were shared among

multiple varieties, and the average allele frequency per SNP was

0.52. The subset of 21 SNPs represent rice metabolic pathways

that are common to a cluster of varieties rather than solitary

occurrences.

SNP diversity predicted subspecies variation in phenolics
and vitamin E content

To further characterize the genetic control of nutritionally

important metabolites, a dissimilarity matrix was constructed using

a concatenated sequence of SNPs specific to phenolics or vitamin

E pathways. The phytosterol and linolenic acid pathways had low

SNP abundance, and therefore low variation (data not shown).

Figure 1. Metabolite detection across ten rice varieties. (A) Rice metabolites were detected by UPLC-MS and all 3,097 metabolites were sorted
by size. (B) The 763 metabolites that differ among the ten varieties were dispersed across a similar mass distribution as the total metabolite profile. (C)
Z-score analysis on the 763 metabolites was conducted using Nipponbare (japonica) as a reference. Indica, japonica, and aus varieties are shown in
red, blue, and brown, respectively. A total of 32 data points with a z-score of greater than 40 were outside of the area shown.
doi:10.1371/journal.pone.0012915.g001
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Clustering based on SNPs in both phenolic and vitamin E

pathways grouped the rice varieties according to the indica, japonica,

and aus subspecies classifications (Figure 4A, 5A). The total

phenolic concentration differed among the ten varieties

(Figure 4B). The overall mean total phenolic concentration was

256 mg of gallic acid equivalents (GAE) g21 of cooked rice. The

variety Dular had the highest total phenolics with a mean of

393 mg GAE g21 cooked rice. IR64 and Nipponbare had the least

amounts with means of 114 and 136 mg GAE, respectively. The

mean total phenolics was 179 mg GAE for the indicas, 288 mg GAE

for the japonicas, and 302 mg GAE for the aus groups.

The SNP diversity in vitamin E-relevant genes was larger for

indicas than japonicas (Figure 5A). For vitamin E, the low mean

number of nonsynonymous SNPs per gene predicted high

conservation in total rice vitamin E concentration. The ten

varieties of were analyzed for total tocopherols in the cooked grain,

as well as the contribution by each of the main constituents: a-, c-,

and d- tocopherol. N22 had the lowest levels of total tocopherols at

7.2 mg g21 of cooked rice, and M202 had the highest

concentration at 20.9 mg g21 (Figure 5B). Because a-and c-

tocopherols vary in bioactivity, the contribution of a- and c- to the

total tocopherol pool was determined as a ratio of a:c for each

variety (Figure 5C). The levels of d-tocopherol were consistently

low and had a negligible contribution to total vitamin E. The ratio

of a:c significantly differed among the ten varieties. The indica

varieties contained the highest levels of c-tocopherols with a mean

a:c ratio of 0.75, whereas the japonica varieties contained higher

levels of a-tocopherols with a mean ratio of 6.6. The variety Dular

had the smallest a:c ratio with a value of 0.27, and the Nipponbare

variety had the largest a:c ratio of 18.8. The tocopherol ratios of

the two aus varieties (Dular and N22) were very different. None of

the SNPs collected in Table S1 could directly explain the variation

in tocopherol components. SNP diversity was smaller for

predicting levels of vitamin E when compared to phenolics,

however there was clear variation in the quantity of phenolics, and

both the type and quantity of vitamin E metabolites among the ten

rice varieties.

Discussion

The diversity in genetic and morphological rice traits from the

OryzaSNP set was interrogated herein by applying metabolomic

analysis to the cooked grain. Previous studies have established

metabolite profiles for crop varieties [21,22], however metabolites

were extracted from raw plant material. The screening of

metabolites in cooked rice enhanced the dietary relevance of our

findings, as the nutritional differences detected resembles actual

metabolite intake following heat and moisture. An open-boiling

technique was standardized for this study because of the global

utilization of this cooking method.

Recent reviews emphasize the need for sustainable, breeding-

based approaches to enhance plant food nutritional quality

[23,24]. An integrated genomic and metabolomic method has

been proposed as a useful measure to improve food crops [25]. A

number of studies successfully correlated genomics with metabo-

lomics, such as in the associations of quantitative trait loci with

metabolite profiles in Arabidopsis [26] and of restriction fragment

length polymorphism markers with nuclear magnetic resonance-

generated metabolite profiles in uncooked rice [22]. An analysis of

SNPs provides a new functional relevance for the differences

detected in the rice metabolome. The integration of SNP-based

bioinformatics with metabolomics as conducted herein may now

be utilized to assist in selection of rice varieties with enhanced

nutritional and health-promoting value.

The extensive metabolite variation in different varieties of

cooked rice was approximately 25% of the total metabolites

detected. The z-score analysis using Nipponbare as a reference

was a compelling example of the metabolite diversity among the

varieties (Figure 1C). Z-scores were calculated to determine

metabolites that vary between one variety and a reference variety.

An excessively high or low z-score (roughly higher or lower than

five) usually indicated a metabolite present in one variety and

absent in another, and may provide direction in identifying unique

metabolites. The sum of squares of the z-scores suggested that the

indica varieties were more different from Nipponbare than the

japonica or aus, and was expected given that Nipponbare is a japonica

variety.

Another strong link between the rice genome diversity and

cooked rice metabolome was the PLS-DA model that clustered the

cooked rice metabolome for each variety according to subspecies

(Figure 2A). Genomewide, aus is more homologous to the indica

subspecies [2], however N22 (aus) grouped closely with the japonicas

following metabolite analysis with both z-scores and the PLS-DA.

The hierarchical clustering of the 763 metabolites that represent

total metabolite variation also grouped the aus varieties closer to

the japonicas than the indicas. This contrast between observed

genomic homology and metabolomic profiles is likely due to

introgressions of metabolite-related loci into the aus background.

Such introgressions are frequent in rice [27], and have been

utilized for genetic association strategies to identify loci important

for synthesizing trait-specific metabolites in Arabidopsis [28] and

tomato [29].

The genes in nutritionally important biochemical pathways

contained SNP variation (Figure 4A, 5A) that correlated with the

UPLC-MS-derived metabolome for cooked rice (Figure 2A). SNPs

with functionally-relevant classifications were found in genes in the

phenolics, vitamin E, phytosterol, and linolenic acid pathways,

with a larger mean number of SNPs per gene in the phenolics and

vitamin E pathways. The total number of nonsynonymous SNPs

may be larger than described in Table 3 because many genes and

enzymes for key biochemical reactions remain unknown. Further-

more, our SNP analysis was limited to a subset of rice varieties that

were diverse but represent a small proportion of the total rice

genetic diversity.

The SNP homology in the phenolic and vitamin E pathways for

the ten rice varieties coincided with the indica, japonica, and aus

subspecies classifications. However, the phytosterol and linolenic

acid pathways lacked sufficient information to function in a SNP

homology-based model. The SNP dendrograms for phenolic and

Table 2. Sum of squares of z-scores using Nipponbare
(japonica) as a reference.

Variety Class Sum of Squares

Zhenshan indica 49,099,871

Minghui indica 6,683,571

IR64 indica 4,709,880

Dom Sufid japonica 568,329

Azucena japonica 273,295

M 202 japonica 79,634

Moroberekan japonica 31,872

Dular aus 71,600

N22 aus 19,577

doi:10.1371/journal.pone.0012915.t002
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vitamin E related metabolites predicted that a given rice variety

will be more similar to a variety of the same subspecies than of

another subspecies. It can be postulated that distinct haplotypes for

the synthesis and regulation of nutritionally important phyto-

chemicals are present in select rice varieties. Thus, it is plausible

that a SNP haplotype was responsible for a given variety’s

metabolite profile, and that haplotype breeding approaches could

be used to optimize the metabolite profiles of rice for nutritionally

important health traits.

The total phenolic concentration varied both among and within

subspecies. In general, the japonica varieties contained a higher

level of total phenolics (288 mg GAE g21) than the indicas (179 mg

GAE g21). However, Nipponbare contained a lower abundance of

phenolics (136 mg GAE g21) than its japonica counterparts, and

Zhenshan appears an indica-outlier due to its higher concentration

of total phenolics (256 mg GAE g21) than other indicas. This was

consistent with the z-score analysis, in which Zhenshan contained

the largest difference from Nipponbare (Table 2). N22 (aus) also

grouped with the indicas, and both the z-score and PLS-DA models

grouped N22 closer to Nipponbare (japonica) than Dular (aus). It is

possible that a proportion of the variation in the z-score and PLS-

DA models was due to differences in phenolics, as the solvents used

herein have been shown to extract phenolic compounds from rice

[30,31].

The total quantity of tocopherols per gram of rice showed slight

variation among the ten varieties, and the observed range in

quantities were similar to those found in various plants and plant

tissues [32]. The a and c forms of tocopherol have different

bioactive functions and metabolism [33–35]. The tendency for the

a:c ratio to link a variety within its subspecies is consistent with the

observed trends in both the metabolome (Figure 2A) and total

phenolics (Figure 4B) analyses, however specific varieties also

deviate from the larger subspecies trends (Figure 5C). For the a:c
ratio, N22 (aus) clusters closer to all japonicas except for Nipponbare

(japonica). Dular (aus) clusters with the indicas, which all contain a

lower ratio of a:c tocopherol than the japonicas. SNPs were not able

to explain the indica/japonica division in a:c ratios, as none were

identified in c-tocopherol-O-methyltransferase (c-TMT), the

enzyme that converts c- to a-tocopherol by the addition of a

methyl group. Enhanced c-TMT expression has been shown to

increase the a:c ratios in various plants and tissues, but does not

alter the overall quantity of tocopherols [36–38]. Thus, the

variation among the ten rice varieties may be due to differential c-

TMT gene expression rather than a SNP-driven change in

function. Furthermore, the a:c tocopherol ratios were consistent

with observed ratios of tocotrienols (data not shown), which further

supports the importance of the c-TMT in determining the overall

composition of vitamin E. SNPs were not identified in the 59

untranslated region of the rice c-TMT gene, and therefore it is

likely that a diverse set of vitamin E gene regulators exists for

tocopherol accumulation in rice.

The identification of the genetic basis for important agronomic

traits, such as yield and abiotic/biotic stresses has led to

considerable advances in accumulating desirable traits into rice

breeding programs. The incorporation of nutritional traits,

however, has been principally overlooked due to an emphasis on

total plant yield [39]. Here, the findings provide evidence for

regular, systematic evolution at loci important to nutritional

metabolite synthesis. A deeper understanding of the genetic basis

for the type and quantity of metabolites in the rice grain may allow

for breeding plants that contain an optimal metabolite profile for

enhanced health attributes.

Materials and Methods

Rice materials
Rice seeds were acquired from the International Rice Research

Institute (IRRI, Los Baños, Philippines) and are listed in Table 1.

Rice plants were grown at the Dale Bumpers National Rice

Research Center in Stuttgart, Arkansas to produce seed used in

this study. The grain was isolated from the husk using a manual

stone dehusker and then cooked by boiling in a 2:1 volume of

water/rice ratio for 15 minutes or until soft. Cooked rice was

lyophilized over a period of 48 hours immediately after cooking

and stored at 280uC until further analysis.

Rice processing and extractions
Metabolites in cooked rice were extracted by first grinding rice

to a powder with a mortar and pestle in liquid nitrogen. One mL

of ice-cold methanol/water (4:1) was added to 100 mg of rice

powder. Samples were incubated for one hour at 280uC to

precipitate protein, centrifuged at 15006g for five minutes at 4uC,

and the supernatant was collected and stored at 220uC until

further analysis.

Figure 2. Subspecies analysis of the cooked rice metabolome. (A) PLS-discriminant analysis was conducted on ten rice varieties and was
colored according to subspecies as indica (red), japonica (blue), and aus (brown). (B) The 194 metabolites that differ among the three subspecies were
shown in a heat map whereby each cell represents a single metabolite. Metabolites were arranged according to retention time (0.5–12 minutes), and
colors indicate relative quantities. Hierarchical clustering was performed using Euclidean distances.
doi:10.1371/journal.pone.0012915.g002

Table 3. SNPs in genes that regulate phenolics, phytosterols, vitamin E, and linoleic acid.

Class Genes SNPs SYN NS 59 39 INT SNPs/gene NS SNPs/gene

Phenolics 30 78 24 22 2 12 17 2.60 0.73

Phytosterols 15 22 4 2 0 2 14 1.27 0.09

Vitamin E 9 23 2 2–4 3 2–3 14 2.55 0.09–0.17

Linolenate 7 8 0 0 0 1 7 1.14 0.00

SYN: synonymous.
NS: nonsynonymous.
59, 39: untranslated regions.
INT: intron.
doi:10.1371/journal.pone.0012915.t003

Rice Metabolite Diversity

PLoS ONE | www.plosone.org 6 September 2010 | Volume 5 | Issue 9 | e12915



Ultra Performance Liquid Chromatography-Mass
spectrometry

Rice extract separation was performed using an Acquity

UPLCH controlled with MassLynx software, version 4.1 (Waters,

Milford, MA, USA). Samples were held at 8uC in a sample

manager during the analysis to minimize evaporation. The

complete sample set was randomized and profiled in two

independent iterations. Sample injections of 2 mL were made to

a 1.06100 mm Waters Acquity UPLCH BEH C8 column with

1.7 mm particle size held at 40uC. Separation was performed by

reverse phase chromatography at a flow rate of 0.14 mL/min.

The eluent consisted of water and methanol (Fisher, Optima LC-

MS grade) supplemented with formic acid (Fluka, LC-MS grade)

in the following proportions: Solvent A = 95:5 water:methanol

+0.1% formic acid; Solvent B = 5:95 water:methanol +0.1%

formic acid. The separation method is described as follows (25

minutes total): 0.1 min hold at 30% B, 1.9 min linear gradient to

70% B, ten min linear gradient to 100% B, 6 min hold at 100% B,

0.1 min linear gradient to 30% B, and 6.9 min hold at 30% B for

column equilibration prior to the next injection.

Eluate was directed to a Q-TOF Micro quadrupole orthogonal

acceleration time-of-flight mass spectrometer (Waters/MicroMass,

Millford, MA, USA) using positive mode electrospray ionization

(ESI+). Mass data were collected between 50 and 1000 m/z at a

rate of one scan per second. The voltage and temperature

parameters were tuned for general profiling as follows: capillary =

3000 V; sample cone = 30 V; extraction cone = 2.0 V; desolvation

temperature = 300uC; and source temperature = 130uC. Mass

spectral scans were centered in real time producing centroid data.

Leucine Enkephalin was infused via a separate orthogonal ESI

spray and baffle system (LockMass) which allowed ions to be

detected for a single-second scan every ten seconds in an

independent data collection channel. The standard mass was

averaged across ten scans providing a continuous reference for mass

correction of analyte data.

Allele frequencies
Allele frequencies were calculated for each SNP site based on

the 20 varieties of the OryzaSNP set (www.oryzasnp.org). Base

calls for each SNP were determined using TIGR Pseudomolecule

v5 in the OryzaSNP database. Frequencies were determined by

evaluating the proportion of adenine, guanine, cytosine, and

thymine nucleotides among the 20 varieties for each SNP site.

Unresolved nucleotides were reported as ‘‘N.’’ Genes in the

vitamin E pathway contained between two, three, or four

nonsynonymous SNPs based on different gene models, and all

gene models were analyzed for allele frequency calculations.

SNP Dendrogram
An unweighted, unrooted neighbor-joining tree with 1000

bootstraps was constructed using DARwin (http://darwin.cirad.

fr/darwin). Inputs for each variety consisted of a collection of base

calls specific to either the phenolic or vitamin E pathway. For each

pathway, SNP sites with greater than 50% unknown nucleotides

were not included in the analysis, and varieties with greater than

50% missing information were also removed.

Total Phenolics Assay
Total phenolic concentrations in rice extracts were determined

as previously described [40] with minor modifications. Briefly,

150 mL of Folin-Ciocalteu reagent/water (1:9) was added to 35 mL

of rice metabolite extract and was incubated at room temperature

for five minutes. Sodium bicarbonate (115 mL of a 7.5% solution)

was then added and samples were incubated at 37uC for 30

minutes. Samples were allowed to cool to room temperature and

absorbance was measured at 765 nm. Metabolite extractions were

performed in triplicate. Total phenolics were calculated using a

standard curve genereated using a series of gallic acid concentra-

tions and were expressed as micrograms of gallic acid equivalents

(GAE) per gram of rice.

Vitamin E quantification
Tocopherol homologs, a-, c-, and d-tocopherols, were pur-

chased from Cayman Chemicals (Ann Arbor, MI; $98% purity).

Tocotrienol homologs, a-, c-, and d-tocotrienols, were purchased

from Matreya Biochemicals (Pleasant Gap, PA; $97% purity).

Methanol and acetonitrile were HPLC grade from Fisher

Scientific (Fair Lawn, NJ).

Figure 3. Allele frequencies within the OryzaSNP set for nonsynonymous SNPs in vitamin E, phenolic, and phytosterol pathways.
Allele frequencies are represented as the number of SNPs in common for each of the 20 varieties of the OryzaSNP set. X-axis labels correspond to the
rice locus identifier for a given SNP.
doi:10.1371/journal.pone.0012915.g003
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Tocopherols (a-,c-, and d-tocopherols) and tocotrienols (a-,c-,

and d-tocotrienols) were determined using HPLC (Waters, Milford,

MA) based on the method described in [41] with modifications. The

HPLC was equipped with a Waters 2695 Alliance Separation

Module, a Waters 2996 Photodiode array detector (PDA), a Waters

474 Scanning Fluorescence detector, and EmpowerTM 2 software

for data acquisition. The cooked and lyophilized rice powders were

extracted with 100% methanol twice at the bran to solvent ratio of 1

to 33 (w/v). For each extraction, the mixture was flushed with

nitrogen gas and shaken (300 rpm) for 2 h at room temperature.

After centrifugation at 20006g for ten minutes at room tempera-

ture, the supernatants were pooled and filtered through a 0.45 mm

polyvinylidene fluoride (PVDF) membrane (Waters, Milford, MA),

injected through a Symmetryshield RP C-18 guard column

(3.5 mm, 3.0620 mm; Waters) and separated on a Symmetryshield

RP C-18 analytical column (3.5 mm, 3.06150 mm; Waters). The

filtrate was eluted with a gradient mobile phase consisting of (A)

100% acetonitrile, (B) 100% methanol, and (C) 1% acetic acid in

50% methanol at 0.5 mL/min at 25uC. The gradient was used as

follows: 0–1 min, 45% A, 35% B, and 20% C; 1–2 min, linear

gradient to 45% A, 45% B, and 10% C; 2–16 min, linear gradient

to 30% A, 65% B, and 5% C; 16–20 min, linear gradient to 25% A

and 75% B; 20–22 min, linear gradient to 100% B; 22–25.4 min,

Figure 4. Variation in total phenolics concentrations in cooked
rice. (A) An unrooted, neighbor-joining tree was developed based on
total SNPs identified in the phenolic biochemical pathways. Clouds
were colored according to subspecies: indica (red), japonica (blue), and
aus (brown). (B) Total phenolics was measured in gallic acid equivalents
(GAE) using Folin-Ciocalteau reagent. The letters a, b, and c denote
significance (ANOVA, Tukey post-hoc, P,0.05), and values are
expressed as the mean 6 the standard error of the mean.
doi:10.1371/journal.pone.0012915.g004

Figure 5. Variation in vitamin E concentrations in cooked rice.
(A) An unrooted, neighbor-joining tree was developed based on total
SNPs identified in the vitamin E synthesis pathway. Clouds were colored
according to subspecies: indica (red), japonica (blue), and aus (brown).
(B) The total quantities of tocopherols (a,c, and d) per gram of rice were
determined. (C) Ratios of a:c tocopherol were calculated for each
variety. Values are expressed as the mean 6 the standard error of the
mean, and statistical groupings denoted by the letters a, b, and c
(ANOVA, Tukey post-hoc, P,0.05).
doi:10.1371/journal.pone.0012915.g005
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isocratic at 100% B; 25.4–25.5 min, linear return to 45% A, 35% B,

and 20% C; 25.5–35 min, isocratic at 45% A, 35% B, and 20% C to

re-equilibrate. The tocopherol and tocotrienol homologs were

detected by the fluorescence detector at the excitation and emission

wavelengths of 298 and 328 nm, respectively. The peak identifica-

tion of tocopherols and tocotrienols was performed by comparing

their retention time with those of standards. The concentration of

each tocopherol and tocotrienol homolog was calculated using the

standard curve plotted as peak area against a series of concentra-

tions of each tocopherol and tocotrienol homolog and indicated as

mg/g rice. The coefficient of determinations (R2) ranged from

0.9962 to 0.9999. The b- and c-forms of tocopherols and

tocotrienols are isomers and co-elutes on reversed-phase C18

columns. Rice bran contains only trace amounts of b-form,

nevertheless, the concentrations of c-forms of tocopherols and

tocotrienols in bran reflect the sum of b- and c-forms in this study.

Statistical Analysis
Chromatographic and spectral UPLC-MS peaks were detected,

extracted, and aligned using MarkerLynx software (Waters, Mill-

ford, MA, USA). Chromatographic peaks were detected between 0

and 14 min with a retention time error window of 0.1 min. Apex

track peak detection parameters were used, automatically detecting

peak width and baseline noise. No smoothing was applied. To

reduce the detection and inclusion of noise as data, an intensity

threshold value of 40 counts and a noise elimination value of 6 were

used. Mass spectral peaks were detected between 50 and 1000 m/z

with a mass error window of 0.07 m/z, and the de-isotoping

function was enabled. A matrix of features as defined by retention

time and mass was generated, and the relative intensity (propor-

tional to quantity) of each feature (metabolite), as determined by

area of the peak, was calculated across all samples. Potential effects

of instrument variability were minimized by normalizing the total

ion current (TIC) among all samples such that the summation of all

feature intensities in each sample yielded a constant value.

Furthermore, the relative intensity of each feature was averaged

over the two replicate injections preformed for each sample to

provide a reliable data matrix with minimal technical artifacts.

Mean centering was applied, and the data matrix was analyzed in

SIMCA-P+ v. 11.5 (Umetrics, Umeå, Sweden). Pareto scaling was

applied to the data, and a score plot was generated to describe the

data using partial least squares discriminant analysis (PLS-DA). The

PLS-DA model was validated by testing new PLS-DA models built

from 20 random permutations of the data (Figure S1). Significant

UPLC-MS-detected metabolites were determined using a Kruskal-

Wallis test on relative intensities of features with identical masses

and retentions times with a threshold value of P,0.001 and n = 5

replicates per variety. Z-scores were calculated for each metabolite

based on the mean and standard deviation of the reference variety

Nipponbare. Statistical significance for total phenolics and vitamin

E analyses was determined by ANOVA with a Tukey post-test and a

threshold value of P,0.05.

Supporting Information

Figure S1 Validation of the partial least squares-discriminant

analysis. The PLS-DA model for subspecies was validated using 20

permutations. Values for R2 (0.7) and Q2 (0.55) denote original

and predictive data, respectively. A positive value of Q2 when R2 is

zero (x-axis = 0) would suggest overfit in the model.

Found at: doi:10.1371/journal.pone.0012915.s001 (0.12 MB TIF)

Table S1 Genes associated with linolenic acid, phenolics,

phytosterol, and vitamin E synthesis.

Found at: doi:10.1371/journal.pone.0012915.s002 (0.18 MB

PDF)
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