
Predictive Power of Air Travel and Socio-Economic Data
for Early Pandemic Spread
Parviez Hosseini1*, Susanne H. Sokolow2, Kurt J. Vandegrift1, A. Marm Kilpatrick2, Peter Daszak1*

1 EcoHealth Alliance (formerly Wildlife Trust), New York, New York, United States of America, 2 University of California Santa Cruz, Santa Cruz, California, United States of America

Abstract

Background: Controlling the pandemic spread of newly emerging diseases requires rapid, targeted allocation of limited
resources among nations. Critical, early control steps would be greatly enhanced if the key risk factors can be identified that
accurately predict early disease spread immediately after emergence.

Methodology/Principal Findings: Here, we examine the role of travel, trade, and national healthcare resources in predicting
the emergence and initial spread of 2009 A/H1N1 influenza. We find that incorporating national healthcare resource data
into our analyses allowed a much greater capacity to predict the international spread of this virus. In countries with lower
healthcare resources, the reporting of 2009 A/H1N1 cases was significantly delayed, likely reflecting a lower capacity for
testing and reporting, as well as other socio-political issues. We also report substantial international trade in live swine and
poultry in the decade preceding the pandemic which may have contributed to the emergence and mixed genotype of this
pandemic strain. However, the lack of knowledge of recent evolution of each H1N1 viral gene segment precludes the use of
this approach to determine viral origins.

Conclusions/Significance: We conclude that strategies to prevent pandemic influenza virus emergence and spread in the
future should include: 1) enhanced surveillance for strains resulting from reassortment in traded livestock; 2) rapid
deployment of control measures in the initial spreading phase to countries where travel data predict the pathogen will
reach and to countries where lower healthcare resources will likely cause delays in reporting. Our results highlight the
benefits, for all parties, when higher income countries provide additional healthcare resources for lower income countries,
particularly those that have high air traffic volumes. In particular, international authorities should prioritize aid to those
poorest countries where both the risk of emerging infectious diseases and air traffic volume is highest. This strategy will
result in earlier detection of pathogens and a reduction in the impact of future pandemics.
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Introduction

Predicting the origin and emergence of new diseases is critical to

preventing and controlling them [1,2]. In particular, if the early

spread of a newly emerging pathogen can be predicted and

curtailed before it becomes pandemic, its impact on public health

and global economies may be much reduced [3,4,5,6]. In March

and April of 2009, a novel H1N1 influenza A virus (2009 A/

H1N1) with gene segments from humans, swine, and birds led to

the first pandemic of influenza in forty years [7,8,9,10]. Current

evidence points to a Mexican origin for the initial human-to-

human transmission of this virus, although preliminary genetic

analyses suggest the virus has an older and highly-mixed lineage

[8]. The virus’ lineage and rapid spread suggest that global trade

and travel may have played an important role in its early

emergence [7,8]. Here, we attempt to elucidate how these factors

may relate to the emergence and spread of this newly detected

virus.

One unresolved question is to what degree does a country’s

development affects its ability to detect and respond to an emerging

disease in a timely manner? Development may affect spending on

healthcare infrastructure, and particularly, spending on the high

cost, intensive public health surveillance needed during the early

stages of a pandemic [11,12,13]. Socioeconomic factors will also

likely affect individuals’ abilities or desire to seek diagnosis or

treatment, and a country’s capacity to test and identify pathogens.

Here, we analyze socio-economic and travel data to understand the

initial spread of this virus. We focus on the early stages of the

epidemic, when travel from Mexico was likely to be the dominant

mode of viral spread. Finally, we examine poultry and swine trade

data prior to the 2009 A/H1N1 pandemic to add to our

understanding the processes that led to the emergence of this virus.
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Results

As of May 8th 2009, only two weeks after it was first reported,

the 2009 A/H1N1 influenza strain had spread to 24 countries, 40

U.S. states (plus the District of Columbia) in the US, and 9

provinces in Canada (Figure 1). This rapid spread resulted, in part,

from the tight connectivity of the globe through air travel

(Figure 2).

A log-logistic survival analysis regression model was used to

predict the time-to-reporting of the first confirmed 2009 A/H1N1

case to each country. Of all the models evaluated, a multivariate

model with three predictors, (1) total country-level healthcare

spending per capita, (2) estimated passenger volume arriving from

Mexico via direct flights (direct flight capacity), and (3) passenger

volume from Mexico via indirect, or two-leg, flights (indirect flight

capacity), provided the best fit to the data using AIC, as detailed

under Methods (Table 1, DAIC = 0, overall x2 = 54.33 on 5

degrees of freedom, p-value,0.0001). The correlation between

total country-level healthcare spending and the flight data was low

(r,0.4). Although the correlation between direct and indirect

flight data was high for countries with direct flights (r.0.9), the

indirect flight information provided critical additional information

for areas without direct flights. The AIC scores demonstrated this,

as the model that included only direct flight information and

healthcare spending did not explain the data as well as the best fit

model (DAIC = 9.044). Alternate socio-economic measures, even

those directly related to healthcare, such as the number of

physicians per capita, GDP, or population density were much less

predictive than total healthcare spending per capita. Notably, out

of univariate analyses, the model with healthcare spending per

capita as the sole predictor fit better than models with flight

information alone (Table 1), demonstrating just how informative

this data is in predicting the date of reporting. In the best fitting

multivariate model, indirect flight capacity had the largest effect

size, but including healthcare spending per capita substantially

increased the fit to the data (Tables 1, 2). For Canadian provinces

and American states, we conducted an analysis with just the flight

data (Table 3 overall x2 = 22.89 on 2 degrees of freedom, p-value

,0.001). While the direct flight information does not have a

statistically significant effect, the indirect does, most likely because

only a few key hubs had direct flights, and these hubs also have a

large volume of indirect connections.

For the country-level analysis, we compared the predicted

reporting dates with the actual reporting dates, for countries where

the disease arrived by May 8th, 2009 (Figure 3, Supplemental

Online Figure S1). We validated the model by determining how

well a model fit to data up until May 8th predicted reporting dates

for fourteen countries where the disease was detected between

May 9th and May 19th (Supplemental Online Figure S2). The

correlation between forward predicted and observed dates was

0.62, and the observed reporting date fell within the 95%

confidence interval for all countries. Many of the actual reporting

dates are earlier than predicted, which is expected due to the non-

linear nature a of log-log survival analysis regression. In particular,

countries that had not reported disease by the cut-off date were

included in the analysis by designating these as locations that

‘‘survived’’ the entire study period without acquiring the disease

(i.e, censoring). This appropriately extends the predicted reporting

dates by including information on both countries that had

reported disease by the cut-off date as well as countries that had

not. Using this methodology, we also estimated the reporting date

of the disease in the remaining 103 countries and the 95%

confidence intervals ranged from April 17th to May 29th, 2009

(Supplemental Online Figure S3).

To elucidate the potential origins of this novel viral strain, and

to shed light on targets for future surveillance and prevention

programs, we analyzed global trade in live poultry and swine

during the decade preceding the current pandemic [14]. We

estimate the trade in live swine between Canada, the United States

and Mexico to be over 1.75 million animals over the last decade,

Figure 1. Global distribution of confirmed 2009 A/H1N1 influenza cases. Number and location of all confirmed human cases worldwide, as
of May 8th, 2009.
doi:10.1371/journal.pone.0012763.g001
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while trade between North America and Eurasia is estimated to be

over 750,000 animals (Figure 4b), The trade in live poultry is even

larger, with Canada, the United States and Mexico trading over

41 million birds over the last decade, while trade between North

America and Eurasia is estimated to be over 19 million birds

(Figure 4a). Our results show that even though trade in live

animals from Eurasia directly to Mexico has been minimal, there

has been substantial movement of animals between Eurasia and

the United States and Canada (Figure 4), coupled with substantial

movement of animals from the United States and Canada into

Mexico.

Discussion

Previous studies suggest that data on air travel can be used to

predict the spread of newly emerged human pathogens and better

Figure 2. Global travel from Mexico in March–April 2009. (A) Estimated air travel (# passengers) directly from Mexico. (B) Direct flight plus
estimated indirect air travel from Mexico.
doi:10.1371/journal.pone.0012763.g002
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target public health measures [15,16,17,18]. Our analyses support

this, but demonstrate that the ability of a country to rapidly detect,

diagnose, and report the new infection is a critical element that

enhances our predictive power and control capacity. Other studies

suggest that analysis of the underlying drivers of disease emergence

(e.g. agricultural intensification, land-use change) can be used to

predict the geographic origins of new emerging diseases[2]. The

currently circulating pandemic influenza strain is a triple

reassortment virus with closest known relatives from Europe,

Asia, and North America, but there is uncertainty regarding its

origin due to the large temporal separation between this pandemic

2009 A/H1N1 strain and the nearest ancestors (10–15 years) [7].

Our analyses of swine and poultry trade demonstrate an enormous

potential for intercontinental mixing of potentially zoonotic

pathogens, including influenza A viruses. Although artificial

Table 1. Akaike’s Information Criterion, DAIC, and Akaike’s weights of 14 survival analysis models, based on the Log-logistic
survival time distributions, and the use of Gross Domestic Product (GDP), Healthcare Spending per Capita, Number of Physicians
per Capita, Direct and indirect flights as predictors.

Model Predictors AIC DAIC Akaike Weights

Direct and Indirect Flights, plus Healthcare Spending per Capita, including interaction effects 221.411 0.000 0.363

Direct and Indirect Flights, plus Healthcare Spending per Capita, and Population Density including interaction effects 221.986 0.574 0.273

Direct and Indirect Flights, plus Healthcare Spending per Capita, and GDP including interaction effects 222.943 1.532 0.169

Direct and Indirect Flights, plus Healthcare Spending per Capita, and GDP excluding interaction effects 223.740 2.329 0.113

Direct and Indirect Flights, plus Healthcare Spending per Capita excluding interaction effects 225.395 3.984 0.050

Direct and Indirect Flights, plus Healthcare Spending per Capita and Population Density excluding interaction effects 227.350 5.939 0.019

Direct and Indirect Flights, plus GDP including interaction effects 229.415 8.004 0.007

Direct and Indirect Flights, plus GDP and Number of Physicians including interaction effects 231.083 9.672 0.003

Direct and Indirect Flights, plus GDP and Number of Physicians excluding interaction effects 231.323 9.912 0.003

Healthspending per capita alone 234.226 12.815 0.001

Direct and Indirect Flights, plus Number of Physicians including interaction effects 235.086 13.675 0.000

Direct and Indirect Flights, plus Number of Physicians excluding interaction effects 235.138 13.727 0.000

Direct and Indirect Flights, plus GDP excluding interaction effects 236.222 14.811 0.000

Direct and Indirect Flights, plus Population Density and Number of Physicians including interaction effects 237.126 15.715 0.000

Direct and Indirect Flights alone 242.271 20.860 0.000

Direct and Indirect Flights, plus Population Density and Number of Physicians including interaction effects 242.613 21.201 0.000

Direct and Indirect Flights, plus Population Density excluding interaction effects 244.256 22.845 0.000

Direct and Indirect Flights, plus Population Density including interaction effects 244.469 23.057 0.000

GDP only 244.612 23.201 0.000

Direct Flights only 255.865 34.454 0.000

Number of Physicians only 255.913 34.502 0.000

Null Model 264.424 43.013 0.000

Population Density only 266.357 44.946 0.000

Interaction effects, when included, are only pairwise, for each set of flights and each socioeconomic factor (e.g., Healthcase Spending x Indirect Flights is used, but
neither GDP x Healthcare Spending nor Direct x Indirect Flights is examined due to cross-correlation).
doi:10.1371/journal.pone.0012763.t001

Table 2. Log logistic survival analysis regression of best fit
model (DAIC = 0).

Coefficient Coeff. S.E. p-value

Intercept 4.4540 0.0231 ,0.0001

Direct Flights 20.0057 0.2506 0.9818

Indirect Flights 20.3605 0.1914 0.0596

Healthcare Spending per Capita (HSC) 20.0371 0.0126 0.0033

Interaction of Direct Flights & HSC 20.0833 0.1228 0.4975

Interaction of Indirect Flights & HSC 0.1775 0.1221 0.1460

Natural Logarithm of Scale parameter 23.0862 0.1843 ,0.0001

Best fit model has x2 goodness of fit of 54.33 on 5 degrees of freedom, with a p-
value ,0.0001, on observations of 130 countries, 24 of which had confirmed
cases. The interactions remain in the model because they improve the overall
model fit based on AIC (c.f., Table 1).
doi:10.1371/journal.pone.0012763.t002

Table 3. Log logistic survival analysis regression of a model of
the predictive power of flight data for Canadian provinces and
U.S. states.

Coefficient Coeff. S.E. p-value

Intercept 4.3398 0.0048 ,0.0001

Direct Flights 0.0039 0.0085 0.643

Indirect Flights 20.0412 0.0089 ,0.0001

Natural Logarithm of Scale parameter 23.4829 0.1169 ,0.0001

This model has x2 goodness of fit of 22.89 on 2 degrees of freedom, with a p-
value ,0.0001, on observations of 11 Canadian provinces, 50 U.S. States, Puerto
Rico, and the U.S. Virgin Islands, 51 of which had confirmed cases.
doi:10.1371/journal.pone.0012763.t003
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insemination is the predominant strategy for interbreeding of

commercial swine, live swine are still routinely traded for breeding

purposes [19]. Large numbers of poultry are also traded globally,

and low pathogenicity influenza viruses are likely to spread

unnoticed among poultry until they reassort or mutate to highly

pathogenic forms, such as the A/H1N1v strain. This strain

notably was the results of reassortment of several relatively low

pathogenic influenza strains, as explained by Garten et al.[8]. In

addition, as the recent cases of workers exposing a herd of pigs to

the 2009 A/H1N1 virus makes clear [20,21], even dramatic

reductions in the international live animal trade may not prevent

the exposure of local livestock to novel viral types from distant

locations [9,10].

Although extensive trade of poultry and swine between

continents and within the North American countries almost

certainly contributed to the emergence of this virus, surveillance of

influenza strains circulating among traded animals is poor [10], so

that it is impossible to designate any single country, trade

connection or market as the key point at which the new strain

evolved. Expanded surveillance for influenza in livestock popula-

tions may allow more of the markers of transmissibility and

virulence to be identified, or factors driving higher virus

transmission to be determined [9,22]. In particular, we need to

analyze all influenza strains, including the non- and low

pathogenic influenzas, in addition to the highly pathogenic ones,

with greater regularity. Only by this thorough surveillance can we

begin to understand what differentiates the strains that cause

pathogenesis in humans from those that do not. Such that

eventually we may be able to predict viral emergence and develop

vaccines against pandemic influenza viruses in advance of their

spread. In order to develop such capability, we need to do more

surveillance of livestock and wild influenza strains now.

The speed at which 2009 A/H1N1 spread during the early

phases of this pandemic is striking. It was detected in four

continents within three weeks after Mexican authorities first

reported it. In contrast, the 1918 Spanish flu took 3 years to circle

the globe [23]. Our analyses of air-travel data support the WHO’s

decision to recommend against closing all air travel from Mexico,

since the virus most likely had already spread to several other

countries by the time it was first reported to be widespread in

Mexico on April 29th. In particular, cases had already been

detected in the United States, which is a major hub for connecting

flights [24].

Our current report is the first published analysis of H1N1

spread to include indirect flight data, and this significantly

increased the predictive power of our model. Our analysis suggests

that airports serving as major hubs could be targets for disease

surveillance, and could become facilities that train people and

stockpile medicines in preparation for pandemics. This approach

differs from previous reports that focus on the role of travel

restrictions at hubs [6,17].

Our results further suggest a critical role for health care

spending in determining a country’s probability of detecting,

confirming and reporting influenza cases in the early phases of a

pandemic. The negative relationship between healthcare spending

and detection of 2009 A/H1N1 influenza may be due to a delay in

testing or in the collecting of specimens from individuals in

countries lower healthcare resources. These countries likely have

Figure 3. Model predictions compared with actual case detection dates. Open circles show predicted and observed detection dates for
countries that reported H1N1 infections before our cut off of May 8th. Solid dots show the forward-prediction model validation of predicted and
observed detection dates for countries that reported H1N1 infections after the cut off but before May 18th (see text for additional details). Country
abbreviations are ISO 3166 two letter codes: AR: Argentina, AU: Austria, AL: Australia, BE: Belgium, BR: Brazil, CA: Canada, CH: China, CL: Chile, CO:
Colombia, CR: Costa Rica, DE: Denmark, EC: Ecuador, ES: El Salvador, FI: Finland, FR: France, GE: Germany, GU: Guatemala, IN: India, IR: Ireland, IS: Israel,
IT: Italy, JA: Japan, MA: Malaysia, MX: Mexico, NE: Netherlands, NO: Norway, NZ: New Zealand, PA: Panama, PE: Peru, PG: Portugal, PO: Poland, SK:
South Korea, SP: Spain, SW: Sweden, SZ: Switzerland, TH: Thailand, TU: Turkey, UK: United Kingdom, US: United States.
doi:10.1371/journal.pone.0012763.g003
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lower rates of health insurance, less healthcare infrastructure,

lower self-reporting, and lower numbers of doctors per capita.

One consequence of lower health care resources is that the

threshold for detection (i.e., the number of cases that need to occur

before a case is detected, tested and confirmed by medical

authorities) is likely higher in lower-income countries that cannot

afford to invest as much in public health and healthcare

infrastructure. Similar socioeconomic factors have been shown to

play an important role in determining spatiotemporal patterns of

diseases such as tuberculosis, schistosomiasis, West Nile virus, and

HIV/AIDS [12,13,25,26].

We found that incorporating data on healthcare spending per

capita significantly increased our power to predict the time of

reporting of 2009 A/H1N1. This suggests important strategies for

Figure 4. Global trade in live animals from 1998 through 2008. (A) Estimated number of live poultry traded, (B) Estimated number of live
swine traded, internationally over the last decade, for Canada and the United States data are for trade directly to Mexico, for all other nations the data
are for trade to Canada, Mexico and the United States, data from U.N.F.A.O.
doi:10.1371/journal.pone.0012763.g004
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future disease control. During the early stages of a pandemic,

countries with moderate to high air travel from a pandemic origin,

but relatively low healthcare spending, are likely to significantly

under-report cases. It is therefore in the best global health interest

for intergovernmental and other aid agencies to specifically target

these nations for assistance to test and report cases early in a new

pandemic. We propose that subsidies for outbreak response to

these nations with high connectivity and low resources would be

the most effective strategy to reduce the spread and impact of a

pandemic.

Efforts to better target pandemics would be more effective in

reducing disease spread if they were set up in advance of a

pandemic [5,6,16], as there is a very small window of opportunity

in which to act once a new emerging disease is detected. Such

efforts could be strategically positioned to target emerging disease

‘hotspots’ [2] that are also hubs of trade and travel for surveillance

and prevention [16,27]. For influenza viruses, any future

identification of a spillover of a novel strain from poultry or swine

to farm workers should be rapidly followed by analyses of the

travel routes out of the country where the index case was

discovered. At that point, intergovernmental agencies such as

WHO could best target limited resources to the poorer countries

that are most likely to receive high numbers of airline travelers

from the pandemic origin. These are the countries where

reporting is likely to be poorest, and where a significant,

undetected caseload is likely to exist by the time resources are

allocated. These at-risk countries are also the least capable of

affording control measures.

On the whole, this H1N1 strain appears to be relatively mild,

although it is still inflicting additional morbidity and mortality.

However, if a strain with a higher mortality rate, such as that

observed with the H5N1 avian influenza subtype, were to spread

in a similar fashion, the outcome would be catastrophic both in

terms of human suffering and economic damage. For example, the

impact of an H5N1 avian influenza outbreak, should the virus

become easily transmissible between humans, on the United States

economy has been estimated to be $71.3–$166.5 billion[28]. The

measures we have proposed are likely to have economic benefits

that far outweigh their costs.

Methods

Human Travel
We compiled the data on international air travel from the IATA

database, supplied by Diio, LLC through their APGdat

service[29]. Similar to prior analyses [15,16,17,18], we used direct

connection information with regards to aircraft type and passenger

capacity to calculate the connectivity of Mexico with all airports

included in the database, and summarized this information (as

direct flight capacity) at the country level. Additionally, we

estimated the number of connecting passengers (indirect flight

capacity) by calculating the number of passengers (pi,j) arriving at

airport j from airport i, and then estimating the number of

passengers (pj,k) going from airport j to airport k, based on all

flights reported in the database. We limited the potential

connections (trip jRk) to flights that departed no sooner than

one hour after the first trip (iRj), and no later than six hours after

the arrival of the first trip. We also disallowed return of passengers

to Mexico once they left the country, and the return of passengers

to North America once they left that region. We thus obtained a

quantity, xi,j,k, that estimates the total potential connections to

airport k available to passengers from the first trip (iRj). Setting

constant the fraction of all passengers that connect (x), we obtained

an estimate of the number of passengers with two leg itineraries for

each potential destination (iRk; Eq. 1):

ci,k~x
xi,j,kP

j

xi,j,k
pi,j ð1Þ

We summarized these connections at the country scale, thereby

estimating connectivity for nearly every country on the globe with

Mexico through either direct or indirect flights; the only countries

excluded would require an overnight stay in a hub airport, or three

or more connecting flights. We validated our algorithm (eq. 1) for

connections within the contintental U.S.A. (the only data on actual

itineraries, including connecting flight information, to which we

had access). We randomly chose 50 connecting itineraries within

the U.S.A. and compared our predictions to the actual routes. Our

predictions were statistically significant, using a simple propor-

tional model with log-normal errors, and explained over 60% of

the variance in actual routes (F = 83.71, p,0.001 on 1, 49 d.f,

adjusted R2 = 0.6232).

Statistical Models
We determined the date a country reported its first WHO-

confirmed 2009 A/H1N1 case through May 8th, 2009. We chose

this date in order to limit the analysis, as much as possible, to

initial spread from Mexico, because it served as a natural

breakpoint in the distributions of reporting dates, as well as being

the date our initial analysis. We performed a survival analysis using

R [30], and used an accelerated life time model using a log-logistic

distribution. We also examined using a scale-free exponential

distribution, as opposed to a log-logistic distribution, which

requires a scale parameter, but these models did not fit nearly as

well, as measured by AIC. We followed Burnham and Anderson

[31], in using Akaike Information Criterion (AIC) to choose the

model that best explains the data (i.e., the one with the lowest AIC,

or equivalently DAIC, score). Additionally we provided the Akaike

weights, which estimate the likelihood that a specific model is the

true model, assuming that the true model is in the set of examined

models [14]. Using this methodology, we choose to evaluate 22

models that made mechanistic sense including a null model for a

reference. We did not include any models with only the indirect

flight data, and without the direct flight data, because we feel that

this does not make mechanistic sense. To reduce multicollinearity

we included at most two socio-economic indicators.

We evaluated four independent predictors for the date of first

confirmed 2009 A/H1N1 case: the volume of (1) direct and (2)

indirect passengers on international flights, (3) the country-specific

Gross Domestic Product and (4) healthcare spending per capita, by

both private and public entities, from 2006 (the most recent year

with all data available) from World Bank estimates[32]. We also

examined alternate socio-economic metrics as compiled by the

World Bank[32], such as the number of physicians, and average

population density. However models including these predictors did

not perform as well (as measured by AIC) and often had many

more missing values if limited to most recent information.

For all analyses, dates were transformed to Julian day since

February 15th, and all predictor variables were standardized (mean

subtracted, then divided by standard deviation) in order make

possible the direct comparison of coefficients. This standardization

has the added advantage of canceling out the x factor in equation

1 for the statistical analysis; thus, our analyses do not require any

assumptions about the number of passengers who make connect-

ing flights.

Predicting Pandemic Spread
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These statistical models were used to predict the expected time

of detection for all countries in our database that had GDP,

population density, healthcare, and flight data. Confidence

intervals were constructed from the best model fit based on the

variance of the data, using the ‘‘predict’’ functions in R [30].

Poultry and Swine Trade
We obtained United Nations Food and Agriculture Organiza-

tion data on trade in Live Swine (commodity code HS96:S0103)

and Live Poultry (S0105) from the U.N. Comtrade data

portal[14]. We analyzed data from the last ten years (the

approximate time since 2009 A/H1N1 diverged from the nearest

sampled virus) [7], and focused on trade to North America

(Mexico, Canada and United States) from outside this region, as

well as trade to Mexico within the North American region.

Supporting Information

Figure S1 Model predictions compared with actual case arrival

dates. Dates of case arrivals (black diamonds) for cases that were

reported before our cut off of May 8th. Grey whisker plots

represent 95% confidence intervals for predicted arrival date, with

interior grey bar as expected (mean) date of arrival from survival

analysis.

Found at: doi:10.1371/journal.pone.0012763.s001 (0.02 MB

PDF)

Figure S2 Forward prediction of future case arrival dates. Dates

of case arrivals (black diamonds) for cases that were reported after

our cut off of May 8th, but before May 19th. Grey whisker plots

represent 95% confidence intervals for predicted arrival date, with

interior grey bar as expected (mean) date of arrival from survival

analysis.

Found at: doi:10.1371/journal.pone.0012763.s002 (0.02 MB

PDF)

Figure S3 Forward prediction of future case arrival dates. Grey

whisker plots represent 95% confidence intervals for predicted

arrival date, with interior grey bar as expected (mean) date of

arrival from survival analysis.

Found at: doi:10.1371/journal.pone.0012763.s003 (0.03 MB

PDF)
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