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Abstract

GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for therapy of diabetes due to its short half-
life (t1/2,2 min). To circumvent this, we developed a long-lasting GLP-1 receptor agonist by the fusion of GLP-1 with
human IgG2 Fc (GLP-1/hIgG2). ELISA-based receptor binding assay demonstrated that GLP-1/hIgG2 had high binding
affinity to the GLP-1R in INS-1 cells (Kd = 13.9061.52 nM). Upon binding, GLP-1/hIgG2 was rapidly internalized by INS-1 cells
in a dynamin-dependent manner. Insulin RIA showed that GLP-1/IgG2 dose-dependently stimulated insulin secretion from
INS-1 cells. Pharmacokinetic studies in CD1 mice showed that with intraperitoneal injection (i.p.), the GLP-1/hIgG2 peaked at
30 minutes in circulation and maintained a plateau for .168 h. Intraperitoneal glucose tolerance test (IPGTT) in mice
showed that GLP-1/hIgG2 significantly decreased glucose excursion. Furthermore, IPGTT performed on mice one week after
a single drug-injection also displayed significantly reduced glucose excursion, indicating that GLP-1/hIgG2 fusion protein
has long-lasting effects on the modulation of glucose homeostasis. GLP-1/hIgG2 was found to be effective in reducing the
incidence of diabetes in multiple-low-dose streptozotocin-induced type 1 diabetes in mice. Together, the long-lasting
bioactive GLP-1/hIgG2 retains native GLP-1 activities and thus may serve as a potent GLP-1 receptor agonist.
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Introduction

Glucagon like peptide 1 (GLP-1) is a 30-amino acid peptide that is

secreted from intestinal L-cells in response to nutrient ingestion and

promotes nutrient absorption via regulation of islet hormone secre-

tion [1;2]. Through activation of the GLP-1 receptor (GLP-1R), a G-

protein-coupled receptor (GPCR), GLP-1 stimulates insulin secretion

and suppresses glucagon secretion thereby lowering blood glucose in

rodents as well as in humans [3;4]. In addition, GLP-1 increases

insulin gene expression and upregulates insulin biosynthesis, via

upregulation of the transcription factor pancreatic duodenal

homeobox-1 (PDX-1). Within the pancreas, GLP-1 expands b-cell

mass via promotion of b-cell growth and reduction of b-cell death in

rodent models [5;6] and possibly in human as well [7]. Furthermore,

GLP-1 also slows the rate of absorption of nutrients into the blood

stream by reducing food intake and inhibiting gastric emptying [8].

Whole body GLP-1 receptor-null mice exhibit moderate glucose

intolerance and disrupted islet architecture suggesting that GLP-1

receptor signaling in islets is required for normal function and

development [9].

While the biological relevance and pathological impact is yet to

be fully clarified, clinical studies have demonstrated that GLP-1

secretion is decreased in human subjects with diabetes, which

highlights the potential use of GLP-1 as a therapeutic approach

for type 2 diabetes. However, despite its numerous anti-diabetic

functions, GLP-1 is rapidly degraded in vivo, with a half-life of

,2 min, due to degrading enzyme DPP IV and rapid kidney

clearance [10]. GLP-1 receptor agonists analogous to native GLP-1

have thus been developed as an alternative approach to increase

GLP-1R activity in the treatment of type 2 diabetes. Exendin-4 (Ex-

4), a lizard salivary gland peptide, that has high sequence homology

to mammalian GLP-1 and is resistant to enzymatic degradation [8]

has been approved for the treatment of type-2 diabetes since 2005

[11]. Other formulations using GLP-1 mimetics have been also

developed to overcome the pharmacokinetic limitations of GLP-1

for the treatment of type 2 diabetes [11].

We have recently developed a platform for the production of

GLP-1 fusion peptides consisting of GLP-1 or GLP-1 related

molecules and immunoglobulin constant region or Fc domain

(GLP-1-IgG-Fc) [12;13]. Various versions of GLP-1-IgG fusion

proteins are designed based on different IgG sub-types or different

IgG species for pre-clinic or clinic research. Using gene therapy

strategy, we have demonstrated that a single intramuscular injec-

tion resulted in a persistent expression of GLP-1/IgG-Fc fusion

protein in mice, which, as a results, improved insulin production

and normalized glucose tolerance in T2D db/db mice [13] and

reduced diabetes incidence in streptozotocin (STZ)-induced beta-

cell injury T1D mouse model [12]. In the present study, we show

that GLP-1/hIgG2, by fusion of GLP-1 with human IgG2 Fc,

retains native GLP-1 activities. We demonstrate that GLP-1/IgG2
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interacts with GLP-1R and stimulates insulin-secretion in insulin-

secreting INS-1 cells, in a glucose-concentration dependent

fashion. Upon binding, GLP-1/hIgG2 is rapidly endocytosed by

INS-1 cells, in a dynamin-dependent manner. Pharmacokinetic

studies in CD1 mice show that after a single intraperitoneal

injection (i.p.), the fusion protein rapidly appears in circulation and

remained at a high level for more than a week. The fusion protein

has anti-diabetic effects, which is exemplified by its capacity in

reducing the incidence of diabetes in multiple-low-dose strepto-

zotocin-induced type 1 diabetes mouse model. Our results suggest

that GLP-1/hIgG2 may serve as an alternative potent GLP-1

receptor agonist for the treatment of diabetes.

Materials and Methods

Animals
7-week-old CD1 mice (Charles River Laboratories, St Constant,

QC, Canada) were housed under controlled temperature condi-

tions and a 12-h light/12-h dark cycle in the St Michael’s Hospital

Animal facility with free access to normal rodent chow and water

except where noted. All procedures were conducted according to

protocols and guidelines approved by the Canadian Council of

Animal Care and the St Michael’s Hospital Animal Care committee.

Before intervention, body weight, feeding blood glucose, intraper-

itoneal glucose tolerance testing (IPGTT), water consumption, food

intake and urine volume were measured and a fasting blood sample

was taken from the saphenous vein for serum insulin and glucagon

measurement. For diabetes induction, 50 mg/kg body weight of

STZ (Sigma Chemical Co., St Louis, MO, USA) was dissolved in

0.01 M cold citrate buffer (pH 4.5) immediately before intra-

peritoneal injection (for 4 consecutive days). The development of

diabetes was monitored by measuring blood glucose from the tail

vein using Ascensia ELITE XL glucometer and Ascensia Elite blood

glucose test strips.

Cell culture
Rat insulinoma INS-1 cells (passage 50–65) were maintained in

RPMI 1640 medium (Invitrogen, Burlington, ON, Canada)

containing fetal bovine serum (10% v/v), 100 Units/ml penicillin

G sodium, 100 mg/ml streptomycin sulphate, 55 mg/500 ml

sodium pyruvate, 1.14 g/500 ml HEPES, and 1.7 ml/500 ml b-

mercaptoethanol at 37uC in an atmosphere of humidified air

(95%) and CO2 (5%). In studies involving serum-starvation, serum

was replaced by 0.1% BSA in RPMI 1640 without glucose.

Expression and purification of GLP-1/hIgG2
A schematic (Figure 1A) shows that the cDNA encoding the

fusion protein hGHRH/hGLP-1 was chemically synthesized, ligated

Figure 1. Construction of GLP-1/hIgG2 fusion protein. (A) Illustration shows that the cDNA encoding the fusion protein hGLP-1 chemically
synthesized was ligated to a PCR-amplified cDNA fragment coding human IgG2 FC (hinge-ch2-ch3) and inserted into the NcoI and Hind III sites of
a modified mammalian expression vector. (B) The secretable GLP-1/hIgG2-Fc fusion proteins are homodimeric. (C) Protein production efficiency
was evaluated by the Dot blot with anti-human IgG antibodies using conditional medium from the CHO cells stably expressing the fusion expression.
(D) Western blot shows that the GLP-1 fusion protein form stable dimer of molecular weight ,70 kDa and monomer formation under reducing
conditions.
doi:10.1371/journal.pone.0012734.g001
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to a PCR-amplified cDNA fragment encoding human IgG2 FC

(hinge-ch2-ch3) and inserted into the NcoI and Hind III sites of the

pAV0243 vector to generate GLP-1/hIgG-Fc/pAV0243. GLP-1/

hIgG2 encoding DNA fragment was then amplified using pfu DNA

polymerase (Fermentas, Glen Burnie, MD, USA). The GLP-1/

hIgG2 gene was then double digested by restriction enzyme BamH I

(New England Biolabs, Ipswich, MA, USA) and sub-cloned into a

mammalian expression vector pMPGCR5 (a gift from Dr. R Gilbert,

NRC Biotechnology Research Institute, Canada). For stable

expression, CHO cells (a gift from Dr. R Gilbert) were expanded

in CD-CHO complete medium (Invitrogen Life Science, Faraday

Avenue Carlsbad, CA, USA) containing with 16HT, 4 mM L-

glutamine, then transfected with GLP-1/hIgG2-pMPGCR5 con-

structs. Stable expressing clones were selected by 600 mg/ml

Hygromycin B (BioShop Canada Inc., Burlington, ON, Canada)

screen and finally amplified into 500 ml CD-CHO complete

medium in suspension culture at 225 rpm at 37uC until the cells

density reached at 76106 cells/ml. The cultured CD-CHO medium

was harvested, filtered and the GLP-1/hIgG2 fusion protein was

purified by using Protein A Ceramic HyperDH F sorbent (Pall

Corporation, Port Washington, NY, USA) and Immunopure Gentle

Ag/Ab binding and elution buffers (Thermo Fisher Scientific,

Rockford, IL, USA). Selected fractions were pooled, dialyzed into

16PBS, pH 7.4 and stored at 280uC.

Immunoblot
Purified GLP-1/hIgG2 fusion protein was resolved by10% SDS-

PAGE and transferred to a PVDF membrane. The membrane was

probed with goat-anti-human IgG antibodies (1:3000, Southern

Biotech, Birmingham, AL, USA) or anti-GLP-1 antibodies

overnight at 4uC and detected using HRP-conjugated secondary

antibodies (1:5000, Jackson Lab, Bar Harbor, ME, USA) and

visualized by enhanced chemiluminescence (GE Healthcare Bio-

Sciences Corp., Piscataway, NJ, USA).

Insulin secretion assay
INS-1 cells were plated in 24-well plates with a density of

2.56105 cells/well in RPMI 1640 medium containing 10% FBS.

The following day, the medium was replaced with fresh KRB

buffer devoid of glucose for 120 min. The cells were then treated

with 2.8 or 16.8 mM glucose and various concentrations of

purified GLP-1/hIgG2 fusion proteins in KRB buffer for 2 h. The

insulin levels in conditioned KRB buffer were measured using a

rat insulin RIA kit (Linco, St Charles, MO, USA) according to the

manufacturers’ instructions.

GLP-1 receptor binding assay
The binding affinity of GLP-1/hIgG2 was determined in a

setting of cellular ELISA. Briefly, INS-1 cells grown in 96 well

plates (BD Biosciences) at roughly 95% confluence were rinsed

with PBS and fixed with 4% paraformaldehyde (Thermo

Scientific) for 10 min at room temperature and quenched for

5 min with 2% glycine in PBS, pH 7.5. For the binding capacity

experiment, cells were incubated with logarithmic dilutions of

GLP-1/Fc alone (161025 to 1610212 M) for total binding or in

combination with 10 mM GLP-1 (Abcam Inc, USA) for non-

specific binding. For the competitive binding experiment, we used

fixed GLP-1/Fc concentration (10 mM) and competed its binding

with varying concentration of GLP-1, Exendin-4 and glucagon

(Bachem Americas, Inc. USA) (161025 to 1610212 M). After a

4-h incubation at 4uC in a final volume of 100 ml, excess GLP-1

receptor agonists were washed and the cells blocked with 5% BSA

(BD Biosciences). Bound residual GLP-1/Fc was detected by goat

anti-human IgG-Fc antibody (1:4000, Southern Biotech) and

detected by HRP-conjugated donkey anti-goat IgG (1:5000,

Jackson ImmunoResearch). Ortho-Phenylenediamine (OPD) sub-

strate (Fisher Scientific) was added for enzymatic reaction and the

colorimetric change was analyzed by reading absorbance at

490 nm in a Beckman microplate reader.

Internalization Studies
Internalization of receptor-bound ligand was determined in

INS-1 cells or INS-1 cells transfected with wild type or dominant

negative dynamin constructs (kind gift of Dr. YT Wang, University

of British Columbia, BC, Canada) using Lipofectamine 2000

according to manufacturer’s instructions. In Brief, INS-1 cells were

plated on poly-L-Lys coated 18 mm cover slip in 35 mm dishes at

a confluence of 70%–80% in RPMI 1640 medium containing

10% FBS. The cells were switched into pre-cooled RPMI 1640

(10% FBS) medium containing 1 mM GLP-1/hIgG2 and incubat-

ed at 4uC for 30 minutes, then at 37uC for 0, 15, 60, and 90

minutes. The cells were then fixed with 3% paraformaldehyde for

10 min and blocked with 2% BSA in PBS containing 0.1% Triton

X-100 at room temperature for 1 hour. The cells were then

incubated with goat-anti-human IgG antibody (1:500, Southern

Biotech, Birmingham, AL, USA) and Cy3-conjugated anti-goat

antibody (1:500, Jackson Lab, Bar Harbour, ME, USA) consec-

utively. These cells were then stained with Top3 dye (1:20,000) at

room temperature for 10 minutes. The images were captured in a

LEICA confocal microscope (DMIRE2).

Pharmacokinetics of GLP-1/hIgG2 in mice
Male CD1 mice (n = 3) were intra-peritoneally injected with

GLP-1/hIgG2 with a dose of 1 mg/mice. Serum samples were

collected at 0, 0.5, 24, 96, 120, 168 and 192 hours after GLP-1/

hIgG2 administration in DPP-IV inhibitors and aprotinin (10 mM

and 50 KU/ml, respectively; Sigma Chemical Co., St Louis, MO,

USA). The concentration of total GLP-1 was measured by using a

total GLP-1 RIA kit (LINCO, St Charles, MO, USA) according to

the manufacturer’s instructions.

GLP-1/hIgG2 stability assay
Serum samples were collected from mice, pooled and mixed,

and kept on ice. Recombinant GLP-1 (Abcam, Inc) or GLP-1/

hIgG2 fusion proteins were incubated with 50 ml serum samples at

final concentration of 75 pmol. The mixtures were then incubated

at 37uC for indicated time period allowing DPPIV-enzymatic

reaction. The reactions were terminated by adding DPP-IV

inhibitors and aprotinin (50 mM and 250 KU/ml, respectively)

and un-degraded peptides were then determined by active GLP-1

ELISA kit (Linco, St Charles, MO, USA).

Intraperitoneal glucose tolerance test (IPGTT), insulin
tolerance test (ITT)

Male CD1 mice (n = 10) were fasted overnight for 15 h and

were dosed intraperitoneally with GLP-1/hIgG2 (1 mg/mice) or

saline as the control 30 minutes prior to the IPGTT. For IPGT,

mice were given 1.5 g glucose/kg body weight (anhydrous

dextrose; EMD Chemicals Inc., Gibbstown, NJ, USA) via intra-

peritoneal injection. Blood was drawn from the tail vein and

glucose levels were measured using a glucometer at 0, 10, 20, 30,

60 minutes after glucose administration. For ITT, mice were i.p.

injected with insulin (2.0 U g/kg), blood glucose levels were

measured at the indicated times.

Statistical analysis
The data were analyzed and the binding curves were fitted by a

one-site receptor model using Graphpad Prism 5.0 program.

GLP-1-Human IgG Fusion Protein
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Briefly, Bmax and Kd of GLP-1/Fc were calculated by following

the Specific-Nonspecifc binding algorithm for one site binding,

using the formula: Specific binding = Bmax * [L]/(Kd + [L]),

where Bmax is the maximal binding at a given [L], [L] = Ligand

concentration. The IC50 for glucagon, GLP-1 and Exendin-4

were determined by the competitive binding for one site

algorithm. All data were presented as mean 6 SEM. Statistical

analysis was performed using Student’s t test. A p-value of less than

0.05 was considered to be statistically significant.

Results

GLP-1/hIgG2 fusion protein production
The expression constructs were engineered in an optimal

balance of efficacy and safety. An illustration (Figure 1A) shows

that the cDNA encoding the fusion protein hGLP-chemically

synthesized was ligated to a PCR-amplified cDNA fragment

coding human IgG2 FC (hinge-ch2-ch3) and inserted into the

NcoI and Hind III sites of a mammalian expression vector to

generate GLP-1/hIgG. The secretable GLP-1/hIgG-Fc fusion

protein consisting of the active GLP-1 molecule [7–37] directly

linked to the IgG-Fc encompassing the human IgG2 constant

heavy-chain is shown in (Figure 1B). The linker between the two

molecules is achieved by a design of the construct containing

nucleic acids sequence code for the natural hinge region of the

human IgG2, which provides flexibility facilitating the ligand-

receptor binding [14]. Since the fusion junction does not contain

an artificial linker and thus has minimized immunogenicity. The

CHO cells stably transfect with the fusion expression vectors, in a

suspension culture with serum-free chemical defined medium,

have efficient production efficiency (Figure 1C). The fusion

proteins are secreted as homodimers upon expression as

determined by Western blot using anti-human IgG (Figure 1D)

or anti-GLP-1 antibodies (not shown).

In vitro characterization of GLP-1/hIgG2
Using cellular ELISA based receptor binding assay we

determined binding capacity of GLP-1/hIgG2 in INS-1 cells.

The results showed that the binding of GLP-1/hIgG2 to INS-1

cells was fusion protein-concentration dependent, at a maximum

binding of 1 mM GLP-1/Fc and with a Kd of 13.9061.52 nM

(Figure 2A). Results of competitive binding assays, where GLP-1/

IgG2 concentration was fixed at 10 mM with varying concentra-

tion of Ex-4, GLP-1 and glucagon, showed 50% inhibition of the

binding of GLP-1/hIgG2 to INS-1 cells (IC50) at 13.7560.07 nM

for native GLP-1 and 8.1560.085 nM for exendin-4, respectively

(Figure 2B). Glucagon could not compete with the fusion protein

at the concentration range used. Internalization studies showed

that GLP-1 receptors were rapidly internalized 10 min after

stimulation, as demonstrated by an increase in the cytoplasmic

GLP-1/hIgG2 staining (Figure 3A). However, the internalization

was reduced in the INS-1 cells over-expressing dominant-negative

dynamin by transfection, but not in the cells transfected with wild

type dynamin (Figure 3B), suggesting that the internalization

process of GLP-1/hIgG2-GLP-1R is partially dynamin-dependent

[15].

Insulin secretion RIA showed that GLP-1/hIgG2 stimulated

insulin secretion from INS-1 cells in a dose and glucose concentration

dependent fashion (Figure 4A). To investigate whether GLP-1/hIgG2

fusion protein are more resistant to serum DPPIV, we conducted the

stability assay using active GLP-1 ELISA kit. As shown (Figure 4B),

both native GLP-1 and GLP-1/hIgG2 were degraded by serum

DPPIV, however, the GLP-1 fusion protein displayed much slower

decay rate, compared to the native GLP-1. These in vitro studies

suggested that GLP-1/hIgG2 has biological relevance in insulin-

secreting cells via activation of GLP-1 receptor, and that GLP-1 in the

IgG fusion format is relatively resistant to the degrading enzyme(s).

In vivo studies in mice
Pharmacokinetic data showed that 30–60 min after a single-

dose administration in CD1 mice, circulating GLP-1/hIgG2

concentration was significantly increased as determined by GLP-

1 RIA. The circulating fusion protein was found to plateau at 24-h

and thereafter it gradually decreased but could still be detected

192-h after the single dose-injections (Figure 5).

To determine if the GLP-1/hIgG2 fusion protein has glucor-

egulatory effects in vivo, IPGTT was performed 30 min after the

drug injection. As shown, GLP-1/hIgG2 reduced glucose excursion

(Figure 6A). In order to examine if GLP-1/hIgG2 fusion protein has

long-lasting effects on improving glucose tolerance, IPGTT was

performed 192-h after a single-dose administration of GLP-1/

hIgG2 in CD1 mice. As shown, while the fasting blood glucose levels

were not different between GLP-1/hIgG2-injected mice and control

mice, the drug-injected mice showed reduced glucose excursion

(Figure 6B), suggesting that the fusion protein exerted long-lasting

glucoregulatory effects in these mice.

We next assessed whether GLP-1/hIgG2 has anti-diabetic

effects using multiple-low-dose streptozotocin-induced type 1

diabetes (MDSD) mice. The intraperitoneal injections of GLP-1/

hIgG2 (1 mg/mouse) were made every third day during the feeding

Figure 2. Assessment of the binding affinity of GLP-1/hIgG2. (A) Cellular ELISA based ligand-receptor binding assay shows the maximum
binding of GLP-1/hIgG2 to INS-1 cells is ,1 mM with Kd of 13.9061.52 nM. (B). Competitive binding assay was performed in a reaction mixture
containing 10 mM GLP-and its competitors Ex-4, GLP-1 and glucagon of varying concentration (161025 to 1610212 M).
doi:10.1371/journal.pone.0012734.g002
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course and the first drug injection was made 3 days prior to the

streptozotozin treatment. As shown, four consecutive intraperito-

neal injections of low dose of STZ (50 mg/kg) induced overt

diabetic hyperglycemia in all mice 5–7 days after the injections

(Figure 7A; n = 5). In a contrast, the GLP-1/hIgG2-treated MDSD

mice maintained relatively constant glucose levels, although higher

than those measured at their earlier ages (Figure 7A), but had no

signs of diabetes. When the glucose levels were expressed as the area

under the curve (AUC), the changes between the two group mice

were statistically significant (Figure 7B, p,0.01). Insulin tolerance

test (ITT) showed that treatment of GLP-1/hIgG2 did not alter the

insulin sensitivities (Figure 7C). IPGTT showed that GLP-1/hIgG2-

treated MDSD mice had improved glucose tolerance (Figure 7D).

Discussion

GLP-1 has important functions on regulation of glucose

homeostasis and thus has been proposed for the treatment of

diabetes. Despite its attractive anti-diabetic actions, the therapeu-

tic potential of using native GLP-1 is limited by its short lifetime

Figure 4. Stimulation of insulin secretion by GLP-1/hIgG2 in INS- cells. (A) Cells grown in 24-well plates were incubated with fresh KRB buffer
devoid of glucose for 2660 min. The cells were then treated with 2.8 or 16.8 mM glucose and various concentrations of purified GLP-1/hIgG2 fusion
proteins in KRB buffer for 2 h. The insulin levels in the conditioned KRB buffer were measured using a rat insulin RIA kit. (B) Active GLP-1 was
measured by active GLP-1 ELISA kit in the mouse serum samples incubated with recombinant GLP-1 (75 pM) or GLP-1/hIgG2 fusion proteins (75 pM)
at 37uC for indicated time period. The reactions were terminated by adding excessive DPP-IV inhibitors and aprotinin.
doi:10.1371/journal.pone.0012734.g004

Figure 3. Endocytosis of GLP-1/hIgG2 is via a dynamin dependent manner. (A) Internalization of GLP-1/hIgG2-Fc in INS-1 cells (A) Cells were
incubated with 1 mM GLP-1/hIgG2 at 4uC for 30 minutes, then switched to 37uC for 0, 10, 20 and 60 minutes. After fixation and blocking for non-
specific binding, cells were then incubated with goat-anti-human IgG antibody (1:500) followed by secondary Cy3-conjugated anti-goat antibody
(1:500) and Top3 dye (1:20,000) for nuclei staining. The images were then visualized by a confocal microscope. (B) The internalization experiments
were performed in cells co-transfected with either wild type dynamin or dominant negative dynamin and green fluorescent protein (GFP). 24 hours
after transfection, internalization of GLP-1/hIgG2-Fc was conducted as described in (A). DAPI (1:10,000) was used for nuclei staining and images were
taken by a Nikon fluorescent microscope.
doi:10.1371/journal.pone.0012734.g003

GLP-1-Human IgG Fusion Protein

PLoS ONE | www.plosone.org 5 September 2010 | Volume 5 | Issue 9 | e12734



(,2 min), mainly due to rapid enzymatic inactivation by DPP-IV

[10;16] and renal clearance [17]. These limitations have continued

to fuel attempts to develop more potent long-acting GLP-1

analogs. We report here that, a GLP-1 fusion protein, GLP-1/

hIgG2, consisting of GLP-1 fused with human IgG Fc, retaines

native GLP-1 properties and demonstrates long-acting character-

istics. This recombinant GLP-1 fusion protein has anti-diabetic

and other beneficial features of GLP-1.

The IgG fusion molecules potentially are large molecular weight

homodimers and are not expected to be rapidly cleared by the

kidneys, and thus have a substantially longer half-life and better

metabolic profiles [18;19]. Fc fusion based drugs provide a

numbers of advantages and have become credible alternatives to

monoclonal antibodies as therapeutics [20;21]. GLP-1/hIgG2

fusion molecules are produced as homodimers, comprising of two

IgG CH2/CH3 chains fused to a pair of GLP-1 molecules with

molecular mass of 70 kilo Daltons (Figure 1D) and had a

substantially longer half-life. Our pharmacokinetic data showed

that that the fusion proteins are detectable a week after a single

dose injection in mice. IPGTT showed that the glucoregulatory

effects of GLP-1/hIgG2 were maintained 8 days after a single

dose-injection, suggesting that the detected fusion protein were still

biologically active. Although the fusion protein contains a native

GLP-1, the GLP-1 in the fusion design is expected to have reduced

susceptibility to degradation since such degrading enzymes have a

preference for smaller peptides [22]. Indeed, our in vitro stability

assay results supported this notion, which is also supported by our

previous evidence that in vivo expression of GLP-1/mIgG-Fc or

exendin-4/mIgG-Fc fusion proteins achieved equivalent efficacy in

mice [12].

Ligand-receptor binding parameters suggest that GLP-1/hIgG2

has high binding affinity to the GLP-1R in INS-1 cells which is

comparable to those of exending-4 (Figure 2) as well as those of

native GLP-1 [23]. The retained high binding affinity is also

suggestive of the fact that the fusion process most likely did not

alter the proximal conformation of native GLP-1. It is likely that

GLP-1/hIgG2 that contains the genetically engineered linker,

equivalent to the natural hinge region of human IgG2, may

provide flexibility and sufficient spatial structure for appropriate

binding of GLP-1 to its receptor [14]. It is of note that the design

of the linker sequence of the genetic fusion is considered to be

critical for maintenance of peptide activity [21]. A recent study by

Picha KM [24] et al. reported that CNTO736, a GLP-1 peptide

analog, genetically fused to a Fc portion of IgG has an optimized

linker sequence which provided higher activity when compared to

other reported fusions of GLP-1 to an IgG1 Fc or albumin [24;25].

Our results indicate that, a hinge region of human IgG2 that

functions as a linker, provide an optimized binding of fused GLP-1

molecule to its receptor. Furthermore, the dimeric GLP-1,

conjugated with an Fc fragment, is expected to increase the

ligand avidity since homodimeric GLP-1 can potentially recruit

additional GLP-1Rs and amplify intracellular signaling via

preformed GPCR dimers/oligomers [26]. The ability of the

fusion protein to stimulate insulin secretion in INS-1 cells in a

glucose-dependent manner further suggests that the GLP-1 fusion

protein retains the biological activities of the native GLP-1.

Using human IgG2 in the fusion protein appears to be

advantageous over the use of other subclasses of IgG. Of all

human IgG isotypes, IgG2 has the lowest affinity for FccRI

[27;28]. FccRI is a high affinity Fc receptor that binds IgG1,

IgG3, or IgG4 in monomeric form, and can induce antibody

dependent cellular toxicity (ADCC) [29;30]. IgG2-coated red

blood cells (RBCs) did not activate phagocytes and were not lysed

by these cells, unlike RBCs coated with other IgG isotypes [29]. In

contrast to FccRI, other activating Fc receptors are of low affinity

Figure 5. Pharmacokinetic study of GLP-1/hIgG2 fusion protein
in CD1 mice. CD1 mice were i.p. injected by a single-dose of GLP-1/
hIgG2 (1 mg/mouse). Blood samples were taken from tail vein at
different time points and serum GLP-1 levels were measured by GLP-1
RIA kit.
doi:10.1371/journal.pone.0012734.g005

Figure 6. Intraperitoneal Glucose Tolerance Test (IPGTT) shows that GLP-1/hIgG2 improves glucose tolerance in CD-1 mice. After 16 h
fasting, CD1 mice were i.p. injected with GLP-1/hIgG2 (1 mg/mouse). 30 min after the injection, IPGTT were conducted by i.p. injection of 1.5 g/kg of
glucose and blood glucose levels were measured by a glucometer at 0, 10, 20, 30, 60 minutes after glucose administration. (B) 192-h after a single-dose
injection of GLP-1/hIgG2 in CD1 mice, the mice were fasted for 16 h and IPGTT were conducted as described in (A).
doi:10.1371/journal.pone.0012734.g006
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and only bind multimeric IgG as found in immune complexes and,

in any case, IgG2 also has low affinity for these receptors [30].

Thus, native IgG2 or GLP-1/hIgG2 constructs are not likely to

bind to activating Fc receptors in vivo. Moreover, IgG2-Fc binds

to the inhibitory Fc-cRIIB receptor on some immune cells [30],

which further reduces the probability of Fc induced immunity.

The use of hIgG2Fc would be a better control, but our previous

work showed that Fc fragments have no effect on glucose

homeostasis [12,13]. The tissue distribution of hIgG2Fc might be

different since it will not bind to GLP-1 receptor positive cells. The

only receptors hIgG2Fc is likely to bind are the Fc receptors of

immune cells. The relatively low levels of hIgG2Fc in control mice

would have to compete with mouse IgG, which is present in large

amounts in the serum (approximately 10 mg/ml), so that the effect

would be minimal or nil. Therefore, we believe that the use of

vehicle is an appropriate control in our experiments.

The delivery of protein drugs has often led to the rise in

production of neutralizing antibodies which may diminish or

abolish the activity of a peptide hormone in the recipient.

Neutralizing antibodies are generated mostly when the injected

protein is foreign object containing antigenic determinants or

when the protein is co-administered with a vehicle or by a route

that promotes immunity [31;32]. This is initiated when B-

lymphocytes bind to the hormone through the B-cell antigen

receptor. However, B-cell stimulation can be prevented by co-

ligating inhibitory FccRIIB receptors [33;34]. We postulated that

B-cell reactivity to GLP-1 will be prevented or diminished when

this peptide is fused to an Fc segment, through the co-engagement

of the FccRIIB [13;30]. This is supported by our recent

observations in mice, where we found that exendin-4 neutralizing

antibodies were detected in mice exposed to Ex-4 but not to Ex4-

IgG-Fc (Liang YM et al unpublished data), consistent with the

tolerance effect of IgG carrier proteins [35;36].

Binding of GLP-1 activates the adenylyl cyclase pathway, which

ultimately results in a increase of glucose-induced insulin secretion

[23;37]. Our previous data [13] and others [24] indicated GLP-1-

Fc fusions have operated this pathway to exert GLP-1 action in

insulin-secreting beta-cells. In present study, we found that GLP-1/

hIgG2 was rapidly and extensively internalized after binding to

GLP-1R in INS-1 cells, representing the characteristics of native

GLP-1 upon binding to its counterpart [38]. In addition, the

internalization of GLP-1/hIgG2 in INS-1 cells was found to be

dynamin-dependent activity, since the endocytosis of the GLP-1/

hIgG2-GLP-1R complexes was significantly blocked in the beta-

cells expressing dominant negative dynamin. These results further

suggest that, like native GLP-1 [15], GLP-1/hIgG2 initiated GLP-

1R trafficking is mediated by a mechanism involving dynamin-

caveolin-1 activities in INS- cells[15].

There is potential concern that with long-lived GLP-1R agonists

continual exposure of the peptide may result in receptor

tachyphylaxis. However, GLP-1-Fc fusion protein did not appear

to cause this, at least in mice [24]. Previous in vivo studies in rats

also showed that a 48-h infusion of GLP-1 resulted in increased

insulin secretion and beta-cell proliferation, with no evidence of

Figure 7. GLP-1/hIgG2 improves glucose regulation in MDSD mice. (A) The intraperitoneal injections of GLP-1/hIgG2 (1 mg/mouse) were
made every three days during the course of experiment and the first drug injection was made 3 days prior to the multiple low dose streptozotozin
treatment (50 mg/kg/day for 4 consecutive i.p. injections). Glucose levels were measured by a glucometer at indicated times. (B) The glucose levels
were expressed as the area under the curve (AUC). (C) Insulin tolerance test (ITT) was conducted by injecting insulin (2.0 U/kg, i.p.) and blood glucose
levels were measured at indicated times. (D) IPGTT was performed in MDSD mice treated with PBS or GLP-1/hIgG2-Fc at the end of the experiment as
shown in (A).
doi:10.1371/journal.pone.0012734.g007
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loss of activity [39]. In addition, mice with transgenic exendin-4

expression displayed significantly increased insulin levels after oral

glucose administration [40], suggesting that incretin responses

were not suppressed by the continuous presence of exendin-4.

Furthermore, clinical studies have demonstrated that while

continuous infusion of native GLP-1 in type 2 diabetic patients

reduced blood glucose uniformly after 1 or 6 weeks of treatment

[41], a comparison of 16-h and 24-h continuous infusion showed

that a better glycemic control could obtained with sustained 24-h

treatment [42]. Finally, IPGTT results showed that 8 days after

a single dose-injection of GLP-1/hIgG2 displayed comparable

GLP-1 glucoregulatory effects as seen in an acute IPGTT study

in CD1 mice. Taken together, these findings highlight the fact

that prolonged stimulation of the GLP-1R induces appropriate

biological responses. It is possible that the internalization ma-

chinery of GLP-1R in the beta-cells may provide a continuous

presence of accessible GLP-1R under in vivo conditions. Internal-

ization of receptor-ligand complexes is an essential feature of the

function of GPCRs and is considered to be required for the

dissociation of the ligand from its receptor and for re-sensitization

of the receptor [43;44]. This process is possibly executed by

dephosphorylation of the receptor by phosphatases encountered in

the transit through the endosomal compartment [45;46].

In summary, we have developed a platform for genetic

engineering GLP-1 mimetics, in particular, GLP-1 fused with

IgG-Fc segment to achieve long-acting functionality and high

efficacy. Various GLP-1 chimera through fusion with either mouse

IgG-Fc or human IgG-Fc constructs are designed in order to

provide a means for pre-clinical and clinical research. The data

presented suggest that the GLP-1 mimetics, exemplified by GLP-1/

hIgG2, in which native GLP-1 fused with human IgG2-Fc has

improved pharmacokinetic and pharmacodynamic profile. It

retains natural GLP-1 binding properties and upon binding, it

initiates GLP-1-GLP1R complex membrane trafficking to exert

GLP-1 actions, including stimulation of insulin secretion from the

beta-cells, and bring into play the glucoregulatory and anti-diabetic

effects in vivo. Our data suggest that GLP-1/hIgG2 may find

application as a long-lasting GLP-1 analogue.
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