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Abstract

Background: I-kappa B kinase 2 (IKK2 or IKK-beta) is one of the most crucial signaling kinases for activation of NF-kappa B, a
transcription factor that is important for inflammation, cell survival and differentiation. Since many NF-kappa B activating
pathways converge at the level of IKK2, molecular interactions of this kinase are pivotal for regulation of NF-kappa B
signaling.

Methodology/Principal Findings: We searched for proteins interacting with IKK2 using the C-terminal part (amino acids
466–756) as bait in a yeast two-hybrid system and identified the N-terminal part (amino acids 1–228) of the TNF-receptor
associated factor TRAF1 as putative interaction partner. The interaction was confirmed in human cells by mammalian two-
hybrid and coimmunoprecipitation experiments. The IKK2/TRAF1 interaction seemed weaker than the interaction between
TRAF1 and TRAF2, an important activating adapter molecule of NF-kappa B signaling. Reporter gene and kinase assays using
ectopic expression of TRAF1 indicated that it can both activate and inhibit IKK2 and NF-kappa B. Co-expression of
fluorescently tagged TRAF1 and TRAF2 at different ratios implied that TRAF1 can affect clustering and presumably the
activating function of TRAF2 in a dose dependent manner.

Conclusions/Significance: The observation that TRAF1 can either activate or inhibit the NF-kappa B pathway and the fact
that it influences the oligomerization of TRAF2 indicates that relative levels of IKK2, TRAF1 and TRAF2 may be important for
regulation of NF-kappa B activity. Since TRAF1 is an NF-kappa B induced gene, it might act as a feedback effector molecule.
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Introduction

The NF-kappa B family of transcription factors is essential for a

large variety of biological processes such as inflammation, cell

survival, regulation of apoptosis, proliferation and cell differenti-

ation. There are two major signaling pathways leading to NF-

kappa B: the classical or canonical pathway originating at TNFa-,

IL-1 or Toll-like receptors and the alternative pathway initiated for

instance at CD40 [1]. Both pathways converge at the level of the

IkB kinase (IKK) complex, which contains two related kinases:

IKK1 (IKK-alpha) and IKK2 in conjunction with an essential

adapter (termed NEMO for NF-kappa B essential modulator, or

IKK-gamma). The I-kappa B kinases can then phosphorylate

inhibitors of NF-kappa B on two adjacent serine residues, marking

them for polyubiquitination, which results in their degradation by

26S proteasomes and release of active NF-kappa B. The classical

activation pathway signals primarily to IKK2, whereas the

alternative pathway triggers predominantly IKK1 activity [1,2].

Nevertheless, these two kinases influence each other [3,4] and

interact with a variety of additional signaling molecules [1]. It is

currently still not clear, which interactions can occur simulta-

neously and whether certain molecular associations are mutually

exclusive or influence each other, and as a consequence also the

NF-kappa B signaling cascade.

In the last few years, it became increasingly clear that

ubiquitination processes exert important functions in the activa-

tion of the IKK complex [2]. These ubiquitinations are triggered

by TRAF molecules (mainly TRAF2, TRAF5 and TRAF6), which

contain RING domains that have E3 ligase activity catalyzing

non-degradative K63-linked polyubiquitination. In contrast to

K48-linked polyubiquitin, K63-linked polyubiquitin chains do not

lead to proteasomal degradation but rather serve as an association

and signaling platform for certain ubiquitin binding proteins, such

as TAB1 and TAB2 in combination with the kinase TAK1 [5].

K63-linked polyubiquitination thereby results in binding and

activation of TAK1, which then activates IKK2. TRAF1 is the

only TRAF-adapter molecule lacking a RING domain and

therefore does not act as a ubiquitin ligase [6,7]. Of note, TRAF

molecules form homo- or heterotrimeric complexes. It has been

suggested that the composition of heterotrimers is important for

signaling function [8]. Interestingly, both positive and negative

regulatory effects of TRAF1 on NF-kappa B signaling have been
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reported. In cell culture systems overexpression of TRAF1 resulted

either in inhibition [9] or in augmentation [10] of NF-kappa B

activity. Similar conflicting data have been obtained in knockout

mouse models. T-cells from TRAF1-deficient mice showed

enhanced IKK2 and NF-kappa B activity [11], whereas dendritic

cells from TRAF1-deficient mice showed attenuated NF-kappa B

signaling in a different study [12]. The effect of TRAF1 on

signaling is further complicated by the fact that it is a substrate of

caspases and therefore cleaved in the course of apoptosis. This

leads to a release of the TRAF-domain, which then acts as an

inhibitor of NF-kappa B signaling [13].

In this study, we provide evidence for a specific interaction of

TRAF1 with IKK2 and we demonstrate that this molecular

association is weaker than the TRAF1/TRAF2 interaction.

Furthermore, we find that ectopic expression of TRAF1 can have

both inhibitory and stimulatory effects on IKK2 and NF-kappa B

activity. Thus we propose a model in which relative levels of

TRAF1, TRAF2 and IKK2 are important for regulating the

signaling activity of IKK2.

Results and Discussion

Our aim was to identify interaction partners of IKK2, a key

enzyme for NF-kappa B activation. To this end, we performed a

yeast two-hybrid screen with the C-terminal part of IKK2 as a bait

as described [14]. This part contains a helix-loop-helix domain

and a leucine zipper as potential protein interaction domains.

Among various signaling molecules, we identified an N-terminal

fragment of TRAF1 (amino acids 1–228) as a putative binding

partner. Next, we tested whether other members of the TRAF

family are capable of interacting with the IKK2 C-terminal bait

using yeast two-hybrid constructs for all TRAFs. In this system,

only TRAF1 interacted with the IKK2-bait (Fig.1A). Testing

IKK1 as the bait in combination with all the TRAF molecules

(TRAF1–TRAF6) did not reveal any significant interaction (data

not shown). The binding of IKK2 and TRAF1 could be verified in

a mammalian two-hybrid reporter assay, thus confirming the

interaction in mammalian cells (Fig. 1B). Preferential interaction

between IKK2 and TRAF1 but not other TRAF family members

is supported by the fact that IKK2 interacts with the N-terminal

part of TRAF1, which differs from all the other TRAF family

members (Fig. 1C). The C-terminal interaction domain of IKK2

does not include the kinase domain, suggesting that it may still be

accessible for substrates. Furthermore, we could clearly demon-

strate the interaction between full length IKK2 and full-length

TRAF1 in human cells by co-immunoprecipitation experiments

(Fig. 1D). Similar experiments with the N-terminal part (amino

acids 1–228) of TRAF1 verified the results of the yeast two hybrid

system that the N-terminal domain lacking the TRAF domain is

sufficient for the interaction with IKK2 (data not shown).

However, it has to be noted that also the TRAF-domain seems

to be capable of interacting with the IKK-complex [13]. In

contrast to the co-immunoprecipitation of TRAF1 with IKK2, we

could not detect co-precipitation of TRAF2 with IKK2 in our

system. This is in contrast to a previous report using a different cell

line demonstrating an interaction between IKK2 and TRAF2

[15]. In that report, the TRAF2/IKK2 interaction appeared

stronger for a truncated IKK2-construct containing the leucine

zipper than for full length IKK2. The study also did not test for

interaction of IKK2 with other TRAF family members. In

conclusion, we assume that IKK2 has the propensity to interact

with both TRAF1 and TRAF2, but that the interaction with

TRAF1 seems to be stronger in our experimental system. This is in

line with our observation that co-expression of TRAF2 reduced

the amount of TRAF1 co-precipitating with IKK2. In this case,

TRAF2 may compete with IKK2 for TRAF1 binding (Fig. 1D).

This possibility was further tested by co-immunoprecipitation of

TRAF1 and TRAF2, which revealed that these two molecules

interact with each other at different salt concentrations up to a

rather high NaCl concentration of 500 mM (Fig. 1E). At this salt

concentration, we could not detect any significant interaction

between TRAF1 and IKK2 (data not shown) indicating that

TRAF1/TRAF2 binding may be stronger than the association

between TRAF1 and IKK2 (which was detectable at a

concentration of 250 mM NaCl). Consequently, it has to be

expected that TRAF1 would rather bind TRAF2 as long as

TRAF2 binding sites are available. This is further supported by

microscopy-based interaction studies applying the method of

fluorescence resonance energy transfer (FRET). Both the interac-

tions between YFP-tagged IKK2 and CFP-tagged TRAF1 and

between CFP-TRAF1 and YFP-TRAF2 could be visualized by

FRET microscopy in the cytosol. However, when CFP-TRAF1

and YFP-IKK2 were coexpressed in presence of flag-tagged

TRAF2, the interaction between TRAF1 and IKK2 became

undetectable and TRAF1 appeared in clusters characteristic for

ectopic expression of TRAF2 (Fig. 2). This indicates that TRAF2

competes with IKK2 for binding of TRAF1. Testing the effect of

TRAF1 expression in NF-kappa B reporter gene assays revealed

either up- or downregulation of NF-kappa B activity dependent on

the stimulus and the expression levels of effector molecules.

Activation of NF-kappa B by ectopic expression of IKK2 was

increased in most cases by TRAF1 (Fig. 3A) – but at a higher ratio

of TRAF1 compared to IKK2, we also observed a downregulation

by TRAF1 (Fig. S1). When a constant amount of an IKK2-

expression construct was co-transfected with increasing amounts of

a TRAF1 construct, we observed an augmentation of NF-kappa B

activation with saturation characteristics (Fig. 3A). Interestingly,

we could detect a higher IKK2-protein expression correlating with

higher levels of TRAF1 although a constant amount of IKK2-

expression plasmid was applied. Calculating the degree of NF-

kappa B activation normalized to IKK2 protein expression

revealed a stimulatory effect of TRAF1 at lower concentrations,

but an inhibitory effect at higher levels. Based on this observation,

we determined the effect of TRAF1 on the expression of IKK2

mRNA and protein. Quantitative PCR analysis revealed an

upregulation of IKK2-mRNA by TRAF1 (Fig. S2A) and

furthermore a prolonged IKK2-protein stability as determined

after blocking protein neo-synthesis with cycloheximide (Fig. S2B).

We then went on to test the consequence of enforced TRAF1

expression on TNFa-mediated NF-kappa B activation. Here, we

observed in most cases a dose-dependent TRAF1-mediated

suppression of NF-kappa B (Fig. 3B). We suggest that the high

ratio of ectopically expressed TRAF1 to endogenous IKK2 results

in a predominantly inhibitory effect of TRAF1 on NF-kappa B

activity as also seen in the previous transfection experiments (Fig.

S1). Given that TRAF1 is an NF-kappa B dependent gene, which

can be strongly upregulated by TNFa (see Fig. S3), it might act as

stimulatory feedback molecule at an early phase of NF-kappa B

activation, while it exerts an inhibitory function at later stages,

when higher TRAF1 levels are reached. In line with the effects of

TRAF1 on IKK2-mediated NF-kappa B reporter gene activity, we

also observed influences of TRAF1 on IKK2 activity in kinase

assays, where TRAF1 was often stimulatory (Fig. S4). However, in

some cases, we also detected a slight inhibition of IKK2 activity by

TRAF1 (data not shown), resembling the effects shown in reporter

gene assays (Fig. S1). The influence of TRAF1 on IKK2 activity

might be triggered by direct binding, but may also be the

consequence of TRAF1 effects on IKK2 expression or the

TRAF1/IKK2 Interaction
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recruitment of activating molecules. Since TRAF2 is an important

activator of the NF-kappa B-pathway interacting with TRAF1, we

also tested the effect of TRAF1 on TRAF2. Upon ectopic

expression as a fluorescent fusion protein in cells, TRAF2 forms

distinct clusters in the cytosol. This likely reflects the inherent

property of TRAF2 to trigger the oligomerization of other

signaling molecules or kinases by self-interaction via the TRAF-

domain. Co-expression of a CFP-tagged TRAF1 with YFP-tagged

TRAF2 resulted in a dose dependent disaggregation of the

TRAF2 clusters, revealing that TRAF1 has the capability of

influencing the oligomerization of TRAF2 (Fig. 4) important for its

signaling function.

Figure 1. IKK2 interacts specifically with TRAF1. A) Yeast two hybrid assay: The C-terminal domain of IKK2 interacts specifically with TRAF1 but
not TRAF2 – TRAF6. B) Verification of the interaction in mammalian cells using a mammalian two-hybrid system. A luciferase reporter assay was done
with empty (-) bait or prey constructs, IKK2, TRAF1 or a control prey (control, pVP16-SV40 large T antigen) as indicated. C) Schematic illustration of the
interaction domains as depicted by the overlapping rectangle. Amino acids 466–756 of IKK2 including a leucine zipper (LZ), a helix-loop-helix domain
(HLH) and the NEMO binding domain (NBD) interact with amino acids 1–228 of TRAF1 (containing a Zn-finger). D) Co-immunoprecipitation of IKK2
and TRAF1 after transfection of HeLa cells with flag- or HA-tagged expression constructs as indicated and immunoprecipitation (IP) with flag-affinity
matrix in presence of 250 mM NaCl followed by immunoblot (IB) analysis of HA-tagged proteins and IKK2 in immunopreciptates and extracts. E)
Coimmuno-precipitation of TRAF1 and TRAF2 in presence of 500 mM NaCl analogous to D. The arrow represents the specific HA-TRAF1 band in the
extracts; the asterisk denotes an unspecific band.
doi:10.1371/journal.pone.0012683.g001

TRAF1/IKK2 Interaction
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Of note, TRAF1 is transcriptionally upregulated by NF-kappa

B (Fig. S3 and [7,10]), and degradation of TRAF2 is triggered by

the NF-kappa B signaling pathway [6,7]. The combination of

these two effects alters the TRAF1/TRAF2 ratio and may

therefore lead to a change from TRAF1/TRAF2 complexes to

TRAF1/IKK2 complexes. Furthermore, it could also alter the

composition of trimeric TRAF complexes from activating

(TRAF2)3 or (TRAF2)2-TRAF1 complexes towards more inhib-

itory TRAF2-(TRAF1)2 or (TRAF1)3 complexes [8]. This has

potential consequences for IKK2 and NF-kappa B activity

dependent on the relative levels of TRAF1, TRAF2 and IKK2.

Since TRAF1 does not contain a RING domain for K63-linked

polyubiquitination, we expect it to be an inhibitor rather than an

activator of NF-kappa B signaling by itself. However, since

TRAF1 binds activators of NF-kappa B signaling such as RING

domain containing TRAF molecules, it may also function as an

activator in conjunction with these proteins at a certain

stoichiometry. Moreover, binding of TRAF1 to IKK2 may also

directly influence IKK2 activity by affecting proximity-induced

auto-phosphorylation and self-activation of IKK2. Furthermore,

we could show that TRAF1 influences IKK2 expression levels.

Taken together, it seems likely that TRAF1 exerts variable

regulatory functions in NF-kappa B signaling depending on the

presence and relative levels of other signaling molecules in a given

cellular context.

Materials and Methods

Materials
Antibodies for TRAF1 (H-125), TRAF2 (H-249), IKK2 (H-470)

and HA (HA-probe Y-11) were from Santa Cruz Biotechnology

Inc; antibodies against the flag-tag were from Sigma (flag-M2, F-

Figure 2. TRAF2 competes with IKK2 for TRAF1 binding. The indicated CFP-, YFP- or flag-tagged expression constructs were transfected into
HEK-293 cells followed by FRET-microscopy to determine protein interactions. The signals in the CFP- and YFP-channel are shown, as well as a
pseudo-colored calculated FRET images.
doi:10.1371/journal.pone.0012683.g002

TRAF1/IKK2 Interaction
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10804) as well as flag-affinity matrix for immunoprecipitations.

Antibodies against GFP were from Clontech (anti-GFP peptide

antibody). IKK2 expression constructs are described in [14,16],

HA-tagged expression constructs of TRAF1 and TRAF2 have

been provided by Robert Brink, a flag-tagged TRAF2 construct

was provided by Tularik. CFP- and YFP-tagged constructs are

described in [16].

Cell culture and transfections
HEK-293 cells were cultured as described [17] and transfected

with Lipofectamine, (Invitrogen, Carlsbad, CA, USA) or Fugene

(Roche, Vienna, Austria) according to the manufacturers’

protocols.

Yeast two-hybrid screening was performed with the C-

terminal part of IKK2 (amino acids 466–756) essentially as

described [14] using a library from activated leukocytes containing

three million independent clones (Clontech Laboratories Inc,

Mountain View, CA, USA). After identification of TRAF1 as

potential binding partner, all the TRAF molecules (TRAF1-

TRAF6; kindly provided by David Sassoon [18]) were tested in the

yeast two-hybrid system for interaction with the IKK2 bait.

Mammalian two-hybrid assays were performed with the

MatchmakerTM system provided by Clontech Laboratories Inc

(Mountain View, CA, USA) essentially according to the instructions

of the manufacturer with the exception that the pFR-Luc vector

from Stratagene Inc. (La Jolla, CA, USA) was used to detect the

interaction by measurement of luminescence. Full length IKK2 was

cloned into the pM-vector and the prey from the yeast two-hybrid

screen (TRAF11-228) was cloned into the pVP16 vector.

Coimmunoprecipitations were carried out basically as

specified in [19] using transfected HeLa or HEK-293 cells. In brief,

cells were transfected with the respective expression constructs

followed by lysis in detergent buffer (0.5% NP-40, 50 mM Tris–HCl

pH 7.5, 1 mM EDTA, 150 mM NaCl and CompleteTM protease

inhibitor cocktail from Roche). Lysates were cleared by centrifuga-

tion at 4uC, 14000 rpm for 15 min. Supernatants were subject to

immunoprecipitation (for 2h at 4uC) with anti-flag affinity matrix

(Sigma-Aldrich, Vienna, Austria) or the respective antibodies

coupled to protein A-sepharose beads (GE healthcare, Munich,

Germany). Incubation of cell extracts with beads was done at

150 mM, 250 mM or 500 mM NaCl concentration to achieve

different stringencies. Beads were washed four times at the respective

salt concentration, incubated for 5 min at 95uC with 1x SDS-PAGE

buffer and the released proteins were separated by SDS-PAGE and

analyzed by Western Blotting using the indicated antibodies.

Luciferase reporter gene assays were performed as

described in [17]. Cells were transfected with a NF-kappa B

dependent Luciferase expression construct (5x NF-kappa B-Lucifer-

ase from Stratagene Inc., or a 4x NF-kappa B construct generated by

inserting CTGGGACTTTCCTCTGCTGAGAAACTTTCTGC-

TGGGACTTTCCTCTGTCTCCGC CTGGGACTTTCCTCT-

GCTGAGAAACTTTCTGCTGGGACTTTCCTCTGTCTCC-

GC-39 into the enhancer region of the 5x NF-kappa B vector

backbone at the Apa I site). The luciferase reporter construct was

transfected in combination with a constitutively expressing b-

Galactosidase normalization construct (driven by a ubiquitin-

promoter: pUB6/V5-His/lacZ from Invitrogen) and various IKK2

or TRAF1 expression constructs.

Figure 3. TRAF1 can exert both inhibitory and stimulatory effects on IKK2 and NF-kappa B activity. Effects of TRAF1 in NF-kappa B
reporter gene assays: A) HEK-293 cells were transfected with a NF-kappa B luciferase reporter and IKK2 in absence or presence of a TRAF1 expression
construct at increasing concentrations. Upregulation of NF-kappa B activity by IKK2 is shown as x-fold of a negative control and given as normalized
Luciferase activity (norm. Luc.: normalized to constitutive b-Galactosidase expression) or normalized Luciferase activity related to IKK2 protein levels
(norm. Luc/IKK2). TRAF1 and IKK2 protein levels are determined by Western Blot analysis of the luciferase extracts. B) HeLa cells were transfected with
the NF-kappa B reporter and a TRAF1 construct at increasing concentrations followed by treatment with TNFa 50 ng/ml for 6 h) as indicated. NF-
kappa B Luciferase activity was determined normalized to constitutive b-Galactosidase expression. Levels of TRAF1 in the extracts have been
determined by Western Blot analysis.
doi:10.1371/journal.pone.0012683.g003

TRAF1/IKK2 Interaction
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Cell extracts were prepared in 50 ml of lysis buffer (0.1 M

KH2PO4 pH 7.8; 0.1% Triton-X100 and Complete protease

inhibitor cocktail from Roche).

Luciferase activity was determined by injecting 50 ml of 1 mM

luciferin in a mixture of 50 ml assay buffer (20 mM MgSO4,

4 mM ATP and 25 mM Glycyl glycine buffer pH 7.8) and 20 ml

extracts and measuring the light emission for 5 sec with a Wallac

1420 VICTOR2-Luminometer (Perkin Elmer, Vienna, Austria).

Luciferase counts were normalized to b-galactosidase activity

measured with CPRG (chlorophenol red-b-d-galactopyranoside)

as substrate and colorimetric detection at 570 nm.

Kinase assays were done as depicted in [14]. Briefly, cells were

transfected with flag-tagged wildtype or mutant IKK2 in absence or

presence of TRAF1, followed by extraction in kinase assay lysis

buffer (20 mM Tris–HCl, pH 7.5, 150 mM NaCl, 25 mM b-

glycerophosphate, 2 mM EDTA, 2 mM pyrophosphate, 1 mM

orthovanadate, 1%Triton X-100, 1 mM dithiothreitol, 1 mMNaF,

and protease inhibitors). Lysates were subject to immunoprecipita-

tion of IKK2 using anti-flag affinity matrix (Sigma) and beads were

washed three times with PBS and once with kinase assay buffer

(20 mM Tris-HCl, pH 7.5, 20 mM b-glycerophosphate, 10 mM

MgCl2, 100 mM orthovanadate, 50 mM NaCl, 1 mM DTT,

50 mM ATP, and 1 mM NaF). 1 mg GST–IkBa was added as

substrate to each sample in combination with 10 ml kinase assay

buffer and 10 mCi 32P-c-ATP (Amersham Biosciences, UK). The

beads were then incubated for 1 h at 37uC followed by addition of

SDS sample buffer, heating to 95uC for 5 min and separation of

proteins by SDS-PAGE. The gel was fixed with methanol/acetic

acid (10% each), dried, exposed on a phosphor screen and analyzed

with PhosphorImager equipment (Molecular Dynamics, Germany).

Quantitative PCR
mRNA was extracted from HEK-293 cells by QAIGEN

RNeasy Mini Kit and reverse transcribed with the RevertAidTM

Figure 4. TRAF1 influences the clustering tendency of TRAF2 in a dose dependent manner. YFP-tagged TRAF2 or CFP-tagged TRAF1 were
expressed in HEK-293 cells either alone or in combination at a ratio of 1:1 or 1:9 as indicated and analyzed by fluorescence microscopy. A higher level
of TRAF1 led to the disaggregation of TRAF2 clusters.
doi:10.1371/journal.pone.0012683.g004

TRAF1/IKK2 Interaction
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H Minus FIRST strand cDNA synthesis kit K1639 from

Fermentas Inc. The resulting cDNA was used for quantitative

realtime PCR on a StepOne Plus instrument from Applied

Biosystems with SYBR green detection. Primers for TRAF1 were:

forward: 59GGAGGCATCCTTTGATGGTA93 and reverse:

59AGGGACAGGTGGGTCTTCTT’3; primers for IKK2 were:

59TGCAACTGATGCTGATGT-39 and 59GCCTTGAAG-

CAGCCATT-39; primers for the housekeeping gene human beta

2 globulin were: 59GATGAGTATGCCTGCCGTG-39 and

59CAATCCAAATGCGGCATCT-39. StepOne Plus software

was used to calculate crossing threshold (Ct) points from the

fluorescence curves and the delta/delta-Ct method [20] was

applied to quantify the induction of mRNA as compared to the

control sample. Fluorescence microscopy of CFP-tagged

TRAF1 and YFP-tagged TRAF2 was done with a Nikon Diaphot

TMD microscope as described in [16] or with a Zeiss Axiovert 135

microscope equipped with a Photometrics Coolsnap camera and

appropriate fluorescence filters controlled by Metamorph 7.5

software. Fluorescence Resonance Energy Transfer (FRET)

microscopy was performed by the 3-Filter method as described

in [21,22].
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Supporting Information

Figure S1 Stimulating or inhibiting effect of TRAF1 at various

ratios with IKK2. HEK-293 cells were transfected with constant

amounts of NF-kappa B luciferase and b-Galactosidase reporter in

combination with IKK2 and TRAF1 at different ratios as

indicated. Upregulation of NF-kappa B activity by IKK2 is shown

as x-fold of a negative control.

Found at: doi:10.1371/journal.pone.0012683.s001 (0.18 MB TIF)

Figure S2 Upregulation of IKK2 by TRAF1. A) Effect of

TRAF1 on IKK2-mRNA expression: HEK-293 cells were

transfected with the indicated expression constructs and IKK2-

mRNA was determined by quantitative PCR and expressed as fold

of control. B) Effect of TRAF1 on IKK2 protein stability: HEK-

293 cells were transfected with IKK2 alone or in combination with

TRAF1. Cycloheximide was added at different time points to stop

protein neo-synthesis, followed by extraction of cells and Western

Blot analysis of IKK2. The IKK2 band was quantified by ImageJ

analysis and expressed as percentage of the starting level.

Found at: doi:10.1371/journal.pone.0012683.s002 (0.27 MB TIF)

Figure S3 Induction of TRAF1 by TNFa. HEK-293 cells were

treated for different periods of time with TNFa (50 ng/ml),

Upregulation of TRAF1 mRNA was determined by quantitative

PCR and the induction of TRAF1 protein levels by Western Blot

analysis.

Found at: doi:10.1371/journal.pone.0012683.s003 (0.25 MB TIF)

Figure S4 Effect of TRAF1 on IKK2 activity. A) In vitro kinase

assay using IKK2 immunoprecipitated from HEK-293 cells

transfected with IKK2 alone or in combination with TRAF1 as

indicated. IkBa was used as substrate and phosphorylation with

32P detected by PhosphorImager analysis. Protein levels of IKK2

were analyzed by immunoblotting (IB). B) Quantification of IkBa
phosphorylation as related to the IKK2-protein level determined

in A.

Found at: doi:10.1371/journal.pone.0012683.s004 (0.11 MB TIF)
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