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Abstract

b-catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then
assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large
number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions,
and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically
different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear
whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine
kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt
isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal
activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies
bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated
dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably
recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by
the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in
cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ
culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different
subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity
of coreceptor-ligand interactions may allow for differential regulation of signaling by Wnt isoforms during development,
and can be exploited with antibodies to differentially manipulate Wnt signaling in specific tissues or disease states.
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Introduction

Similar to most other morphogen and growth factor signaling

pathways, mammalian Wnt signaling is deployed multiple times

during development and tissue homeostasis [1]. These events

differentially utilize 19 ligands, 10 receptors, and multiple

coreceptors, including LRP5/6, Ror1/2, and Ryk [2]. In addition,

different secreted antagonists that bind either Wnts, such as

SFRP1/2/3/4/5 and WIF1, or bind LRP5/6, including DKK1/

2/4 and SOST, modulate interactions between ligands and

receptors. These membrane and extracellular proteins and their

multiple isoforms provide for differential regulation at the level of

expression and combinatorial protein interactions. Most Wnt

isoforms appear to be capable of binding coreceptor LRP5/6, and

this engagement specifies canonical, or b-catenin dependent, Wnt

signaling. Wnt-mediated heterodimerization of LRP5/6 and FZD

triggers phosphorylation of the LRP5/6 intracellular domain and

Axin binding [3–5]. DVL is brought into the complex by directly

binding both Axin and FZD, and DVL oligomerization likely

enlarges these protein complexes on the cytoplasmic face of the

membrane to sequester GSK3 and inhibit its phosphorylation and

destabilization of b-catenin [6–12].

The unusually large number of ligand isoforms that mediate

mammalian canonical Wnt signaling display considerable primary
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sequence divergence. This diversity contrasts with the pair of

highly homologous coreceptors. The LRP5 and LRP6 extracel-

lular domains consist largely of four homologous regions, named

E1 to E4 from N- to C-terminal, each containing a YWTD-type b-

propeller and EGF-like domain [13]. Each repeat at a similar

position in LRP5 and LRP6 is highly conserved, whereas the

different repeats within the same protein are considerably more

divergent. Interestingly, Bourhis et al. (2010) demonstrated that

Wnt9b binds exclusively within the E1-E2 region in vitro, whereas

Wnt3a binds only to a fragment containing E3-E4, suggesting that

each repeat, or a combination of two adjacent repeats, binds to a

different subset of Wnt isoforms [14]. This arrangement may

accommodate the diversity of Wnt proteins, and possibly also

allow for their differential regulation by LRP5/6 antagonist

ligands. By contrast, in Notch and VEGF receptors, whose

extracellular regions contain repeats of EGF-like and Ig domains,

respectively, binding of multiple ligand isoforms is localized to the

same region of one or two repeats, although the presence of other

repeats can enhance binding [15–17].

For receptor tyrosine kinases, ligand-induced dimerization

stimulates the kinase activity and initiates signaling. While

ligand-induced receptor-coreceptor heterodimerization is neces-

sary for canonical Wnt signaling, there is no clearly defined role

for LRP5/6 or FZD homodimerization. Forced dimerization of

different recombinant LRP6 proteins can either activate or inhibit

Wnt signaling [18,19]. In this report, we utilize monoclonal

antibodies to further explore the functional roles of different

regions of LRP6 in signaling by Wnt isoforms and in antagonism

by DKK1, as well as the functional consequences of dimerizing

endogenous coreceptor. We provide evidence that different subsets

of Wnt proteins induce signaling through binding different regions

of LRP6, with most Wnts interacting within either E1-E2 or E3-

E4, but not both. Individual LRP6 antibodies can inhibit

autocrine, or endogenous, Wnt signaling in some tumor cell lines

and potentiate autocrine signaling in other tumor cells, likely

because the cell lines express different Wnt isoforms. Antibody-

mediated dimerization of LRP6 does not induce signaling by itself,

but it does potently enhance, or potentiate, signaling in the

presence of a Wnt isoform that can simultaneously bind LRP6 and

presumably recruit FZD into the complex. With increased

understanding of the different Wnt isoforms mediating prolifera-

tion, cell fate specification, and stem cell self-renewal in different

cancer types and developmental processes, antibodies targeting

different regions of LRP6 may prove to be effective agents for

selectively modulating these processes.

Results

Isolation of Wnt Antagonist and Potentiating LRP6
Monoclonal Antibodies

To develop candidate therapeutic molecules to manipulate Wnt

signaling, we generated antibodies that can either inhibit or

enhance signaling induced by Wnt3a protein. We used recombi-

nant LRP6 E1-E2-Fc and E3-E4-Fc proteins to select from human

synthetic antibody phage libraries and confirmed binding of

isolated phage clones to LRP6 by ELISA and FACS [20]. Twenty-

four unique antibody heavy chain clones against LRP6 E1-E2 and

22 unique clones against E3-E4 were reformatted and expressed as

full-length human IgG1 antibodies. In luciferase reporter gene

assays, six of the LRP6 E3-4 (Figure 1A) and none of the E1-E2

antibodies (data not shown) inhibited Wnt3a-induced signaling in

HEK293 cells. The YW211.31 antibody recognizing the LRP6

E3-4 domain is the most potent in inhibiting signaling in Wnt3a-

stimulated HEK293 cells, with an IC50 of approximately 1 mg/ml

(or 6 nM). YW211.31 antibody inhibits Wnt3a-induced LRP6

phosphorylation and b-catenin protein stabilization without

affecting levels of LRP6 protein, similar to purified Wnt-binding

protein Fzd8CRD-Fc [21] and LRP6-binding protein DKK1

(Figure 1B). YW211.31 antibody can also antagonize mouse LRP6

function since it partially inhibits Wnt3a-induced reporter activity

in mouse NIH/3T3 cells and b-catenin protein stabilization in

mouse L cells (data not shown).

YW211.31 antibody has a binding affinity of about 2 nM by

surface plasmon resonance (SPR) and 0.6 nM by Scatchard

analysis. To improve affinity and potential potency of YW211.31

antibody, the clone was affinity-matured using His-tagged LRP6

E3-E4 protein and CDR combinatorial libraries in which selected

CDR residues were targeted for randomization. Four phage clones

showing the most improved affinity by phage competition ELISA

were reformatted and expressed as full length human IgGs. The

dissociation rate constants of all four affinity-matured IgGs were

decreased, leading to improved affinities for the best two antibodies,

YW211.31.57 and YW211.31.62, of KD 0.27 and 0.17 nM,

respectively. YW211.31.57 and YW211.31.62 also show improved

potency in inhibiting signaling in Wnt3a-stimulated HEK293 cells,

with IC50 values of approximately 0.1 mg/ml (0.6 nM).

None of the antibodies isolated in the screen activated signaling in

HEK293 cells in the absence of stimulation with exogenous Wnt3a

protein, however five of the LRP6 E1-E2 and two of the E3-E4

antibodies potentiated Wnt3a-induced signaling at least 2-fold. In

mouse NIH/3T3 cells, YW210.09, an E1-E2 antibody, also

potentiated Wnt3a-induced signaling at least 1.5-fold, indicating

that it also recognizes mouse LRP6 (data not shown). In HEK293

cells, the magnitude of enhancement of Wnt3a-induced signaling by

YW210.09 antibody is proportional to Wnt3a concentration

(Figure 1C). YW210.09 antibody interacts with human LRP6 E1-

E2 protein with a KD of 5 nm as measured by SPR analysis. ELISA

testing shows that all antagonist and potentiating antibodies

specifically bind only the LRP6 protein fragment employed for

their isolation, and none recognize both E1-E2 and E3-E4. FACS

analysis indicates that soluble LRP6 E1-E4 protein efficiently and

completely blocks binding of YW211.31.57 and YW210.09 to

HEK293 cells, suggesting that these antibodies do not recognize

other cell surface proteins (Figure S1).

Effects of LRP6 Monoclonal Antibodies on Autocrine Wnt
Signaling

We next determined whether the LRP6 antibodies could

antagonize or potentiate endogenous, or autocrine, Wnt signaling

detected in a variety of tumor cell lines [21–23]. In teratocarci-

noma cell lines PA-1 and NTERA-2, YW211.31 antibody inhibits

reporter activity induced by autocrine Wnt signaling (Figure 1D)

with similar potency to that observed with exogenous Wnt3a (data

not shown). In PA1 cells, inhibition of Wnt signaling by YW211.31

antibody is also observed for expression of endogenous Wnt target

genes (Figure 1E). The antibody partially inhibits expression of

SAX1, GAD1, and APCDD1 that is either induced by exogenous

Wnt3a protein or maintained by endogenous, autocrine Wnt

signaling. Conversely, repression of LEFTY2 expression by either

Wnt3a protein or autocrine Wnt signaling is relieved by

YW211.31 antibody. In contrast, YW210.09 antibody potentiates

both autocrine Wnt signaling (Figure 1D) and Wnt3a-induced

signaling (data not shown) in PA-1 cells by reporter gene assays.

Whereas inhibition of Wnt signaling by YW211.31.57 antibody

increases progressively with greater antibody concentration,

potentiation by YW210.09 and other antibodies decreases at high

antibody concentrations in some cell types, such as PA-1 cells. This

may suggest that antibody-mediated LRP6 dimerization is

Wnts Specify LRP6 mAb Activity
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required for potentiation, since high antibody concentrations

would favor monovalent interactions and thus limit crosslinking of

LRP6 molecules. Treatment of PA-1 cells with a combination of

both YW211.31.57 and YW210.09 antibodies antagonizes both

Wnt3a-induced and autocrine Wnt signaling, similar to the effect

of YW211.31.57 alone (Figure 1D).

Figure 1. LRP6 monoclonal antibodies antagonize and potentiate Wnt3a-induced signaling and teratocarcinoma autocrine Wnt
signaling. (A) Six antibodies against LRP6 E3-E4 protein fragment inhibit in a concentration-dependent manner the Wnt luciferase reporter activity
in HEK293 cells induced with 0.1 mg/ml purified Wnt3a. Error bars of this and all other graphs, except where noted, represent standard deviation of at
least 3 replicate samples. (B) Western analysis of HEK293 cells either unstimulated (2) or induced (+) with Wnt3a and treated with the indicated LRP6
antibody or purified protein. RNAi experiments demonstrate that only the lower molecular weight band recognized by the b-catenin polyclonal
antibody represents b-catenin protein (data not shown). b-actin and GAPDH protein levels are shown as sample loading controls for the upper and
lower gels, respectively. (C) YW210.09 antibody potentiates Wnt reporter gene activity in a manner proportional to Wnt3a concentration in HEK293
cells (NA indicates no addition of Wnt3a or antibody). (D) Concentration-dependent inhibition and potentiation of autocrine Wnt signaling in PA-1
teratocarcinoma cells transfected with luciferase reporters and treated with LRP6 antibodies, either individually or in combination, or with Fzd8CRD-
Fc protein. (E) qPCR expression analysis of Wnt-induced genes SAX1 and GAD1 and Wnt-repressed gene LEFTY2 in PA-1 cells treated with or without
(NA) 0.3 mg/ml Wnt3a protein, and treated with 10 mg/ml YW211.31 antibody, anti-gD monoclonal antibody as a negative control, or Fzd8CRD-Fc
protein as a positive control.
doi:10.1371/journal.pone.0012682.g001

Wnts Specify LRP6 mAb Activity
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To identify additional cell lines that display autocrine Wnt

signaling, we tested cell lines with relatively high expression of

Axin2 mRNA or phospho-LRP5/6 protein for inhibition of Wnt

signaling by Fzd8CRD-Fc protein in Wnt luciferase reporter gene

assays. Nine cell lines exhibited autocrine Wnt signaling that was

inhibited by Fzd8CRD-Fc protein (Figure 2A), including NSCLC

cells NCI-H23 and NCI-H2030 and soft tissue sarcoma cells

SW872 and HT-1080 that have previously been reported to have

endogenous Wnt signaling based on assays with other Wnt

antagonists [23–25]. When signaling was further induced in all

nine cell lines by exogenous Wnt3a protein, YW211.31.57

antibody inhibited this response to Wnt3a (Figure 2A, 2B, 2E,

and 2G). Surprisingly, YW211.31.57 antibody potentiated auto-

crine Wnt signaling in all nine of these cell lines, whereas

YW210.09 potentiated autocrine Wnt signaling in five lines and

inhibited in three lines (Figure 2A–2D, 2F, and 2G). This

reciprocal activity of YW211.31.57 antibody on autocrine and

Wnt3a-induced signaling was observed not only using the

luciferase reporter, but also for expression of endogenous Wnt

target genes such as Axin2 in the six cell lines tested (Figure 2B,

2C, and 2D). In EKVX (Figure 2H) and breast carcinoma

Hs578T (data not shown) cell lines, we confirmed that the increase

in Wnt signaling by YW211.31 antibody was dependent on

autocrine Wnt(s) by demonstrating that this increase is blocked by

Fzd8CRD-Fc protein. Potentiation of autocrine Wnt signaling in

EKVX and Hs578T cells is also observed with the other five

antibody antagonists of Wnt3a-induced signaling identified in the

screen (data not shown).

Reciprocal Activities of LRP6 Antibodies on Different Wnt
Isoforms

Our results show that YW211.31 antibody inhibits signaling

induced by exogenous Wnt3a protein in all cell lines, but can

either inhibit or potentiate autocrine Wnt signaling in a cell line-

dependent manner. This suggests that the specific Wnt isoform

driving the autocrine signal dictates the activity of the antibody.

Therefore, we tested the activity of the antibody on signaling

induced by exogenous expression of Wnt3a and other Wnt

isoforms. Wnt signaling induced by transfection of Wnt3a in either

HEK293 (Figure 3A) or Hs578T (data not shown) cells is inhibited

by YW211.31.57 antibody with similar potency to inhibition of

signaling induced by Wnt3a protein treatment. Importantly, we

found that signaling induced by Wnt1 expression in both cell lines

was potentiated by YW211.31.57 antibody, whereas both Wnt1

and Wnt3a signaling are inhibited by Fzd8CRD-Fc protein as

expected. Potentiation of Wnt1 signaling was also observed with

the other Wnt3a antagonist antibodies identified in the screen

(data not shown). YW210.09 antibody also displayed opposing

activities against Wnt3a- and Wnt1-induced signaling, which were

the reciprocal of YW211.31.57 activities; i.e., potentiation of

Wnt3a and inhibition of Wnt1 signaling (Figure 3A). YW210.09

antibody also inhibits endogenous Wnt1 signaling in cultured

tumor cells grown from MMTV-Wnt1 tumors, as observed by

reduced expression of Wnt target genes Axin2 and Mmp7 to a

similar extent as Fzd8CRD-Fc protein treatment (Figure 3B). In

MMTV-Wnt1 cells, YW211.31.57 antibody failed to potentiate

Wnt1 signaling, possibly because Wnt1 signaling is already

maximal in these cells.

Having demonstrated that YW211.31.57 and YW210.09

antibodies have reciprocal activities on Wnt signaling initiated

by Wnt3a and Wnt1, we extended this analysis to the additional

11 of 19 Wnt genes that induce the luciferase reporter greater than

two-fold in HEK293 cells (Figure 3C). Only Wnt3a and Wnt3

activities are inhibited by YW211.31.57 antibody, and both are

potentiated by YW210.09. Seven Wnt isoforms in addition to

Wnt1 are potentiated by YW211.31.57 and inhibited by

YW210.09. A third class of Wnt isoforms (Wnt7a, 7b, and 10a)

exhibit signaling activity that is not inhibited by either antibody

but is potentiated by at least YW211.31.57. In Hs578T cells

transfected with different Wnt isoforms, the antibodies display

most of these same activities. In particular, YW211.31.57 inhibits

Wnt3a and Wnt3 and potenitates all 11 of the other Wnt isoforms

that induce the luciferase reporter at least two-fold. YW210.09

also potentiates Wnt3 and Wnt3a in Hs578T cells, as well as

inhibits 5 of the 7 Wnt isoforms that are antagonized in HEK293

cells and can be tested in Hs578T cells. The other two Wnt

isofoms in this class, Wnt8a and Wnt9b, are not significantly

affected by YW210.09 antibody in Hs578T cells. Since RNAi

experiments indicate that Wnt3a signaling is transduced by both

LRP6 and LRP5 in Hs578T cells, but only by LPR6 in HEK293

cells (data not shown), Wnt8a and Wnt9b might signal primarily

through LRP5 in Hs578T cells. Similar to HEK293 cells, Wnt

isoforms in the third class are not inhibited by either antibody in

Hs587T cells, and we can add to this class Wnt4, which did not

induce signaling in HEK293 cells. Only the activity of Wnt7b in

this class behaves differently in that YW210.09 antibody

potentiates its signaling in Hs578T but not HEK293 cells. In

contrast to the Wnt isoform-specific activities of YW211.31.57 and

YW210.09 antibodies, Fzd8CRD-Fc protein can potently inhibit

the activity of all Wnts tested except Wnt6 and Wnt9b in HEK293

cells.

In Hs578T cells, YW211.31.57 and YW210.09 antibodies

potentiate both autocrine Wnt signaling and signaling induced by

expression of Wnt4, Wnt7a, and Wnt7b. Thus these three Wnt

isoforms are candidates for those that drive autocrine signaling in

Hs578T cells. Multiple siRNAs against Wnt7b, but not the other

Wnt isoforms, inhibit autocrine signaling in Hs578T cells,

identifying the specific Wnt protein mediating signaling (Figure

S2C). Since autocrine Wnt signaling in PA-1 cells is inhibited by

YW211.31.57 antibody and potentiated by YW210.09, Wnt3 or

Wnt3a likely activate endogenous signaling in these cells. Indeed,

siRNAs against Wnt3 but not Wnt3a inhibit autocrine Wnt

signaling in PA-1 cells (Figure S2A). In NCI-H23 NSCLC cells

and in M14 melanoma cells, potentiation of autocrine Wnt

signaling by YW211.31 antibody and antagonism by YW210.09

are consistent with Wnt2 RNAi inhibiting endogenous signaling in

NCI-H23 cells [23], and with endogenous Wnt1 expression in

M14 cells [35]. Using multiple siRNAs, we confirm that Wnt2

expression in NCI-H23 cells (Figure S2D) and Wnt1 in M14 cells

(Figure S2B) are required for autocrine Wnt signaling.

Wnt Isoforms Specify Different Activities of LRP6
Antibodies

Different Wnt isoforms may preferentially bind different FZD

isoforms expressed endogenously in the various cell lines, and

could conceivably account for the differential activities of our

LRP6 antibodies. To examine this possibility, we expressed

chimeric proteins covalently linking different Wnt-FZD pairs to

test whether the specific Wnt or FZD isoform determines the

activity of the LRP6 antibody. Wnt3a or Wnt1 fused to either

FZD4 or FZD5 potently activates Wnt signaling in HEK293 cells

in the presumed absence of endogenous Wnt expression, whereas

overexpression of FZD4 or FZD5 does not induce Wnt signaling

(data not shown). YW211.31.57 antibody inhibits the signaling

activity of Wnt3a fused to either FZD4 or FZD5, and potentiates

the activity of Wnt1 fused to either FZD4 or FZD5 (Figure 3D).

YW210.09 antibody shows the reciprocal activity against the Wnt1

chimeras, inhibiting both. Thus the activity of the antibody

Wnts Specify LRP6 mAb Activity
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Figure 2. LRP6 antibodies can have different effects on autocrine Wnt signaling in other cell lines. (A) Summary table of 11 cell lines
displaying autocrine Wnt signaling inhibited by Fzd8CRD-Fc protein (10 mg/ml), and the effects of LRP6 antibodies on autocrine signaling. The fold
change in autocrine Wnt signaling is highlighted in red or green to indicate inhibition or potentiation, respectively, with p-value ,0.01 by one-way
analysis of variance (ANOVA). Antibodies were used at 10 mg/ml, except for NCI-H358 and HT-1080 cells which were treated with 1 mg/ml

Wnts Specify LRP6 mAb Activity
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correlates with the Wnt isoform, and not the FZD isoform.

Fzd8CRD-Fc protein has no effect on signaling induced by any of

the four Wnt-FZD chimeras, consistent with the chimeras

functioning independently of the FZD-binding site of Wnts.

Expression of chimeras that fuse Wnt1 or Wnt3a to LRP6 induce

Wnt signaling much more potently than LRP6 overexpression (data

not shown). YW211.31.57 and YW210.09 antibodies are not able to

inhibit this induction, consistent with the hypothesis that the

YW211.31.57 or YW210.09 antibody, respectively, to increase potentiation effects. (B) qPCR expression analysis of AXIN2 mRNA in four cell lines
treated with 25 mg/ml YW211.31.57 antibody or Fzd8CRD-Fc protein, with and without (NA) 0.2 mg/ml Wnt3a. (C–D) Expression of Wnt-induced genes
in NCI-H23 (C) and M14 (D) cells is potentiated by YW211.31.57 and antagonized by YW210.09 antibody (30 mg/ml). CD4-Fc protein (30 mg/ml) serves
as a negative controls (C). For M14 cells (D), AXIN2 and SP5 expression is potentiated more potently by Wnt3a protein or YW211.31.57 antibody than
is APCDD1 and ZNRF3 expression. (E–F) In Hs578T cells stably integrated with Wnt luciferase reporter, YW211.31.57 antibody shows concentration-
dependent inhibition of Wnt3a-stimulated signaling (E) and potentiation of autocrine Wnt signaling (F). Fzd8CRD-Fc protein inhibits and YW210.09
antibody potentiates signaling with or without 0.1 mg/ml Wnt3a stimulation. RNAi experiments indicate that at least 41% of Wnt3a-induced signaling
in Hs578T cells is dependent on LPR5 expression (data not shown), and this signaling is predicted to be inhibited by Fzd8CRD-Fc protein but not
YW211.31.57 antibody. In this experiment, SV40-driven luciferase was not transfected for normalization and, instead, antibody and protein treatments
were independently confirmed to have no significant effect on viability of this cell line. (G–H) EKVX cells transfected with Wnt luciferase reporter also
display potentiation of autocrine Wnt signaling (NA) and antagonism of Wnt3a-induced signaling by YW211.31.57 antibody. Antibody-mediated
potentiation of autocrine Wnt signaling is inhibited by 5 mg/ml Fzd8CRD-Fc protein (H).
doi:10.1371/journal.pone.0012682.g002

Figure 3. Wnt isoforms specify inhibitory or potentiating activities of LRP6 antibodies. (A) YW211.31.57 antibody antagonizes Wnt3a-
induced signaling and potentiates Wnt1-induced signaling, whereas YW210.09 antibody exhibits reciprocal activities. HEK293 cells stably integrated
with Wnt and SV40 luciferase reporters were transfected with Wnt3a, Wnt1, or empty vector expression constructs and treated with monoclonal
antibodies (mAb). (B) Treatment of cultured cells from mouse MMTV-Wnt1 allograft tumors with 10 mg/ml YW210.09 antibody inhibits expression of
Wnt target genes Axin2 and Mmp7, as does 10 mg/ml Fzd8CRD-Fc protein. (C–E) Summary tables of the effects of 10 mg/ml LRP6 antibodies, antibody
combinations (E), and Fzd8CRD-Fc protein on signaling induced by transfection of expression constructs for Wnt isoforms (C, E) or chimeric proteins
fusing Wnt isoforms to FZD isoforms or LRP6 (D) in HEK293 (C–E) or Hs578T (C) cell lines stably integrated with Wnt luciferase reporters. Expression of
Wnt luciferase reporter is normalized to cell number and additionally normalized to levels in cells transfected with the same expression construct but
not treated with proteins. The fold change in Wnt signaling is highlighted in red or green to indicate inhibition or potentiation, respectively, with p-
value ,0.01 by ANOVA. Gray fields indicate conditions that were not tested because Wnt induction was not significant.
doi:10.1371/journal.pone.0012682.g003

Wnts Specify LRP6 mAb Activity
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inhibitory function of the antibodies is dependent on blocking Wnt

binding to LRP6 (Figure 3D). It is not clear why the activity of the

Wnt-LRP6 chimeras are also largely insensitive to potentiation of

Wnt signaling by the antibodies, nor why the Wnt3a-LRP6 fusion is

insensitive to Fzd8CRD-Fc inhibition. The lower level of signaling

induced by LRP6 overexpression is weakly affected by

YW211.31.57 and YW210.09 antibodies, suggesting that a

normally undetectable level of endogenous Wnt signaling in

HEK293 cells has been amplified.

Antibody-mediated Potentiation of Wnt Signaling
Involves LRP6 Dimerization

Potentiation of autocrine Wnt signaling by YW211.31 antibody

requires avidity effects, presumably through LRP6 dimerization. A

monovalent recombinant one-armed YW211.31.62 antibody

(Figure 4A–4C) and the Fab fragment of YW211.31.62 (data not

shown) exhibit no potentiation of autocrine Wnt signaling in

EKVX and Hs578T cells at concentrations that inhibit Wnt3a-

induced signaling in these cell lines. In contrast, the one-armed

YW211.31 antibody and Fab fragment inhibit both autocrine Wnt

and Wnt3a-induced signaling in the PA-1 cell line with similar

potency to the intact IgG antibody (Figure 4D). As expected, the

YW211.31.57 whole antibody, but not the one-armed antibody, is

able to induce aggregation of differentially tagged LRP6 proteins

at the surface of HEK293 cells (Figure S3).

To test whether crosslinking of the one-armed YW211.31

antibody would restore the Wnt potentiation function of the whole

IgG molecule, we used the HT-1080 cell line that exhibits autocrine

Wnt and Wnt2-induced signaling potentiated by YW211.31.57

antibody (Figure 4E and 4F). The one-armed YW211.31 antibody

has no effect on autocrine Wnt signaling or signaling induced by

Wnt2 transfection. HT-1080 cells also display Apomab antibody-

induced apoptosis that is enhanced by Fc crosslinking (Figure S4)

[26]. Under crosslinking conditions with anti-Fc antibodies that

augment Apomab-mediated apoptosis, we find that crosslinking of

the one-armed antibody partially reconstitutes the potentiation of

both autocrine Wnt and Wnt2 signaling observed with the

YW211.31.57 whole antibody (Figure 4E and 4F).

Inhibiting the activity of extracellular LRP6 antagonists such as

DKK1 can also potentiate Wnt signaling [27]. Exogenous DKK1

protein partially inhibits Wnt1-induced signaling in HEK293 cells,

and YW211.31.57 antibody can neutralize this antagonism and

even weakly potentiate signaling at high enough concentration in

the presence of DKK1 protein (Figure 4G). In contrast, one-armed

YW211.31 antibody only very weakly and partially counteracts

DKK1 antagonism of Wnt1 signaling at these same concentra-

tions. YW211.31.57 whole antibody effectively antagonizes DKK1

activity at all DKK1 concentrations tested, whereas the one-armed

antibody has minimal or no effect even at low DKK1

concentration. While we have not demonstrated that that

endogenous DKK1 is present and active in HEK293 cells, the

potent antagonism of exogenous DKK1 activity observed with the

whole but not the one-armed YW211.31 antibody may contribute

to the Wnt-potentiating activity specific to the whole antibody.

Alternatively, since DKK1 protein was not able to inhibit

completely the Wnt1-induced signaling in this assay, it is also

possible that the intact YW211.31 antibody simply potentiates the

remaining signal through LRP6 dimerization.

Wnt Signaling Antagonism Predominates in LRP6
Antibody Combinations

Collectively, our results suggest that Wnt3a and Wnt3 bind

within the E3-E4 region of LRP6 and are inhibited from binding

by YW211.31.57 antibody. Wnt isoforms in the Wnt1 class are

predicted to bind the E1-E2 region, and this binding may be

blocked by YW210.09 antibody. In this model, potentiation of

Wnt signaling would occur when both a Wnt isoform and an

antibody are able to bind the same LRP6 molecule, presumably

requiring recruitment of FZD by the Wnt and LRP6 dimerization

by the antibody. This model predicts that the combination of both

antibodies would inhibit signaling induced by either class of Wnt

isoforms since, although LRP6 dimerization would likely still

occur, Wnt binding would be blocked by one or the other

antibody. As predicted, treating HEK293 cells simultaneously with

YW211.31.57 and YW210.09 antibodies inhibits signaling initiat-

ed by expression of either Wnt3a or Wnt1 (Figure 5A). We

extended this analysis to three other Wnt isoforms in the Wnt1

class and found that the combination of YW211.31.57 and

YW210.09 antibodies inhibits Wnt signaling to a similar extent as

YW210.09 alone (Figure 3E). When both Wnt3a and Wnt1 are

expressed simultaneously, neither antibody antagonizes Wnt

signaling, but the combination of both antibodies does inhibit

signaling (Figure 5A). This result can be explained if each antibody

inhibits binding of only one Wnt isoform, and both antibodies are

able to bind LRP6 molecules simultaneously to block both Wnt

binding sites.

Wnt isoforms in the third class (Wnt7a, 7b, and 10a) that are not

antagonized by YW211.31.57 or YW210.09 antibody might bind

to a site on LRP6 not blocked by either antibody or, alternatively,

they may have the ability to bind to either of the Wnt-binding sites

defined by the antibodies. For each of these Wnt isoforms, the

combination of both antibodies also does not inhibit their

signaling, but rather potentiates or does not affect their activity,

suggesting that these Wnt isoforms can bind a site that is distinct

from the YW211.31.57 and YW210.09 epitopes (Figure 3E).

The observed activities of the YW211.31.57 and YW210.09

antibody combination on Wnt signaling induced by exogenous

Wnt isoforms also extend to endogenous, autocrine Wnt signaling.

In PA-1 (Figure 1D) and Ntera-2 (data not shown) cell lines, in

which YW211.31.57 antibody inhibits and YW210.09 potentiates

autocrine Wnt signaling, the antibody combination inhibits

signaling. In Hs578T and EKVX cells, where both antibodies

potentiate autocrine Wnt signaling, the antibody combination also

potentiates (Figure 5B and 5C).

LRP6 Antibodies Differentially Inhibit Wnt Binding to
Multiple Sites

The reciprocal activities of the two LRP6 antibodies suggest that

YW211.31.57 and YW210.09 interact with distinct Wnt binding

sites on LRP6, and that Wnt binding was competed by the

antagonist antibody but allowed by the potentiating antibody.

Bourhis et al. (2010) previously developed a biolayer interferometry

assay that measures purified Wnt proteins binding to purified,

immobilized LRP6 extracellular domain protein fragments [14].

This assay demonstrated that Wnt3a binds to the E3-E4 region of

LRP6, where the epitope for YW211.31.57 antibody resides, and

Wnt9b (in the same class as Wnt1 for antibody interactions) binds

only to the E1-E2 region, where YW210.09 antibody also binds.

Here we show that YW211.31.57 antibody, but not YW210.09,

inhibits binding of Wnt3a to the LRP6 E1-E4 protein fragment

(Figure 6A). Conversely, YW210.09 but not YW211.31.57 inhibits

Wnt9b binding to E1-E4 (Figure 6B). Antibody-mediated

inhibition of Wnt binding can also be detected using the smaller

Wnt-binding fragments, E3-E4 for Wnt3a and E1-E2 for Wnt9b

(Figure 6C and 6D). The one-armed YW211.31 antibody can also

inhibit Wnt3a binding to the E3-E4 fragment (Figure 6C). Also,

YW211.31.57 and YW210.09 can be bound sequentially to LRP6
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Figure 4. LRP6 antibody bivalency mediates potentiation of Wnt signaling. (A–D) One-armed (OA) YW211.31 antibody retains inhibitory
activity similar in potency to the whole IgG against Wnt3a-induced signaling in Hs578T cells stably integrated with Wnt luciferase reporter (B) and
against autocrine Wnt signaling in PA-1 cells transfected with reporter (D). The one-armed antibody lacks the potentiating effect of the intact
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E1-E4 protein without competition and when added in either

order (Figure 6E). Competition for binding between YW211.31.57

antibody and only Wnt3a, and between YW210.09 and only

Wnt9b, at different sites on LRP6 protein correlate with the

inhibitory activity of each antibody against signaling by a specific

Wnt isoform.

Bourhis et al. (2010) showed by biolayer interferometry that

purified DKK1 protein could bind both E3-E4 and E1-E2

fragments of LRP6, and that this interaction could inhibit binding

of Wnt3a and Wnt9b to these respective protein regions [14]. We

find that YW211.31.57 and YW210.09 antibodies can each inhibit

DKK1 binding to LRP6 E1-E4 protein (Figure 6F). As expected,

YW211.31.57 antibody also inhibits DKK1 binding to LRP6 E3-

E4 protein, and YW210.09 antibody blocks binding of DKK1 to

the E1-E2 fragment (data not shown). The one-armed YW211.31

antibody fully retains this inhibitory activity, even though it cannot

potentiate Wnt signaling nor significantly antagonize exogenous

DKK1 activity on Wnt signaling in cells. This result suggests that

the ability to block DKK1 binding to LRP6, at least in vitro, does

not contribute significantly to antibody-mediated potentiation of

Wnt signaling, or to antagonism of DKK1 activity. Rather,

dimerization of coreceptor that is also able to bind Wnt primarily

mediates both these activities.

LRP6 Antibodies are Active on Wnt-driven Tumors and
Bone Formation

To begin to explore the anti-tumor therapeutic efficacy of the

LRP6 antibodies, we treated two models of Wnt ligand-driven

tumors, MMTV-Wnt1 transgenic mammary tumor allografts

dependent on Wnt1 expression and Ntera-2 human teratocar-

YW211.31.57 antibody on autocrine Wnt signaling in Hs578T (A) or EKVX (C) cells. (E–F) Crosslinking of the one-armed YW211.31 antibody partially
restores the potentiating activity observed with the whole antibody in HT-1080 cells for both autocrine Wnt signaling (F) and signaling induced by
Wnt2 transfection (E). Similar results are observed with crosslinking by either the whole IgG or F(ab9)2 fragments of anti-human-Fc antibodies (NA
indicates no crosslinking antibody added). All antibodies were used at 1 mg/ml. (G) HEK293 cells stably integrated with Wnt luciferase reporter were
transfected for Wnt1 expression and treated with either 0.4 mg/ml DKK1 protein and increasing concentrations of YW211.31 intact or one-armed
antibody, or with 10 mg/ml antibody and increasing concentrations of DKK1. Single-protein control treatments use 10 mg/ml antibody, 0.4 mg/ml
DKK1, or 10 mg/ml Fzd8CRD-Fc. Wnt luciferase units were normalized to total protein concentration of the lysate, and additionally normalized to
signal in cells not transfected for Wnt1 expression.
doi:10.1371/journal.pone.0012682.g004

Figure 5. LRP6 antibody combinations can inhibit signaling induced by multiple Wnt isoforms. (A) The combination of YW211.31.57 and
YW210.09 antibodies inhibits signaling in HEK293 cells stably integrated with Wnt luciferase reporter that have been transfected with expression
constructs for either Wnt3a, Wnt1, or both Wnt3a and Wnt1. All antibodies and proteins were used at 10 mg/ml each. Treatment with either
YW211.31.57 or YW210.09 antibody does not significantly change the level of signaling induced by the combination of both Wnt isoforms, possibly
because signaling by one Wnt is antagonized while the other Wnt is potentiated. (B–C) As with individual antibody treatments, the combination of
YW211.31.57 and YW210.09 antibodies potentiates autocrine Wnt signaling in Hs578T (B) or EKVX (C) cells.
doi:10.1371/journal.pone.0012682.g005
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inoma xenografts driven by autocrine Wnt signaling of an

unknown Wnt isoform [21]. For MMTV-Wnt1 tumors, rapid

and sustained tumor regression was observed with YW210.09

antibody treatment, similar to Fzd8CRD-Fc protein, whereas no

effect on tumor growth was evident with YW211.31.57 antibody

(Figure 7A). These results are consistent with the antibody effects

described above on Wnt target gene expression for MMTV-Wnt1

tumor cells treated in tissue culture.

For Ntera-2 xenograft tumors, RNA extracted from tumors

treated with antibodies YW211.31.57, one-armed YW211.31, or

the combination of YW211.31.57 and YW210.09 reveals reduced

expression of Wnt target gene SP5 to 41–57% the level of PBS-

treated tumors, whereas Fzd8CRD-Fc protein treatment reduced

SP5 expression to 8.0% (Figure 7B). Axin2 expression was reduced

to only 56% by Fzd8CRD-Fc, and no significant changes in Axin2

expression were detected with any of the antibody treatments (data

Figure 6. LRP6 antibodies block binding of Wnt isoforms to different sites. (A, B) Biolayer interferometry with biotinylated LRP6 E1-E4
protein immobilized on Streptavidin biosensors indicates that YW211.31.57 antibody inhibits binding of Wnt3a, but not Wnt9b, protein to LRP6 (A),
and YW210.09 antibody inhibits only Wnt9b binding (B). Antibody binding to LRP6 protein was allowed to reach equilibrium, and the subsequent
wavelength shift in the interference pattern is shown for association and dissociation phases of Wnt protein binding. (C, D) Smaller, non-overlapping
fragments of LRP6 separate the binding of different antibodies and Wnt isoforms. Wnt3a binds to the E3-E4 region, and this interaction is blocked by
either the intact or one-armed (OA) YW211.31 antibody (C). YW210.09 antibody binds the LRP6 E1-E2 protein fragment and competes with Wnt9b
binding (D). (E) YW211.31.57 and YW210.09 antibodies can bind together to immobilized LRP6 E1-E4 protein when added sequentially in either order,
confirming separate epitopes. (F) When either of these antibodies, or the one-armed YW211.31 antibody, is bound to LRP6 E1-E4 protein, DKK1
protein binding to LRP6 is antagonized.
doi:10.1371/journal.pone.0012682.g006

Figure 7. Wnt-driven signaling and growth in tumors, and mineral density in bone, are modulated by specific LRP6 antibodies. (A)
MMTV-Wnt1 allograft tumors show regression of growth when mice are treated with YW210.09 antibody, similar to that observed with Fzd8CRD-Fc
protein. YW211.31.57 antibody did not alter tumor growth under these conditions compared to control buffer (PBS) or anti-gD antibody treatment.
Mice were administered 30 mg/kg of antibody or protein every two days (arrowheads). (B) Ntera-2 xenograft tumors display reduced expression of
SP5 mRNA by qPCR analysis in mice treated with intact or one-armed (OA) YW211.31 antibody, but not with YW210.09 antibody. SP5 mRNA levels
were normalized to GAPDH mRNA levels within the same tumor, and additionally normalized to PBS-treated tumors. All treatments except YW210.09
display p-value ,0.005 by ANOVA compared to PBS control. (C) YW210.09, but not YW211.31.62, antibody treatment of mouse calvaria explants in
culture significantly increases bone mineral density (BMD) of calcified parietal bone, similar to treatment with RANK-Fc protein. All treatments were
10 mg/ml antibody or protein for 7 d. Data points represent eight calvaria halves from four mice for each treatment group; mean and standard error
of the mean are shown as horizontal and vertical lines, respectively. Only YW210.09 and RANK-Fc treatments differ significantly from untreated
samples with p-values less than 0.01 and 0.05, respectively, by Dunnett’s test (,0.05 for both by t-test).
doi:10.1371/journal.pone.0012682.g007
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not shown). YW210.09 antibody treatment did not significantly

affect expression of either SP5 or Axin2. Serum samples assayed

for inhibition or potentiation of Wnt3a-induced signaling in

HEK293 cells confirm that injected antibodies and protein

retained at least some activity in vivo throughout the 16-h exposure

(data not shown).

Since activation or potentiation of Wnt signaling can increase

bone mass by enhancing osteoblast differentiation and function, as

well as by inhibiting osteoclast differentiation indirectly [28], we

tested the activity of LRP6 antibodies on mouse calvarial bones in

organotypic culture. Microdissected calvaria explants were

cultured with antibody or RANK-Fc protein, and then parietal

bone volume and density were analyzed by micro-computed

tomography. Using histogram analysis of control samples, X-ray

attenuation ranges were defined for calcified (bone) and non-

calcified (cartilage) tissues. Treatment with YW210.09 antibody

significantly increased the mean bone mineral density (BMD) of

calcified parietal bone by 7.4%, similar to the 6.8% increase

observed with RANK-Fc treatment to inhibit osteoclast differen-

tiation (Figure 7C) [29]. Treatment with YW211.31.62 antibody

did not significantly change calcified parietal BMD. The volume of

total parietal bone region (calcified and non-calcified) and the

proportion of calcified bone in this region were not significantly

changed by antibody or RANK-Fc treatments, suggesting that

YW210.09 antibody may enhance mineralization without gross

changes in cell proliferation (data not shown).

Discussion

We have identified antibodies against LRP6 that can exert both

antagonist and potentiating activities on b-catenin signaling, and

demonstrate that these activities depend on different interactions

between Wnt isoforms and the coreceptor (Figure 8). Since all

antibodies screened that antagonize signaling in Wnt3a-stimulated

HEK293 cells also inhibit Wnt3a stimulation in all other cell lines

tested, and also inhibit autocrine Wnt signaling in teratocarcinoma

cell lines, it was intriguing that these antibodies potentiate

autocrine Wnt signaling in the other nine cell lines tested. In

addition, the YW210.09 antibody potentiates Wnt3a signaling in

all cell lines tested and enhances autocrine Wnt signaling in 7 cell

lines, but it inhibits endogenous signaling in 3 other lines. We

discovered that introduction of different Wnt isoforms into the

same cell line determines the activity of the LRP6 antibodies, and

that Wnt3a antagonist and potentiating antibodies also have

reciprocal effects on most other Wnt proteins. Based on their

functional interaction with two LRP6 antibodies, the 14 Wnt

isoforms tested can be grouped into three classes: Wnt3 and

Wnt3a are inhibited by YW211.31 and potentiated by YW210.09;

Wnts 1, 2, 2b, 6, 8a, 9a, 9b, and 10b are potentiated by YW211.31

and antagonized by YW210.09; and Wnts 4, 7a, 7b, and 10a are

potentiated by YW211.31 and not inhibited by YW210.09

(Figure 3C). These classifications do not obviously correspond to

the proposed phylogeny of Wnt genes, although the Wnt3/3a

subfamily is the most evolutionarily divergent [30].

Chimeric proteins that constitutively activate signaling by fusing

different Wnt and FZD isoforms confirm that the activities of the

antibodies are determined by the isoform of Wnt, and not FZD.

Chimeric protein fusions of Wnt isoforms with LRP6, but not

FZD, are insensitive to inhibition by the LRP6 antibodies,

suggesting that antagonism may be mediated by blocking ligand-

coreceptor interactions. This is confirmed by binding studies in

vitro for Wnt3a and YW211.31 antibody, which bind competitively

within the E3-E4 region of LRP6, and for Wnt9b and YW210.09

antibody, which compete for binding within the E1-E2 region.

The epitopes of the two LRP6 antibodies each define a binding

site for a different class of Wnt isoforms, one within the E1-E2 and

one within the E3-E4 domain. Our data suggest that there may be

at least a third binding site for Wnt isoforms that are not inhibited

by either antibody or their combination, and it seems likely each of

the four repeat domains binds a different subset of Wnt isoforms.

This modular organization might allow for structural divergence

of different Wnts and their binding sites to accommodate

differential regulation by Wnt-binding and coreceptor-binding

antagonists such as SFRP and DKK protein isoforms, respectively.

Antibody-mediated Wnt potentiation requires coreceptor di-

merization, since one-armed and Fab antibody formats fail to

enhance Wnt signaling unless crosslinked. In addition, our cell-

based and biochemical data indicate that Wnt binding to

crosslinked LRP6 is also necessary for potentiation of signaling,

presumably reflecting a requirement for Wnt-mediated recruit-

ment of FZD into the complex. A small fraction of overexpressed

LRP6 can be identified as a homodimer at the cell surface, and

dimerization requires the extracellular domain, however it is

not clear whether this contributes to either Wnt-dependent or

-independent b-catenin signaling induced by LRP6 overexpression

[18]. Deletion of the LRP6 extracellular domain potently activates

signaling in a Wnt-independent manner, and forced extracellular

dimerization of this recombinant protein by different methods can

either enhance or inhibit this activity [18,19]. Wnt induces LRP6

aggregation and phosphorylation at the plasma membrane that

both require the homo-oligomerization function of intracellular

DVL protein [7]. These large aggregates also contain Axin and

GSK3, and likely inhibit b-catenin degradation. It will be

interesting to determine whether LRP6 dimerization by antibodies

or other extracellular agents facilitates the aggregation function of

DVL, and whether coreceptor dimerization normally plays a

functional role in Wnt signaling.

LRP6 antibodies might also potentiate Wnt signaling by

inhibiting binding of antagonists such as DKK isoforms and

SOST. We show that YW211.31 antibody can antagonize the

activity of exogenous DKK1 protein, and that the one-armed

YW211.31 antibody, which does not potentiate Wnt, retains only

very weak DKK1 antagonism. However, both the whole IgG and

the one-armed antibody show potent and similar activity in

blocking DKK1 binding to LRP6 protein in vitro. Since antibody

inhibition of DKK1 interaction with LRP6 does not necessarily

confer Wnt potentiating activity, and DKK1 antagonism seems to

require LRP6 dimerization, the inhibition of DKK1 activity is

likely mediated predominantly by potentiation of residual signaling

from Wnt bound to coreceptor. Two other groups have reported

identification of LRP6 antibodies that bind the E1-E2 domains

and potentiate Wnt3a signaling, although they did not test effects

on signaling induced by other Wnt isoforms [31,32]. Analogous to

YW211.31 antibody, one of these antibodies inhibits exogenous

DKK1 antagonism of Wnt3a signaling, and also blocks DKK1

binding to LRP6 in vitro [31]. A Fab fragment of this antibody fails

to potentiate Wnt3a signaling and antagonizes exogenous DKK1

activity much less potently. Apparently, inhibition of DKK1

binding to LPR6 within the E1 domain, recognized by this

antibody, or the E3-E4 domain, bound by YW211.31 antibody,

contributes only weakly to the antagonism of DKK1 activity by

these antibodies.

In Wnt-driven xenograft and allograft tumor models, the LRP6

antibodies inhibit Wnt signaling and tumor growth in a Wnt

isoform-specific manner predicted by their properties character-

ized in cell culture. It is not clear why we failed to observe

enhancement of signaling or growth in tumors by the antibodies,

and it is possible in the MMTV-Wnt1 model that Wnt signaling
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levels are already maximal. We did detect a significant increase in

bone mineral density in the calvaria explant model with

YW210.09 antibody, and it will be important to confirm that this

is mediated by potentiation of Wnt signaling in osteoblasts. While

b-catenin dependent Wnt signaling is known to be required for

intramembranous ossification of skull bones during embryogenesis,

A

C

B

YW211 
.31 

Wnt 
1 

LRP6 

Wnt 
1 

FZD FZD 

Potentiated Wnt1 signaling 

YW211 
.31 

LRP6 

Wnt 
3a 

Inactive Wnt3a signaling 

YW211.31 mAb 

OA-YW211 
.31 

LRP6 

Inactive Wnt3a signaling 

Wnt 
3a 

OA-YW211 
.31 

Wnt 
1 

LRP6 

Active Wnt1 signaling 

FZD 

One-armed YW211.31 mAb 

LRP6 

Active Wnt3a signaling 

Wnt 
3a FZD 

E1 

E2 

E3 

E4 

No mAbs YW211.31 + YW210.09 mAbs 

YW211 
.31 

LRP6 

Wnt 
3a 

Inactive Wnt1 and  
Wnt3a signaling 

YW210.09 

Wnt 
1 

LRP6 

Active Wnt1 signaling 

Wnt 
1 

FZD 

E1 

E2 

E3 

E4 

Figure 8. Model of LRP6 interactions with antibodies and Wnt isoforms. (A–B) Wnt3a and Wnt3 induce signaling by binding the E3-E4
region of LRP6 and recruiting FZD into the complex, whereas Wnt1, Wnt9b, and other Wnt isoforms in this class (Figure 3C) bind the E1-E2 region.
YW211.31.57 and YW210.09 antibodies recognize LRP6 regions E3-E4 and E1-E2, respectively, to inhibit signaling by only the Wnt isoforms that bind
these regions. Both antibodies can bind an LRP6 molecule simultaneously to antagonize signaling in the presence of Wnt isoforms from both classes.
Each antibody can potentiate signaling by the class of Wnt isoforms that bind regions outside its epitope, through crosslinking coreceptors and
allowing Wnt to recruit FZD. (C) A one-armed antibody can inhibit signaling by blocking Wnt binding, but cannot potentiate since it does not
dimerize LPR6.
doi:10.1371/journal.pone.0012682.g008
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the specific Wnt isoforms involved have not been identified,

although exogenous Wnt3a treatment can increase cranial

osteoblast differentiation and enhance bone mineralization

[33,34]. Interestingly, the activities of the LRP6 antibodies on

endogenous Wnt signaling and biological processes can be used to

predict a subset of Wnt isoforms active in specific models and

systems. RNAi of candidate Wnts identifies Wnt1, Wnt2, Wnt3,

and Wnt7b as the specific isoforms mediating autocrine Wnt

signaling in tumor cell lines M14 (melanoma), NCI-H23

(NSCLC), PA-1 (teratocarcinoma), and Hs578T (breast), respec-

tively. While mutations in Wnt genes have been linked to seve-

ral human diseases (http://www.stanford.edu/,rnusse/diseases/

Humangeneticdis.htm), further identification of specific Wnt

isoforms mediating tumorigenesis in different cancer types, skeletal

diseases, and stem cell maintenance will clearly be critical for

realizing the therapeutic potential of Wnt coreceptor antibodies.

With this knowledge, LRP5/6 antibodies and their alternative

formats, including one-armed and bipecific antibodies, may enable

finely tuned antagonism and potentiation of the many tissue-

specific roles that the 19 human Wnt isoforms have evolved to

perform.

Materials and Methods

Ethics Statement
All experiments using mice were approve by the Genentech

Institutional Animal Care and Use Committee (protocol numbers

07-0194G, 09-1648, and TH10-0841).

Cell Culture and Cell Assays
Cell lines EKVX and M14 were obtained from National

Cancer Institute (National Institutes of Health, Frederick, MD)

and grown in RPMI-1640 medium supplemented with 10% fetal

bovine serum and 2 mM glutamine. JHH-1 cells were obtained

from Japan Health Science Foundation (Health Science Research

Resources Bank, Osaka, Japan) and grown in Williams’ Medium E

with the same supplements. All other cell lines were purchased

from American Type Culture Collection (ATCC) and maintained

as recommended.

Luciferase reporter assays were performed as previously

described [21] using TOPglow (Upstate) or TOPbrite [36] firefly

luciferase Wnt reporter, or pRL-SV40 Renilla luciferase (Pro-

mega) plasmid. Cells were treated with antibodies for 16–20 h,

starting 24 h after transfection. Either purified Wnt3a protein was

added to cells starting 1 h after initiating antibody treatment, or

Wnt expression constructs were co-transfected with luciferase

reporters. Firefly luciferase levels were normalized for transfection

efficiency to Renilla luciferase levels, and the relative luciferase

units (RLU) were additionally normalized to the level in cells not

stimulated with Wnt.

HEK293 and Hs578T cell lines stably integrated with TOPbrite

reporter were selected for hygromycin resistance. Expression of

Wnt luciferase reporter was normalized to cell number based on

stably integrated SV40-driven Renilla luciferase for HEK293 cells

or on the MultiTox-Fluor cell viability assay (AFC fluorescence;

Promega) for Hs578T cells.

For quantitative real-time PCR (qPCR) expression analysis,

RNA was isolated from cells using the RNeasy kit (QIAGEN), and

reactions were performed with the TaqMan One-Step RT-PCR

Master Mix Reagents Kit (Applied Biosystems) on the 7900 HT

Fast Real-Time PCR System (Applied Biosystems). Relative RNA

levels were calculated using the DDCt method and normalized to

human GAPDH or mouse Rpl19 RNA levels within the same

sample, and additionally normalized to samples from cells with no

addition (NA) of Wnt3a, antibody, or other proteins. The primer

and probe sets, listed 59 to 39 for forward primer, reverse primer,

and probe sequences, respectively, are SP5: AATGCTGCT-

GAACTGAATAGAAA, AACCGGTCCTAGCGAAAA, CCG-

AGCACTGTTTCAAATCTCCCA; ZNRF3: TGAGAGTGT-

GACATTGTTGGAA, GTAAAATCTGTGTGCAATTATCA-

TGT, AATCATTGAAAATGACTAACACAAGACCCTGTA-

AAT; mouse Mmp7: TGAGGACGCAGGAGTGAA, CCCAG-

AGAGTGGCCAAAT, CCTGTTTGCTGCCACCCATGA. Prim-

ers and probes used for human APCDD1, AXIN2, GAD1, LEFTY2,

and SAX1, and for mouse Rpl19 and Axin2, were previously described

[21,37]. GAPDH primers and probe were purchased from Applied

Biosystems. For reporter gene and qPCR assays, all figures represent

the mean and standard deviation of three or four experimental

replicates.

For Western analysis, 1.26106 HEK293 cells were seeded onto

10-cm dishes and treated 3 days later with 10 mg/ml antibody,

2.5 mg/ml DKK1 (R&D Systems), or 2.5 mg/ml Fzd8CRD-Fc

protein [21] for 1 h before adding 0.2 mg/ml Wnt3a protein for an

additional 1 h. Cells were washed twice with cold PBS and lysed in

0.5 ml SJC lysis buffer [36] on ice. For sequential affinity

purification of LRP6 prior to Western analysis, HEK293 cells

were transfected with 0.33 mg/ml each of LRP6-flag and LRP6-

HA expression constructs using FuGENE 6 reagent (Roche),

treated 1 day later with 1 mg/ml antibody for 1 h on ice, washed

with PBS, and lysed in SJC buffer containing 1% n-dodecyl-b-D-

maltoside (DDM). Cold cell lysate was homogenized by five passes

through a 28-gauge needle and clarified by centrifugation at

25,000 x g for 15 min. EZview Red ANTI-FLAG M2 affinity gel

(60 ml settled resin; Sigma-Aldrich) was added to 500 mg of lysate

protein in 500 ml lysis buffer and rotated overnight at 4uC. Affinity

gel was washed twice in lysis buffer, twice in TBS (10 mM Tris

HCl, 150 mM NaCl, pH 7.4) containing 1% DDM, and subjected

to two sequential affinity elutions, each using 300 ml of TBS

containing 1% DDM and 200 mg/ml FLAG peptide (Sigma-

Aldrich) for 30 min at 4uC. Pooled eluate was combined and

incubated with nProtein A Sepharose and Protein G Sepharose

Fast Flow (25 ml of a 1:1 mix of settled resins; GE Healthcare)

overnight at 4uC. Sepharose was washed three times with TBS

containing 1% DDM, once with TBS, and incubated at 90uC for

10 min in 60 ml NuPAGE LDS sample buffer and sample

reducing agent (Invitrogen). 20 mg of protein, or 20 ml of affinity

purified sample, was electrophoretically resolved on a denaturing

SDS-polyacrylamide gel (4–12%), transferred to nitrocellulose

membrane, and probed with antibodies against phospho- and total

LRP6 (Cell Signaling Technology), b-catenin (BD Transduction

Laboratories), b-actin (Sigma-Aldrich), GAPDH (Millipore), HA

(Covance), and FLAG (Sigma-Aldrich). Proteins were visualized

using infrared labeled secondary antibodies (Rockland Immuno-

chemicals) and Odyssey imager (LI-COR).

For RNAi experiments, ON-TARGETplus double-stranded

siRNA oligomers (Thermo Scientific) were resuspended and used

for 72-hour transfection according to the manufacturer’s instruc-

tions with DharmaFECT 2 reagent at a final dilution of 1:500,

individual siRNAs at 20 nM, and pools of four siRNAs at 80 nM.

Individual control siRNAs used for LRP5, LRP6, and non-

targeting were Thermo Scientific catalog numbers J-003844-06, J-

003845-11, and D-001810-01-05, respectively.

For fluorescence-activated cell sorting (FACS), HEK293 cells

stably integrated for LRP6 expression were harvested in PBS,

washed with PBS containing 5 mM EDTA and 1% fetal bovine

serum, and incubated for 1 h on ice with 0.5 mg/ml primary

antibody, with or without pre-incubation with purified LRP6 E1-

E4-His protein for 1 h, in 96-well format at 500,000 cells per well.
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Cells were washed twice with the same buffer, incubated for 1 h

on ice with 2.5 mg/ml R-phycoerythrin-conjugated anti-human

IgG (Jackson ImmunoResearch Laboratories), washed three times,

and suspended in buffer containing 0.5 mg/ml propidium iodide.

Analysis was performed using a FACS Calibur instrument (Becton

Dickinson) and FlowJo software (Tree Star), using appropriate

gates to exclude cellular debris and aggregates.

Wnt chimera constructs were made by cloning full-length Wnt1

or Wnt3a upstream of full-length FZD4, FZD5, or LRP6 in pRK5

expression vector. The 24-amino acid linker (GGGSGGGT)3 was

inserted between Wnt and FZD or LRP6 sequences [19].

LRP6 Antibody Generation and Testing
Human LRP6 cDNA fragments encoding regions E1-E2 (amino

acids A16-R657) and E3-E4 (amino acids A624-G1254) were

separately cloned into a mammalian expression vector containing

the HSV signal sequence and human IgG Fc region as a protein

tag. LRP6 E1-E2-Fc and E3-E4-Fc proteins were expressed in

CHO cells by transient transfection, purified by Protein A affinity

chromatography, and used individually to screen human synthetic

antibody phage libraries. After selection on immobilized LRP6

protein, phage clones were isolated and confirmed by phage

ELISA for binding to the LRP6-Fc fusion protein fragment and

not anther Fc fusion protein. Phage Fab clones were then

reformatted for expression as human IgG1 monoclonal antibodies.

Twenty-four unique clones against LRP6 E1-E2-Fc and 22 clones

against E3-E4-Fc were transfected and transiently expressed in

HEK293 cells, and IgG protein was purified by affinity

chromatography. Subsequent large-scale antibody preparations

were produced by transient transfection in CHO cells.

For affinity maturation of YW211.31 antibody, three different

combinations of CDR loops (H1/L3, H2/L3, and H3/L3) were

targeted for randomization in separate libraries by soft-random-

izing selected residues. In addition, the L1/L2/L3 CDR

combination was targeted for hard randomization. In the first

round of selection, phage from the randomized libraries were

selected with immobilized LRP6 E3-E4-His protein, followed by

five rounds of solution-phase sorting in which the concentration of

E3-E4-His was gradually reduced from 300 nM to 0.5 nM, and a

100-fold excess of E3-4-Fc protein was added to deplete antibodies

with faster dissociation rates. Eleven phage clones were purified,

and all showed improved affinity for LRP3 E3-E4 as determined

by phage competition ELISA. The sequence of these clones

displayed 1 to 6 amino acid changes in CDR-H1, CDR-H3, and

CDR-L3.

The one-armed YW211.31 antibody variant was produced in E.

coli by co-expressing the YW211.31.62 heavy and light chains with

a truncated Fc domain using ‘knobs-into-holes’ engineering

technology [38]. For antibody cross-linking, Fc-specific goat-anti-

human IgG antibody or F(ab9)2 fragment (Sigma-Aldrich) was

incubated with one-armed YW211.31 or Apomab antibody for 1 h

before adding the mixture to cells.

For binding affinity determination of antibodies, SPR measure-

ment with a BIAcoreTM-3000 instrument was used. To measure

affinity between LRP6 antibodies and LRP6 E1-E2-His protein

(expressed in insect cells) or LRP6 E3-E4-His protein (expressed in

CHO cells), anti-LRP6 human IgG was captured by CM5

biosensor chips coated mouse anti-human IgG to achieve

approximately 100 response units. For kinetics measurements,

two-fold serial dilutions of LRP6 E1-E2-His (250 nM to 3.9 nM)

or E3-E4-His (31.2 nM to 0.49 nM) protein was injected in PBS

with 0.05% Tween 20 at 25uC with a flow rate of 30 ml/min.

Association rates (kon) and dissociation rates (koff) were calculated

using a simple one-to-one Langmuir binding model (BIAcore

Evaluation Software version 3.2). The equilibrium dissociation

constant (KD) was calculated as the ratio koff/kon.

LRP6 Protein Binding Assay
Biolayer interferometry was performed as previously described

[14]. Briefly, biotinylated, His-tagged LRP6 proteins were purified

from baculovirus-infected insect cells using the AviTag system

(GeneCopoeia). Binding kinetics were measured on the Octet

RED System (ForteBio) using Streptavidin High Binding FA

Biosensors loaded with 20 mg/ml LRP6 protein. Carrier-free

purified human Wnt3a and mouse Wnt9b were obtained from

R&D Systems, and purified DKK1 protein was produced as

previously described [14].

Tumor and Bone Studies
Tumors from MMTV-Wnt1 transgenic mice were passaged in

mammary fat pads of C57BL/6 mice, mechanically and

enzymatically dissociated, resuspended in Matrigel and Hank’s

Balanced Salt Solution (HBSS), and injected into the mammary fat

pad of athymic NCr nude mice (Taconic). Treatments were

initiated once tumor volumes reached 250–800 mm3. For each

treatment group, ten mice were administered 30 mg/kg of

antibody or protein intraperitoneally (IP) every two days. Tumor

volume was analyzed using caliper measurement.

Ntera-2 xenograft tumor growth and in vivo studies were

performed as previously described [21]. Briefly, NU/NU athymic

nude mice (Charles River) were injected subcutaneously with 10

million Ntera-2 cells (in 50% Matrigel in HBSS) per mouse,

divided into groups of four or five animals once mean tumor

volumes reached 535–595 mm3, and injected with a single IP dose

of 100 mg/kg antibody or 30 mg/kg Fzd8CRD-Fc protein.

Tumor and blood serum samples were collected 16 h after

treatment. Tumors were homogenized using the TissueLyser

system (QIAGEN), and RNA was extracted using the RNeasy kit

(QIAGEN).

Calvariae were harvested and cultured as described previously

[39]. Briefly, calvariae were dissected from 2-day-old mouse pups,

cut into halves, and separated from dura mater, vessels, and scalp.

Calvariae were cultured in tissue culture plates in BGJb medium

supplemented with 0.1% bovine serum albumin and 100 U/ml

each of penicillin and streptomycin for 1 day before treating with

10 mg/ml antibody or protein for 7 days. The bones were cultured

in a humidified atmosphere of 5% CO2 at 37uC. Mouse calvariae

were imaged with a mCT 40 (SCANCO Medical, Basserdorf,

Switzerland) X-ray micro-computer tomography (micro-CT)

system with the following parameters: X-ray tube energy level of

45 kV, current of 177 mA, integration time of 300 msec, and 2000

projections. Axial images were obtained at an isotropic resolution

of 6 mm. A hydroxyapatite (HA) phantom was used for calibration.

Micro-CT scans were analyzed with Analyze (AnalyzeDirect Inc.,

Lenexa, KS, USA). Maximum-intensity projections and three-

dimensional surface renderings in the transverse plane were

created for each sample. Parietal bone borders were manually

defined within micro-CT images in order to segment the parietal

region. Within this region, sample volume and mean bone mineral

density (BMD) were calculated. A threshold of 0.3 gm-HA/cm3

was applied to the region in order to calculate the mean BMD of

only calcified tissue within the region. The threshold was also used

to calculate percentage calcified volume of the parietal region by

dividing the number of calcified voxels over the total voxels for the

parietal region. The following parameters were analyzed for each

sample: parietal region volume, BMD of calcified voxels of the

parietal region, and parietal region percentage calcified.
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Supporting Information

Figure S1 LRP6 antibodies do not bind additional cell surface

proteins. To block LRP6-dependent binding to live HEK293 cells

stably expressing LRP6, the indicated antibodies were incubated

with different concentrations of purified LRP6 E1-E4 protein and

then used for indirect immunofluorescence flow cytometry. The

relative fluorescence obtained with each antibody in the absence of

competing soluble LRP6 protein was normalized to 100%.

Greater than 50% reduction in cell binding is achieved at a

0.62-fold molar ratio of competing protein to antibody, and over

97% of binding is blocked by 5.6-fold molar excess of soluble

LRP6 protein.

Found at: doi:10.1371/journal.pone.0012682.s001 (0.34 MB EPS)

Figure S2 RNAi of candidate autocrine Wnts identifies isoforms

mediating endogenous signaling in tumor cell lines. (A–D)

Individual and pools of four siRNAs against Wnt isoforms were

transfected into PA-1 (A), M14 (B), Hs578T (C), and NCI-H23 (D)

cell lines stably integrated with Wnt luciferase reporter. Expression

of luciferase is normalized to cell number and additionally

normalized to levels in cells not transfected with siRNA. b-

catenin, LRP6, and LRP5 RNAi, as well as Fzd8CRD-Fc protein

(10 mg/ml) treatment, serve as controls for detection of autocrine

Wnt signaling.

Found at: doi:10.1371/journal.pone.0012682.s002 (0.45 MB EPS)

Figure S3 Whole but not one-armed antibody crosslinks LRP6

at the cell membrane. HEK293 cells transfected for expression of

both flag- and HA-tagged LRP6 were treated with the indicated

antibodies, and LRP6-flag was immunoprecipitated from cell

lysates. After elution, LRP6-flag complexes bound to LRP6

antibodies were affinity purified using Protein A/G resin and

subjected to Western analysis for crosslinked LRP6-HA. As

previously reported [40], the higher-molecular-weight LRP6

species is predominant at the cell surface and accessible to

antibodies. Control lanes represent transfection of empty expres-

sion vector, cell treatment with anti-gD antibody or with no

antibody (NA), and whole-cell lysates (WCL) for LRP6-flag and

-HA transfection or for HEK293 cells stably expressing LRP6-flag.

Found at: doi:10.1371/journal.pone.0012682.s003 (1.23 MB EPS)

Figure S4 Apomab antibody crosslinking induces apoptosis in

HT-1080 cells. We utilized the crosslinking-dependent proapop-

tosis activity of Apomab antibody to optimize experimental

conditions for crosslinking receptors on HT-1080 cells by either

the whole IgG or F(ab9)2 fragment of anti-human-Fc antibodies

(NA indicates no crosslinking antibody added). Results are shown

for 1 mg/ml of all antibodies. Cell viability was monitored after

17 h of antibody treatment using the MultiTox-Fluor assay

(Promega).

Found at: doi:10.1371/journal.pone.0012682.s004 (0.32 MB EPS)

Acknowledgments

We thank Marinella Callow, Andrea Cochran, Xiangnan Du, Joshua

Goldsmith, Ted Lau, David Lawrence, Elizabeth Lewis, Li Miao, Jing

Qing, Chie Sakanaka, and Dan Yansura for technical assistance, reagents

and advice.

Author Contributions

Conceived and designed the experiments: YG EB CC SS VD BYL KP

TCC RADC MJS BR RNH YW PP MC. Performed the experiments: YG

EB CC SS VD BYL KP TCC. Analyzed the data: YG EB CC SS VD BYL

KP TCC RADC MJS BR RNH YW PP MC. Contributed reagents/

materials/analysis tools: CC SS JAE YW. Wrote the paper: MC.

References

1. Grigoryan T, Wend P, Klaus A, Birchmeier W (2008) Deciphering the function

of canonical Wnt signals in development and disease: conditional loss- and gain-
of-function mutations of beta-catenin in mice. Genes Dev 22: 2308–2341.

2. van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling

in development. Development 136: 3205–3214.

3. Tamai K, Semenov M, Kato Y, Spokony R, Liu C, et al. (2000) LDL-receptor-

related proteins in Wnt signal transduction. Nature 407: 530–535.
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