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Abstract

Background: A goal of systems biology is to analyze large-scale molecular networks including gene expressions and
protein-protein interactions, revealing the relationships between network structures and their biological functions. Dividing
a protein-protein interaction (PPI) network into naturally grouped parts is an essential way to investigate the relationship
between topology of networks and their functions. However, clear modular decomposition is often hard due to the
heterogeneous or scale-free properties of PPI networks.

Methodology/Principal Findings: To address this problem, we propose a diffusion model-based spectral clustering
algorithm, which analytically solves the cluster structure of PPI networks as a problem of random walks in the diffusion
process in them. To cope with the heterogeneity of the networks, the power factor is introduced to adjust the diffusion
matrix by weighting the transition (adjacency) matrix according to a node degree matrix. This algorithm is named
adjustable diffusion matrix-based spectral clustering (ADMSC). To demonstrate the feasibility of ADMSC, we apply it to
decomposition of a yeast PPI network, identifying biologically significant clusters with approximately equal size. Compared
with other established algorithms, ADMSC facilitates clear and fast decomposition of PPI networks.

Conclusions/Significance: ADMSC is proposed by introducing the power factor that adjusts the diffusion matrix to the
heterogeneity of the PPI networks. ADMSC effectively partitions PPI networks into biologically significant clusters with
almost equal sizes, while being very fast, robust and appealing simple.
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Introduction

A goal of systems biology is to analyze large-scale molecular

networks including gene expressions and protein interactions,

revealing the relationships between network structures and their

biological functions. Generally it is not feasible to understand the

whole networks as they are. A common way to network analysis is

to partition the network into subnetworks responsible for specific

biological functions. Since biological functions can be carried out

by particular groups of genes and proteins, dividing networks into

naturally grouped parts (clusters or communities) is an essential

way to investigate some relationships between the function and

topology of networks or to reveal hidden knowledge behind them.

Especially, protein-protein interaction (PPI) networks attract

biologists to understand the whole image of cellular systems.

PPI networks can generally be transformed into a graph, where a

node is the molecule and an edge is the interaction. Large size and

high heterogeneity are common features to PPI networks. A few

nodes have very large degrees, while others have very few

interactions. Classical graph-based agglomerative methods employ

a variety of similarity measures between nodes to partition PPI

networks, but they often result in a poor clustering arrangement that

contains one or a few giant core clusters with many tiny ones [1]. To

improve the clustering results, PPI networks were weighted based on

topological properties such as shortest path length [2,3], clustering

coefficients [4], node degree, or the degree of experimental validity

[5]. The problem, however, still remains to be solved.

As a new type of clustering algorithms, the edge-betweenness was

defined as a global measure to separate PPI networks into subgraphs

in a divisive manner [6–9]. Edge-betweenness is the number of

shortest paths between all pairs of nodes that run through the edge.

It is able to identify biologically significant modular structures, but it

requires lots of computation resources. As an approach to

coordination of typical clustering algorithms, an ensemble method

was proposed to combine multiple, independent clustering

arrangements to deduce a single consensus cluster structure [10].

Not only network partition but also extraction of protein

complexes have been performed to analyze PPI networks. To detect

such densely connected subgraphs in them, many algorithms were

proposed. Molecular Complex Detection (MCODE) is based on

node weighting by local neighborhood density and outward traversal

from a locally dense seed protein to isolate densely connected regions
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[11]. The Restricted Neighborhood Search Clustering Algorithm

(RNSC) is a cost based local search algorithm to explore the solution

space to minimize cost function, calculated according to the numbers

of intra-cluster and inter-cluster edges [12]. Spectral analysis was

used to identify protein complexes by investigating the eigenvalues/

eigenvectors of the matrices that express node connectivity [13,14].

Physical model-based algorithms were presented, such as Markov

Clustering (MCL) [15] and Superparamagnetic Clustering (SPC)

[16], to identify densely connected regions. MCL is a fast and

scalable unsupervised clustering algorithm for graphs, controlled by

alternation of two operators: inflation and expansion. SPC is a

hierarchical clustering algorithm inspired from an analogy with the

physical properties of a ferromagnetic model subject to fluctuation at

nonzero temperature. Usually, these algorithms may miss many

peripheral proteins that connect to the core complex clusters with

few links, even though these peripheral proteins represent true

interactions experimentally verified.

Heuristic rule-based algorithms were proposed to reveal the

structure of PPI networks [17,18]. A layered clustering algorithm

was presented, which groups proteins by the similarity of their

direct neighborhoods to identify locally significant proteins that

links different clusters, called mediators [19]. Power graph analysis

transforms biological networks into a compact, less redundant

representation, exploiting the abundance of cliques and bicliques

as elementary topological motifs [20].

Those proposed algorithms were characterized in terms of

many criteria: calculation speed, modularity, cluster size, and

biological significance. On the other hand, interestingly, spectral

clustering analysis, which is an appealing simple and theoretically

sound method [20–24], has hardly been studied to partition PPI

networks, while it is used for detecting protein complexes [25,26].

In this study, to explore a biologically meaningful partition of

PPI networks, we propose a new diffusion model-based spectral

clustering method by introducing a power factor that adjusts the

diffusion matrix to the heterogeneity of PPI networks. It is named

the adjustable diffusion matrix-based spectral clustering

(ADMSC). Discovering cluster structures by random walks on

the diffusion model is attributed to the spectral graph theory that

solves the eigenvectors of Laplacian matrix [27,28].

Methods

ADMSC: Diffusion matrix-based spectral clustering
Spectral analysis is performed for clustering or low dimensional

representation of high dimensional data, based on the eigenvectors

of the graph Laplacian on the data. Spectral analysis can be

interpreted as a diffusion based probabilistic model [27–30]. We

consider the following diffusion process of a particle on an

undirected graph network with n nodes: G(E,N). It can be fully

described by its adjacency matrix A~(Aij) where Aij~1 if there

is an edge between nodes i and j; Aij~0 otherwise. The degree of

node i is denoted by di~
Pn
j~1

Aij , which is the number of

connections of node i.

A particle randomly travels among the sites corresponding to

nodes of the network. If the particle is at site i at time t, it will

move to site j at time tzDt with probability VijDt. The matrix

V~(Vij), called the transition matrix, is defined according to

the network topology. Denoting the probability distribution:

p(t)~(p1(t),p2(t),:::,pn(t))T , where pi(t) is the probability of

finding the particle at site i at time t, we have the master

equation:

d

dt
p(t)~{Cp(t) ð1Þ

where

C~D{V ð2Þ

is the diffusion matrix, and D is a diagonal matrix given by:

Dij~dij

Xn

k~1

Vik dij~
1 if i~j

0 if i=j

�
: ð3Þ

In this study, we propose the following form of transition matrix:

V~D{bA ð4Þ

where D~diag(d1,d2,:::,dn) is the diagonal matrix of node

degrees. A power factor of b is the adjustable parameter that

critically controls clustering results. The introduction of b is the

novel algorithm that enables clear decomposition of a scale-free

network. Note that ADMSC (b= 1) corresponds to the regular

spectral analysis, as illustrated in Table S1. The diffusion matrix

can be symmetrized by the following transformation:

V~Db=2CD{b=2~D{D{b=2AD{b=2: ð5Þ

Let:

q(t)~Db=2p(t), ð6Þ

Eq. (1) becomes:

d

dt
q(t)~{Vq(t): ð7Þ

Suppose the spectral decomposition of V is:

V~
Xn

i~1

liviv
T
i ð8Þ

where li and vi are the eigenvalues and the corresponding

normalized eigenvectors of v, respectively. Since v is symmetric, all

eigenvalues li are real and the eigenvectors are orthogonal:

vT
i vj~dij : ð9Þ

Since det(C{lI)~det(V{lI), V and C have exactly the same

eigenvalues. It can be easily to verify that the eigenvectors of C are

ui~D{b=2vi with corresponding eigenvalues li. The eigenvectors

are orthogonal on Db,

uT
i Dbuj~dij : ð10Þ

The solution of the diffusion equation (1) is:

p(t)~
Xn

i~1

e{li tuiu
T
i Dbp(0): ð11Þ

Since xT Cx~
1

2

X
i,j

Vij(xi{xj)
2, C is positive semidefinite and

thus all its eigenvalues are non-negative. Since each row of C sums
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to 0, the smallest eigenvalue must be 0 and the associated

eigenvector have the same value for its all components. Suppose

the eigenvalues are sorted in ascending order:

0~l1ƒl2ƒ:::ƒln: ð12Þ

Dynamics of particle diffusion
From Eq. (11) we see that when tw1=lk all the modes with

eigenvalues larger than lk vanish quickly. So the eigenvalues are

the vanishing speeds of the associated modes. In the process of

diffusion, the time interval of two sequential modes i and i+1 is

characterized by 1=li{1=liz1. If a value of liz1{li is small, the

two modes disappear almost simultaneously. Therefore, a large

gap in the eigenvalue profile is a characteristic sign of cluster

structure. The larger the gap is, the clearer cluster structure there

is. To reveal the cluster behavior, the slow modes are of interest. If

the expansion of Eq. (11) is truncated at i = k, the result is called a

k-slow-mode approximation. The network can be partitioned by

analyzing the slow modes. The fast modes behave as noises that

distort or blur the cluster structure. Notice that it is harmful to use

more modes than just needed to reveal the best cluster structure.

Geometric representation of diffusion map
Under the slow-mode approximation:

p(t)&
Xk

i~1

e{li tuiu
T
i Dbp(t), ð13Þ

to partition the network according to the k slow modes, we define a

distance measure between the nodes. Consider the initial states

that the walker starts at time 0 from a given site k, i.e., pi(0)~dik.

Denote the probability that the walker is at site i at time t by

pi(t; k), which can be viewed as the response of node i to a

stimulus at node k. Define the diffusion distance between two

nodes i and j as the weighted sum of the squared differences

between the responses of all stimuli [28,31]:

zij(t)~
Xn

k~1

d
{b
k (pi(t; k){pj(t; k))2: ð14Þ

It can be proved:

zij(t)~
Xn

l~1

e{2ll t(uli{ulj)
2: ð15Þ

When approximated with the slowest k modes, the discrepancy

when tR0 is:

zij(0)& xi{xj

�� ��2
, ð16Þ

where

xi~(u2i,u3i,:::,uki)
T ,Vi: ð17Þ

Notice that the first eigenvector u1 is a constant vector, so it does

not contribute to the distance. {xi} of Eq. (17), which is denoted

the diffusion map, can be treated as a geometric representation of

the network in a (k-1)-dimensional space in which the distance

between the representative points is a measure of correlation

between the nodes.

Clustering of a diffusion map
With the help of the geometric representation (Eq. (17)),

clustering can be performed by the k-means algorithm or the

complete linkage method [28,31]. As a quantitative measure of

the similarity between a pair of nodes, angular distance is

employed, which is defined as the angle between the vectors

joining the origin of the (k-1)-dimensional space with the two

points under consideration [32]. This distance is the key metrics

to identify cluster structures in the diffusion map. Other

distances, such as Euclidean distance and Manhattan distance,

lead to generation of giant clusters. All calculations are

performed by Matlab (Table S2, ADMSC.zip). The cluster

number is determined to maximize the modularity in the same

manner as the previous work [33].

Measures for clustering performance
The network partition problem is in general defined as the

division of a network into groups of approximately equal sizes,

minimizing the number of edges between groups. Neither tiny

clusters with one or a few nodes nor a dominant giant cluster are

preferable for network partition. Furthermore, biologically signif-

icant functions should be assigned to each cluster.
Basic measures of identified clusters. To characterize the

basic properties of the clusters generated by ADMSC, the cluster

number, cluster size, and coefficient of variation (CV) of cluster

size are calculated. When k-1 eigenvectors are employed as the

diffusion map, the cluster number is set to k. The cluster size

indicates the number of protein nodes within each cluster. The CV

of cluster size is calculated over all the clusters. A large value of CV

indicates the cluster size is greatly different; a low value of it shows

they are almost the same.
Modularity. The modularity, originally proposed by

Newman and Girvan, is employed to measure the topology-

based modular property [9]. The modularity is defined by:

Modularity~
X

i

fdii{(
X

j

dij)
2g ð18Þ

It uses a k|k symmetric matrix of clusters. Each element dij

represents the fraction of the edges that link nodes between clusters

i and j; each dii presents the fraction of the edges linking nodes

within cluster i.
Cluster mapping score. We test if the clusters estimated

correspond to functional annotations deriving from the Gene

Ontology (GO) Consortium Online Database (http://www.

geneontology.org/). Two vocabularies: cellular component (CC)

and biological process (BP), are used to annotate proteins within

clusters [34] (http://go.princeton.edu/cgi-bin/GOTermFinder).

We remove GO annotations with evidence codes: IEA, RCA, IPI

and ND, and exclude the BP and CC terms that annotate more

than 100 proteins or fewer than three proteins.

Two measures for evaluating clusters: JaccardC measure and

PRC measure, are used that are based on overlaps between the

estimated clusters and the known groups of proteins with

functional annotations [35]. Each measure gives a value in the

range of 0 to 1, where higher values correspond to better

overlaps. Here, let M be the number of clusters given by a

particular clustering and N is the number of groups with respect

to which we evaluate. The Jaccard similarity coefficient is

provided as the size of the intersection over the size of the union.

For sets of proteins corresponding to cluster j and group i, as

Spectral Clustering of PPIs
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follows:

Jacij~
DGi\Cj D
DGi|Cj D

ð19Þ

where Cj is the set of proteins within cluster j and Gi is the set of

proteins associated with group i. The precision-recall (PR)-based

score is presented for the sets of proteins corresponding to cluster

j and group i by:

PRij~
DGi\Cj D

DCj D
DGi\Cj D

DGi D
: ð20Þ

The first (precision) part
DGi\Cj D

DCj D
measures what fraction of the

proteins in the cluster corresponds to the groups. The second

(recall) part measures how much of group i is recovered by

cluster j.

Before calculating the scores for mapping the estimated clusters

on the known functional module groups, we consider the

unclustered proteins as singleton clusters, remove all proteins in

the functional groups that are not included in the network of

interest. The mapping scores for clustering are defined that

measure how well clusters map to known groupings of proteins.

For each cluster Cj , we find the group Gi that maximizes the

overlap between it and cluster Cj , to present:

JaccardCj~ max
i

Jacij for Jaccard measure, ð21Þ

PRCj~ max
i

PRij for PR measure: ð22Þ

For a singleton cluster Cj , JaccardCj~PRCj are set to zero. For

each measure, an average over the clusters, weighted by cluster

size, are used to calculate JaccardC and PRC:

JaccardC~

PM
j~1 DCj DJacCjPM

j~1 DCj D
, ð23Þ

Figure 1. Changes in modularity and CV of cluster size with respect to cluster numbers. The b factor is set to 1 (triangle) or 1.4 (circle) for
ADMSC. The modularity (A, C) and the CV of cluster size (B, D) are calculated at each cluster number. The complete linkage method (A, B) and k-means
method (C, D) are performed in hierarchical and non-hierarchical clustering analyses, respectively.
doi:10.1371/journal.pone.0012623.g001
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PRC~

PM
j~1 DCj DPRCjPM

j~1 DCj D
: ð24Þ

Robustness analysis
Generally PPI data contain experimental errors that cannot be

neglected, false positive and false negative data. The error rate

depends strongly on employed high-throughput methods. To

evaluate the robustness of ADMSC with respect to such data

errors, we randomly perturbed the network topology by

replacement of edges.

Reference clustering algorithms
As reference algorithms, Markov clustering (MCL) and the

shortest path betweenness (SPB) method are employed. MCL

simulates random walks within a graph by alternation of two

operators called inflation and expansion [15]. The MCL algorithm

was compared with other methods RNSC [12], SPC [16,25], and

MCODE [11] by characterizing the resultant clusters with known

annotated complexes [36]. MCL outperformed the other methods

in terms of the correct identification of biologically significant

complexes. Thus, MCL is used for our comparison. SPB is a

divisive algorithm where edge-betweenness is defined as the global

measure that is the number of shortest paths between all pairs of

nodes that run through the edge [8,9]. Edges between modules

tend to have more shortest paths running through them than edges

inside modules, thus show higher betweenness values. The deletion

of edges with high betweenness can separate the network, while

keeping the modular structure intact.

Dataset
A PPI network of Saccharomyces cerevisiae is used as a model [37],

which has 4902 nodes (proteins) and 17246 edges. This network

shows a typical scale-free degree distribution (Figure S1), where

the average values of the node degree and clustering coefficient are

7.04 and 0.126, respectively. In addition, the PPI networks of

Escherichia coli and Caenorhabditis elegans are employed [37]. The

former has 1447 nodes with 5879 edges, a cluster coefficient of

0.195 and an average degree of 8.13; the latter has 2385 nodes

with 3825 edges, a cluster coefficient of 0.126 and an average

degree of 3.21. For checking network maps, they are layouted or

visualized by CADLIVE [38–40].

Results

Cluster number determination
In spectral analysis, the change curve of eigenvalues can

generally be a measure to estimate the number of clusters. In scale

free or heterogeneous networks, however, it is often hard to

identify the cluster number, because there is no great gap between

the neighboring eigenvalues (Figure S2). Thus, the cluster number

is determined that maximizes the modularity. Modularity

maximization is one of the most widely used methods for

community or cluster detection. The modularity and the CV for

cluster size are calculated with respect to the cluster number, as

shown in Figure 1. As a control, the normal spectral analysis

(b= 1) is used. Two typical clustering methods: k-means and

completed linkage method are employed to divide the (k-1)

dimensional diffusion map into k clusters. The modularity shows a

convex curve with the maximum value. In the complete linkage

method, the modularity for b= 1.4 is higher than that for b= 1

below a cluster number of 90 (Figure 1A), although the modularity

for b= 1 is higher than that for b= 1.4 above it. ADMSC with

b= 1.4 provides the highest modularity of 0.502 at a cluster

number of 33. In the k-means method, ADMSC with b= 1.4

shows higher modularity than that with b= 1 below a cluster

number of 99, providing the highest modularity (0.492)

(Figure 1C). As far as the CV of cluster size is concerned, in

both the methods the CVs of cluster size for b= 1.4 are smaller

than those for b= 1. In the complete linkage method, the CVs for

b= 1.4 are greatly suppressed less than 0.6 above a cluster number

of 14, whereas they are not so greatly in the k-means method. This

shows that the complete linkage method can generate the clusters

with a less variation in size. In addition, the calculation speed for

the complete linkage method is 3-fold enhanced than that for the

k-means method (data not shown). Since the complete linkage

method provides higher modularity, higher speed, and less CVs of

cluster size than the k-means method, the complete linkage

method is selected for clustering the diffusion map of the PPI

network. The cluster number is determined as 33, the number that

maximizes modularity.

Figure 2. Effect of the b factor on modularity.
doi:10.1371/journal.pone.0012623.g002

Table 1. Characterization of the performance of ADMSC.

Method Time Modularity
Number of
clusters

CV of
cluster size

ADMSC

(b= 1.0) 125 (sec) 0.436 33 0.83

(b= 1.4) 125 (sec) 0.502 33 0.48

(b= 1.4) 204 (sec) 0.355 319 0.41

(b= 1.4) 1071(sec) 0.227 1233 0.62*1

SPB 23(hour) 0.239 33 4.56

SPB 229(hour) 0.506 319 2.49*2

MCL 1750(sec) 0.275 1233 1.22*3

The inflation parameter of MCL is set to 2. The data *1, *2, and *3 contain 49, 20
and 152 singletons, respectively. The simulations are carried out by CPU Core 2
Duo E6850 (3GHz) with Memory 3.25 Gbyte.
doi:10.1371/journal.pone.0012623.t001
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Next, to demonstrate how a b factor of 1.4 is selected, the effects

of b on the modularity are illustrated in Figure 2, where the cluster

number that maximizes the modularity at each b is plotted with

respect to b. A b factor of 1.4 is shown to maximize the

modularity, which is a reasonable choice for ADMSC.

Characterization of clustering performance in
comparison with other methods

To further demonstrate the feasibility of ADMSC, we compared

its performance with established methods: MCL and SPB, as

shown in Table 1. The cluster number for MCL is uniquely

determined as 1233. The cluster number for SPB is set to 319 that

maximizes the modularity. In addition, SPB is performed at a

cluster number of 33, the optimal number for ADMSC. The

cluster number of ADMSC is set to 33 (optimal number), 319, and

1233, so that ADMSC can be compared with SPB and MCL at

the same cluster numbers.

First, the calculation rates are characterized. SPB needs longer

time than any other methods. SPB is not readily applicable to a

large-scale network with thousands of nodes. ADMSC shows the

highest speed at a cluster number of 33, while the calculation time

required by ADMSC increases with an increase in the cluster

number. The difference in the calculation speed of ADMSC is

caused not by the spectral analysis but by the complete linkage

method. ADMSC is the fastest algorithm for network clustering in

this study.

Second, the CVs of cluster size for ADMSC are less than 1 at

any cluster number and smaller than those for SPB and MCL

(4.56, 2.49 and 1.22), indicating that ADMSC presents the clusters

with approximately same sizes. The distributions for cluster sizes

are illustrated in Figure 3. ADMSC with b= 1.4 partitions the

network approximately equally (Figure 3BCD). SPB provides a

few large clusters with many tiny ones (Figure 3EF). MCL

produces 1233 fine clusters (Figure 3G), which is due to the fact

that MCL is originally designed for detecting protein complexes.

Third, ADMSC with b= 1.4 shows a high modularity of 0.502

at a cluster number of 33. The modularity calculated by ADMSC

decreases with an increase in the cluster number (33, 319, 1233).

SPB provides a high modularity of 0.506 at 319, although it

generates a few giant cluster with many tiny ones (cluster size = 1)

(Table 1). The modularity of ADMSC (33 clusters) is comparable

to that of SPB (319 clusters). The modularity by MCL is rather

low, confirming that MCL is not designed for network partition

but for finding protein complexes.

Finally, to demonstrate how the clusters estimated by ADMSC

overlap the known groups of proteins, we compare the overlap

measures between ADMSC and established methods: MCL and

SPB. The JaccardC and PRC regarding BP and CC groups are

shown in Figure 4. While the perfect consistency between the

topological and biological clusters is not theoretically guaranteed,

it is known that there are correlations between them from

experiences.

The introduction of b= 1.4 increases the JaccardC and PRC

values regarding both the BP and CC groups, compared with the

normal spectral clustering (b= 1), demonstrating that the adjust-

able parameter is effective in enhancing the clustering perfor-

mance. While ADMSC with the optimal cluster number (33)

shows relatively high values of JaccardC and PRC, it presents a

little bit smaller values of them than SPB with the optimal cluster

number (319). The ADMSC-estimated cluster structure may not

be so highly correlated to the GO-based biological modules as the

SPB-estimated one. When the same cluster number (33) is

employed, ADMSC provides higher values of modularity,

JaccardC and PRC than SPB. At a cluster number of 319,

ADMSC also shows higher JaccardC and PRC than SPB,

although the modularity for ADMSC (0.355) is lower than that

for SPB (0.506). It suggests that ADMSC has the potential to

partition a network into biologically meaningful modular struc-

tures and the modularity (a topological measure) does not

necessarily reflect GO-based biological modules. Determination

of the cluster number is suggested to affect the clustering

performance.

Compared with MCL, ADMSC with the optimal cluster

number (33) provides comparable or high values of JaccardC

Figure 3. Distributions of cluster size in a yeast PPI network. Proteins are arranged in both the vertical and horizontal axes in the same turn.
The density of interactions between clusters is marked as the degree of darkness. The size of the squares on the diagonal indicates the cluster size,
and the darkness density shows the interaction strength of the inter- and intra-clusters. The cluster size distributions are calculated by: (A) ADMSC
with b= 1 (regular spectral analysis) at a cluster number of 33, (B) ADMSC with b= 1.4 at a cluster number of 33, (C) ADMSC with b= 1.4 at a cluster
number of 319, (D) ADMSC with b= 1.4 at a cluster number of 1233, (E) SPB at a cluster number of 33, (F) SPB at a cluster number of 319, and (G) MCL
at a cluster number of 1233.
doi:10.1371/journal.pone.0012623.g003

Figure 4. Clustering performance judged by JaccardC and PRC
regarding BP and CC groups. (A) Biological Process groups. (B)
Cellular Component groups. ‘‘c’’ indicates the number of clusters.
ADMSC (control): b is set to one, where the number of clusters is 33
(c = 33). ADMSC (c = 33): b is set to 1.4.
doi:10.1371/journal.pone.0012623.g004
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and PRC. The ADMSC-estimated cluster structure can be more

correlated to the GO-based biological modules than the MCL-

estimated one. On the other hand, when the same cluster number

(1233) is employed, the values of modularity, JaccardC and PRC

for ADMSC are all less than those for MCL. This is because

ADMSC is not designed to find clusters with small size or protein

complexes, differing from MCL.

In summary ADMSC takes an advantage in the fast partition of

PPI networks into biologically significant clusters with approxi-

mately equal sizes. ADMSC is not applicable to finding protein

complexes, but to clear partition of large-scale networks.

Robustness analysis
To characterize the robustness of ADMSC, we randomly

replace 5 to 100 percentages of edges and investigate the change in

modularity, the CV of cluster size and the cluster mapping

measures (JaccardC and PRC), as shown in Figures 5 and 6. The

modularity is not greatly varied with respect to 5 to 20 percentages

of the perturbed edges. The CV of cluster size is not greatly

changed for 5 to 40 percentages of them. The JaccardC and PRC

are robust with respect to 5 to 20 percentages of perturbed edges.

Theses results demonstrate that ADMSC is rather robust with

respect to perturbations, i.e., experimental errors.

Application to other PPI networks
Finally, to demonstrate the applicability of ADMSC, it is

applied to the PPI networks of E. coli and C. elegans, as shown in

Figure 7. The modularity and CVs of cluster size are plotted with

respect to the cluster number. In E. coli, ADMSC with b= 1.4

presents a higher modularity than that with b= 1.0 below a cluster

number of less than 55, while it becomes less than that with b= 1.0

above it. ADMSC with b= 1.4 provides the highest modularity at

a cluster number of 20. The CV of cluster size for b= 1.4 is

suppressed in comparison with that for b= 1.0. In C. elegans,

ADMSC with b= 1.2 provides a higher modularity than ADMSC

with b= 1.0 below a cluster number 65, indicating the highest

modularity at a cluster number of 69. The CV of cluster size for

b= 1.2 is smaller than that for b= 1.0. Use of the b factor takes an

advantage in obtaining the highest modularity and in identifying

the clusters with a small variation in size.

Discussion

It is hard for traditional clustering methods, which employ

similarity measures between a pair of nodes to perform

agglomerative approaches, to partition heterogeneous PPI net-

works into clusters with approximately equal sizes. In this

background, we get insight into the spectral clustering approach

so that it can be available to PPI networks. The clear

decomposition by ADMSC could be attributed to two factors:

the selection of the angular distance between nodes in the diffusion

map and the introduction of the b factor to adjust the spectrums of

eigenvectors to the heterogeneity of the networks.

Angular distance
Generally, the lengths between a pair of nodes are employed as

similarity measures in ordinary clustering. However, use of these

measures leads to identification non-separable giant clusters in PPI

networks. On the other hand, spectral clustering transforms binary

data into the multi-dimensional Euclidean space spanned by

Figure 5. Perturbation analysis for modularity and cluster size calculated by ADMSC. Changes in the modularity (A) and the CV of cluster
size (B) are calculated by ADMSC with respect to perturbed edges in the yeast PPI network. Five, ten, twenty, and forty percentages of edges are
replaced randomly.
doi:10.1371/journal.pone.0012623.g005

Figure 6. Perturbation analysis of JaccardC and PRC for the
clusters estimated by ADMSC. 5–100 percentages of edges are
replaced randomly.
doi:10.1371/journal.pone.0012623.g006
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eigenvectors to illustrate the geometrical (diffusion) map of all the

nodes, thereby enabling use of various distances. A breakthrough

of ADMSC is the use of angular distance that is calculated from

the geometrical map (coordinates) of all the nodes. In the diffusion

map, the nodes seem to exist in a uniform distribution within a

ball, but they are actually distributed along the radial directions

from the original point, forming cluster structure. Such node

distributions can be confirmed by visualizing three-dimensional

diffusion maps of test network models (Figure S3). Therefore, use

of angular distance can divide the network nodes into clusters with

a small variation in size. An understanding of the node distribution

in the diffusion map is critically important for ADMSC.

Power of the b factor
The b factor can be regarded as the unique factor that weights

the network topology according to the node degree. For b= 0 or 1,

ADMSC coincides with the cases considered in the spectral

analysis for the usual or normalized graph Laplacian, respectively

(Table S1). For homogenous networks (random or regular

networks) the diffusion models are insensitive to a change in b

because all nodes have roughly equal degrees. On the other hand,

for highly heterogeneous PPI networks, transformation with the b
factor is effective in adjusting the clustering approach to the

heterogeneity of the networks.

To determine the exact value of b, it is recommended to

systematically search the two parameters of the b factor and cluster

number that provide the highest modularity. The maximization of

modularity is one of widely-used criteria and can be reformulated

as an eigenvector problem of the spectral clustering algorithm

[33,41]. Since ADMSC is a fast and robust algorithm, such a

systematic search is an easy task. Based on the simulations, a

suitable value of b can be from 1 to 2.

Fast, robust, simple algorithm
Here, ADMSC can be compared with the ensemble method,

because the ensemble method is supposed to show high clustering

performance for network partition [10], but it is not used in our

quantitative comparison due to complexity of its procedures. The

ensemble method consists of multiple procedures: weighting an

adjacency matrix, applying multiple base partitioning algorithms

Figure 7. Application of ADMSC to other PPI networks. The modularity (A) and the CVs of cluster size (B) are plotted with respect to cluster
number in Escherichia coli. The modularity (C) and the CV of cluster size (D) are plotted with respect to cluster number in Caenorhabditis elegans.
doi:10.1371/journal.pone.0012623.g007
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to the weighted matrix, and performing principal component

analysis to find the consensus clusters calculated by the base

clustering methods, thereby enabling finding biologically-signifi-

cant clusters. Although we do not directly compare the clustering

performance and modularity between them, ADMSC would take

advantages in a fast and simple method without multiple

redundant clustering nor consensus identification.

In conclusion, ADMSC presents the fast partition of large-scale

PPI networks into biological clusters with approximately equal

sizes, while it is very robust and appealing simple.
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yeast PPI network.

Found at: doi:10.1371/journal.pone.0012623.s001 (0.05 MB

PDF)

Figure S2 Changes in eigenvalues with respect to cluster

number in the yeast PPI network.

Found at: doi:10.1371/journal.pone.0012623.s002 (0.06 MB

PDF)
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