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Abstract

The oxidative damage hypothesis proposed for the function gain of copper, zinc superoxide dismutase (SOD1) maintains
that both mutant and wild-type (WT) SOD1 catalyze reactions with abnormal substrates that damage cellular components
critical for viability of the affected cells. However, whether the oxidative damage of SOD1 is involved in the formation of
aggregates rich in SOD1 or not remains elusive. Here, we sought to explore the oxidative aggregation of WT SOD1 exposed
to environments containing both ascorbate (Asc) and DNA under neutral conditions. The results showed that the WT SOD1
protein was oxidized in the presence of Asc. The oxidation results in the higher affinity of the modified protein for DNA than
that of the unmodified protein. The oxidized SOD1 was observed to be more prone to aggregation than the WT SOD1, and
the addition of DNA can significantly accelerate the oxidative aggregation. Moreover, a reasonable relationship can be
found between the oxidation, increased hydrophobicity, and aggregation of SOD1 in the presence of DNA. The crucial step
in aggregation is neutralization of the positive charges on some SOD1 surfaces by DNA binding. This study might be crucial
for understanding molecular forces driving the protein aggregation.
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Introduction

Copper, zinc superoxide dismutase (SOD1) is a thermostable

32 kDa homodimeric enzyme that is abundant in eukaryotic cells

and normally catalyzes the conversion of superoxide anion to

peroxide hydrogen and dioxygen through cyclical reduction and

oxidation of copper [1]. Its mutation and overexpression does not

result in an increased protection, but rather create a variety of

injurious effects, for example, involvement in the development of

amyotrophic lateral sclerosis (ALS) by inducing motor neuron

death [2–18].

Many hypotheses including aggregation and oxidative damage

have been proposed to explain the toxicity of SOD1 [6,9]. The

aggregation hypothesis maintains that mutant proteins of SOD1

become misfolded and consequently oligomerize into high-

molecular-weight species that end up in proteinaceous inclusions,

and the oligomerized or aggregated proteins are, at some stage in

their formation, selectively toxic to motor neurons [6]. Protein-

aceous inclusions rich in SOD1 have been observed in tissues from

ALS patients, ALS-SOD1 transgenic mice, and in cell culture

models [7–27]. The visible aggregates or inclusions in SOD1-

linked diseases may be one of the pathological hallmarks, and have

been linked to any of the disruptions in cellular functions [6–

12,28,29]. Polymorphous SOD1 aggregates have been shown to

be generated in vitro from WT SOD1 and ALS-associated variants

[30–33]. Moreover, it has been observed in vitro that the negatively

charged species including DNA can induce or accelerate

aggregation of SOD1 in different forms [33,34], as observed for

other proteins [35,36].

The oxidative damage hypothesis maintains that SOD1 of

various forms catalyzes reactions with abnormal substrates such as

H2O2 that damage cellular components (including the protein

itself) critical for viability of the affected cells [6,37,38]. The

oxidative damage requires the involvement of the redox-active

copper bound to SOD1 proteins. Most oxidative damage to SOD1

proteins in vivo was believed to occur by site-specific, metal-

mediated mechanism in which a Fenton reaction of H2O2 with

redox-active metals produces hydroxyl a radical which immedi-

ately oxidizes an amino acid residue in close proximity to the

metal-binding sites and results in enzyme inactivation, oxidative

modification of residues at or near the metal sites, and loss of

metals, likely as observed in vitro [39,40]. However, although there

is increasing evidence indicating that elevated oxidative damage to

SOD1 proteins are present in the tissue of ALS transgenic mice

[37], it is not known currently if the oxidative modification is

involved in the SOD1 aggregation in vivo because a recent study

showed that the SOD1 isolated from the aggregates in several

SOD1 transgenic mouse lines contained primarily full-length

unmodified SOD1 proteins [41]. The in vitro oxidation leads to

destabilization and dissociation of dimeric SOD1 at physiological

concentrations (,40 mM) prior to aggregation [40,42–44]. The

zinc-deficient WT SOD1 and some of its mutants should be prone

to form visible aggregates in vitro upon treatment with ascorbate

(ascorbic acid, Asc) or/and copper salt compared with the WT

holoprotein [42,45].

DNA has been observed to act as a template accelerating the

aggregation of WT SOD1 in vitro under acidic conditions [33]. In

order to support the conclusion, the present study in vitro examines
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the role that the physiologically relevant factors, including DNA

and Asc within motor neurons and other cells [46], may accelerate

the aggregation of WT SOD1 in vitro under neutral conditions.

The presence of Asc has been observed to cause oxidative damage

to WT SOD1 proteins under neutral conditions [42]. During

probing the template effect of DNA in WT SOD1 aggregation in

vitro, we have found that the DNA-mediated enrichment of and the

acidic pH-triggered hydrophobic alteration of the SOD1 protein

are two key steps for aggregation [33]. The aggregation of SOD1

is dramatically accelerated by DNA under acidic conditions, but

not under neutral conditions since neutral pH cannot alter the

hydrophobicity of WT SOD1. However, WT SOD1 can also be

enriched by DNA through the electrostatic interactions between

them under neutral conditions [47]. On the other hand, ALS-

linked MT SOD1 proteins have been classified into two groups:

WT-like and metal binding region mutants [7,48]. The WT-like

mutants have a stronger aggregation-prone propensity via the site-

specific oxidation of the copper-coordinated histidine residues by

the reactions of the copper with H2O2 [49], as compared with the

metal binding region mutants [50,51]. Different ALS-associated

mutations promote SOD1 aggregation by essentially distinct

pathways [12]. In essence, the WT SOD1 treated with Asc

behaves like the WT-like mutants because Asc at pharmacologic

concentrations generates H2O2 and Asc radicals through the

metal-dependent reactions in vivo [52], resulting in the conversion

of WT SOD1 into an oxidized forms that resembles the mutant

proteins. The oxidized SOD1 proteins can acquire binding and

toxic properties of ALS-associated mutants [3]. Since the

aggregation-prone propensity of oxidized SOD1 proteins was

observed in vitro to be weak [40,42–44], we examined the

accelerating effect of DNA that acts as a template in the oxidized

WT SOD1 aggregation in vitro.

Results

Asc-Mediated Oxidation of SOD1 in vitro
Based on the previous reports [48,49,52,53], the reactions of

Asc or H2O2 with either copper on proteins (for example SOD1)

or added redox metal ions in the presence of dioxygen are capable

of producing reactive oxygen species (ROS) to oxidize SOD1

proteins under neutral conditions. Here, 0–8 mM Asc (normal

concentrations in neurons and glial cells are 0.5–10 mM [46]) was

used to lead to oxidation of WT SOD1 in vitro in this study.

To investigate the oxidation of WT SOD1, first, the

dependence of oxidation on Asc dose was examined with non-

reducing sodium dodecyl sulfate-polyacrylamide gel electrophore-

sis (SDS-PAGE) at pH 7.4, because WT SOD1 is well known to

be resistant to SDS. The non-reducing SDS-PAGE of SOD1

treated with Asc shows changes in stability upon oxidation. The

observed SOD1 bands corresponding to dimeric and monomeric

forms in gels (Figure 1A) showed that the SOD1 proteins treated

with Asc were increasingly converted into monomers from dimers,

indicating that the WT SOD1 dissociates into monomers upon

oxidation. Obviously, any SOD1 aggregate was not observed in

the SDS-PAGE gels, showing that the SOD1 aggregates, likely

formed under the test conditions, were not SDS-resistant, as

previously observed for the SOD1 proteins of other forms [54–56].

Then, to prove the results described above, we performed two-

dimensional gel electrophoresis experiments on samples treated

with 4 mM Asc. The SOD1 proteins were resolved by isoelectric

focusing (IEF) on an immobilized pH gradient strip after Asc

treatment. The results showed that many protein spots maintain

the same molecular masses (,16 and ,32 kDa for monomer and

dimer, respectively), but show different isoelectric points (, pI

4.8–6.1 for monomer, and pI 5.2–6.2 for dimer, Figure 1B). Here,

the trace of dimeric species only observed in the two-dimensional

gels is ascribed to the presence of 8 M urea in its loading buffer,

which leads to dissociation of dimeric SOD1 into a monomeric

form. The pI values found for the oxidized SOD1 proteins are well

consistent with those found for the oxidatively modified isoforms of

SOD1 (pI 6.3, 6.0, 5.7, and 5.0) extracted from Alzheimer and

Parkinson disease brains [57]. Moreover, the pI for the protein

spots of WT SOD1 treated by H2O2 was observed to be 5.3–5.6

due to the oxidation of its Cys111-SH to Cys111-SO2/3H [58].

Therefore, the differences in pI values might be caused by the

different oxidized products of and the oxidative modification to

Cys-SH groups on the SOD1 protein, as well as by the differences

in the metallation extent of SOD1 protein.

Changes in Hydrophobicity of Oxidized SOD1 Proteins in
the Presence of DNA

The results delineated above reveal that the Asc-containing

environment can lead to oxidation and dissociation of the dimeric

protein. A question arises as to whether or not any change in the

hydrophobicity or tertiary structure of the SOD1 protein appears

upon oxidation, otherwise the oxidized SOD1 proteins cannot

aggregate. Therefore, ANS (8-anilino-1-napthalene-sulfonic acid)

dye binding experiments were performed on the Asc-treated

SOD1 samples with and without DNA. ANS binding, which is a

fluorescence probe that can indicate the disruption and formation

Figure 1. Observations of Asc-mediated WT SOD1 oxidation by
one- and two-dimensional gel electrophoresis. A) Non-reducing
SDS-PAGE gels for observation of Asc dose-dependent SOD1 oxidation.
10 mM SOD1 was incubated at 37uC for 2 h with 0–8 mM Asc. B) 2-DE gels
for observation of pI and molecular mass of the SOD1 protein treated with
Asc. 10 mM SOD1 was incubated with 4 mM Asc at 37uC for 2 h.
doi:10.1371/journal.pone.0012328.g001

Aggregation of SOD1
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of hydrophobic clusters in proteins, is proportional to hydrophobic

surface area available for binding fluorophores.

First, we determined fluorescence spectra of the ANS added into

samples with and without Asc. The fluorescence spectra of the

ANS added into the samples containing (1) SOD1, and (2) both

SOD1 and ctDNA (Calf thymus DNA) at given levels were

observed to be identical to that of the ANS alone in the same

buffer. The addition of Asc into the SOD1 samples in the absence

of DNA resulted in a slight increase in the ANS fluorescence

(,5%, Figure S1), whereas the addition of DNA led to at least

26% enhancement in emission of the ANS that was added into the

mixture containing SOD1 and Asc under identical conditions

(Figure 2A). These results indicated that (1) the WT SOD1 protein

didn’t show the ANS binding even in the presence of DNA, (2)

ANS can bind to the oxidatively modified SOD1 proteins

regardless of addition of DNA, and (3) the addition of DNA can

further alter the hydrophobicity of oxidized SOD1 proteins.

Therefore, the enhancement in the hydrophobicity of WT SOD1

is caused by the combination of Asc and DNA.

Then, we examined further the effect of Asc dose and incubation

time on the ANS fluorescence. The ANS emission was observed to

be progressively enhanced (Figure 2B) over the Asc dose range (0–

4 mM) in the presence of DNA, showing that increasing doses of

Asc led to exposure of more SOD1 hydrophobic surfaces. On the

other hand, the ANS emission was also significantly enhanced over

incubation time (0–72 h, Figure 2C), demonstrating that SOD1

binds more ANS molecules as the incubation period was prolonged.

The hydrophobic enhancement of SOD1 protein caused by

oxidation is consistent with that previously reported [40]. These

facts indicate the exposure of more SOD1 hydrophobic surfaces

that bind ANS regardless of presence of DNA.

Binding of Oxidized SOD1 Proteins to DNA
To understand the interactions between oxidized SOD1

proteins and DNA, we measured the binding parameters of the

oxidized SOD1 to DNA with isothermal titration calorimetry

(ITC). We have reported the equilibrium constant of ,10 mM for

the binding of WT SOD1 to double-stranded DNA (dsDNA) [47].

Here, we used 24-nt single-stranded DNA (ssDNA) instead of

linear or supercoiled dsDNA to inhibit the dsDNA-triggered

aggregation of oxidized SOD1 proteins. The length of 24-nt

ssDNA should be long enough for the binding of the oxidized

SOD1. In addition, utilization of the small ssDNA might be

favorable for understanding the driving forces of SOD1 to DNA.

Figure 3A shows the results from a typical ITC experiment in

which ssDNA was titrated into the oxidized SOD1-containing

solution. The data indicate that the binding of the oxidized SOD1

to DNA is an exothermic reaction with a large negative enthalpy

change of –27.6560.45 kcal/mol and a binding equilibrium

constant of ,100 nM, revealing that the strong binding between

the oxidized SOD1 proteins and ssDNA is mainly determined by

the electrostatic interactions. The binding stoichiometry was

determined to be 0.86, indicating that (1) each ssDNA molecule

may provide a single binding site for the oxidized SOD1, and (2)

the oxidized SOD1 proteins bound to the ssDNA may not

aggregate. However, an unfavorable entropy change was observed

during the binding of the oxidized SOD1 to ssDNA, which might

Figure 2. Comparison of ANS binding property of SOD1 in the
presence and absence of both Asc and DNA in 20 mM Tris-HCl
buffer (pH 7.4). A) Fluorescence spectra of 20 mM ANS added into the
mixtures containing 4 mM SOD1, 4 mM SOD1 and 7.5 mM ctDNA, or
4 mM SOD1, 7.5 mM ctDNA and 2 mM Asc. B) Change in the emission of
20 mM ANS added into the mixtures containing 4 mM SOD1 and 7.5 mM

ctDNA with Asc dose. C) Change in the emission of 20 mM ANS added
into the mixtures containing 4 mM SOD1, 2 mM Asc, and 7.5 mM ctDNA
with incubation time. Reactions were first incubated at 37uC for 2 h (A
and B) or 0–72 h (C), and then re-incubated for 10 min at 37uC after
addition of 20 mM ANS prior to measurement.
doi:10.1371/journal.pone.0012328.g002
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be attributed to formation of the ordered SOD1-DNA assemblies.

We also measured the DNA binding property of WT SOD1 under

the identical conditions, and the significant binding of WT SOD1

to ssDNA was not observed (Figure 3B), revealing that the

interference from the unmodified SOD1 with the binding of

modified SOD1 to ssDNA is negligible.

Acceleration Roles of DNA in the Aggregation of
Oxidized SOD1 Proteins

An in vitro study has indicated that either linear or supercoiled

DNAs acting as a template can dramatically accelerate the SOD1

aggregation under acidic conditions [33]. The enhancement in the

ANS binding indicates that the hydrophobicity of SOD1 was

enhanced because of both oxidation and presence of DNA under

neutral conditions (Figure 2A). Moreover, the oxidized SOD1

proteins were observed to have the higher affinity for DNA

compared to the unmodified SOD1 (Figure 3A). Thus, we wonder

if the DNA templates can promote aggregation of the oxidized

SOD1 proteins under the identical conditions (pH 7.4).

To examine the DNA-accelerated the aggregation of oxidized

SOD1 proteins in vitro, time courses of reactions of the oxidized

SOD1 proteins with DNA were monitored by dynamic light

scattering (DLS). The same test conditions were maintained in

controls containing Asc and either SOD1 or ctDNA. The DLS

data showed that aggregates were immediately generated upon

addition of ctDNA into the reactions containing both SOD1 and

Asc without stirring (Figure 4A). The average hydrodynamic

diameters of aggregates were dramatically increased to .1000 nm

over 20 min. The aggregates maintain slow growth after

incubation of 20 min. However, the significant aggregation of

oxidized SOD1 proteins without DNA was not observed over

incubation of 2 h, confirmed by right angle light scattering (RALS)

measurements performed for the samples only containing either

Asc and SOD1 or Asc and DNA (Figure S2). Indeed, the

incubation of 24–48 h without DNA has been reported to be

required to reach such the average diameter of 1000 nm for the

aggregates of oxidized SOD1 [40,42].

Then, the DNA dose dependence showed that the aggregation

of oxidized SOD1 proteins without DNA occurs only when its

concentration was $40 mM, as shown previously by RALS

measurements [40], but aggregates were immediately observed

to form from the reaction of 4 mM SOD1 and 2 mM Asc with

7.5 mM ctDNA (Figure 4B). In addition, we found by RALS

measurements that the sizes of aggregates are almost linearly

enhanced with ctDNA dose. Finally, the protein dose dependence

observed by fixing doses of Asc and ctDNA showed that 0–2 mM

SOD1 leads to the sharp increase, and larger SOD1 doses lead to

the linear and slow increase in aggregate size (Figure 4C).

Inhibition of the DNA-Triggered Aggregation of Oxidized
SOD1 Proteins

Examining effects of the reaction conditions including ionic

strength, guanidinium chloride (GdmCl) or chelating agents on the

DNA-triggered aggregation of oxidized SOD1 proteins could be in

favor of understanding the forces that drive the protein aggregation

under neutral conditions.

Firstly, probing the effect of ionic strength on aggregation can

provide an insight into the nature of interactions between proteins

and DNA. We have observed that interactions of SOD1 with DNA

are markedly affected by ionic strength [33,47]. Thus, the influence

of NaCl on the DNA-triggered aggregation of oxidized SOD1

proteins was monitored by RALS. The data showed that the

Figure 3. ITC analysis of oxidized SOD1 proteins binding to ssDNA. A) The upper panel shows the raw calorimetric data of the titration of
ssDNA (40 mM) into WT SOD1 (5 mM) at 25uC in the 20 mM Tris-HCl buffer (pH 7.4) containing 4 mM Asc, and the lower panel shows the
corresponding integrated injection heats, corrected for the heat of dilution. B) ITC data of the titration of ssDNA (40 mM) into SOD1 (5 mM) at 25uC in
the 20 mM Tris-HCl buffer (pH 7.4) without Asc. All samples were incubated for 2 h at 37uC prior to titration under the identical conditions. The curve
in the lower figure represents the best least-squares fits to the one-site binding model.
doi:10.1371/journal.pone.0012328.g003
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aggregation is gradually reduced as NaCl dose increased (Figure 5A).

For example, 150 (physiological concentration) and 800 mM NaCl

lead to reduction of 30% and 95% in aggregation degree,

respectively. This result is in line with that obtained with ITC

experiments, indicating that the binding of oxidized SOD1 proteins

to DNA is driven by electrostatic interactions between them.

The inhibition behavior monitored by RALS indicated that

1 M GdmCl leads to reduction of 97% in aggregation extent

(Figure 5B and 5C, left half). Moreover, the degradation

experiments show that the degradation of aggregates occurs

immediately upon addition of GdmCl, as indicated by appearance

of the DNA bands with slight smear in agarose gels (Figure 5C,

right half), well consistent with the fact that no SOD1 aggregate is

observed in the SDS-PAGE gels, revealing that the SOD1

aggregates are not resistant to protein denaturants including

GdmCl and SDS. The result suggests that the intermolecular

hydrophobic forces of oxidized SOD1 proteins are one of the

aggregation-driving forces. In addition, the inhibition experiments

performed with EDTA showed the appearance of the clear DNA

bands and almost complete inhibition of aggregation with

increasing EDTA dose (Figure 5D). This result suggests that the

oxidative aggregation must involve the copper on SOD1.

Morphology of DNA-Triggered Oxidized SOD1
Aggregates

In order to examine morphology of aggregates provided by the

oxidized SOD1 proteins in the presence of DNA under neutral

conditions, visualization of samples was performed under

transmission electron microscopy (TEM) without staining. The

DNA or SOD1 alone was first observed under TEM at pH 7.4 for

comparison. The lDNA was observed to represent in a typical

filament state (Figure 6A), and the SOD1 was in an amorphous

state on the copper grid due to the formation of SOD1 aggregates

caused by concentration of SOD1 during drying (Figure 6B).

One of the main aggregates observed under TEM in the

lDNA-triggered aggregation containing 2 mM Asc under neutral

conditions are the aggregate monomers consisted of a large

number of oxidized SOD1 molecules and one lDNA molecule

that is clearly visible here [33,59]. This spherical aggregate

monomer has an average diameter of 250–300 nm (Figure 6C). In

contrast, although the SOD1 can associate with DNA under

neutral conditions [47], any observable aggregation phenomenon

under the TEM is not found without Asc, as indicated with DSL in

examining the time courses of aggregation, revealing that Asc-

induced SOD1 oxidation is a key factor in the enhanced

aggregation propensity of WT SOD1. Moreover, incubating the

reactions consisted of SOD1 and Asc does not produce any

observable aggregate under the TEM in the absence of DNA.

These facts indicate that the presence of DNA plays a critical role

in Asc-induced oxidized SOD1 polymerization. In addition, the

co-existence of DNA and proteins in the aggregates has been

confirmed by fluorescent staining (ethidium bromide for DNA ,

thioflavin T/S for protein aggregates) experiments [33,59].

Discussion

The study presented here reported that three kinds of DNAs

tested significantly accelerate the aggregation of oxidized SOD1

Figure 4. Dependences of DNA-triggered aggregation of
oxidized SOD1 proteins on reaction conditions in 20 mM
Tris-HCl buffer (pH 7.4). A) Reactions without stirring were
incubated at 37uC for 0–120 min after addition of 7.5 mM ctDNA into
the mixtures containing 4 mM SOD1 and 2 mM Asc. B) For DNA dose

dependence, 0–75 mM ctDNA were added into the mixtures containing
4 mM SOD1 and 2 mM Asc were incubated at 37uC for 2 h. C) SOD1
dose dependence was observed by incubating reactions consisted of 0–
16 mM SOD1, 2 mM Asc, and 7.5 mM ctDNA at 37uC for 2 h.
doi:10.1371/journal.pone.0012328.g004
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proteins in vitro under neutral conditions, as observed under acidic

conditions [33]. The tested SOD1 proteins were isolated from

human erythrocytes, and are highly relevant to aggregation, as

reported by three independent groups [54–56]. Although SOD1 is

known so far to be one of the most stable proteins, its

conformation and stability can be influenced by mutation or

oxidative modification, resulting in its monomerization, demetalli-

zation, increased susceptibility of disulfide bonds to reduction,

reduction in repulsive charges, and proneness to aggregation

[60,61]. Here, we find that the exposure of WT SOD1 to the Asc-

containing environment can also alter its stability, resulting in

monomerization, and exposure of more hydrophobic surfaces.

Oxidation is one of the factors that cause SOD1 aggregation

[40,42]. Considering evidence of oxidative damage in sporadic

ALS patients [62,63] and abundance and ubiquity of the enzyme

within cells [64], it seems plausible that SOD1 might constitute

targets of oxidative damage in ALS. It has been reported that

oxidative damage to SOD1 results in their dissociation into

monomers and monomer destabilization, and aggregation in vitro

[40]. The same phenomenon was observed in the Asc-induced

SOD1 oxidation, but the concentrations of the SOD1 tested were

nano- to micro-molar scale (Figure 4C), much less than its

physiological level of ,40 mM [40], and might fall in the

concentration range of mutant SOD1 proteins. In the study, the

enhanced hydrophobicity and gain of aggregation-prone propen-

sity are found to be insufficient for the protein aggregation, if the

protein does not reach the threshold concentration (40 mM here)

required for aggregation. This is supported by the fact that the

formation of oxidized SOD1 aggregates was not observed with the

DLS and TEM in the range of concentrations tested in the

absence of DNA-templated effect under identical conditions.

The ITC tests show that the binding of oxidized SOD1

proteins to DNA is enthalpy-driven and characterized by a high

binding affinity. This observation leads us to suggest that the

DNA binding neutralize the positive charges on SOD1 surfaces

that prevent from aggregation, and significantly increases the

local concentration of oxidized SOD1 proteins, resulting in a

higher SOD1 concentration on the surface of DNA than that in

bulk solution. Furthermore, it is observed that the more

hydrophobic surfaces of oxidized SOD1 molecules became more

solvent-accessible. Thus, DNA binding provides an avenue both

to acquire a local and high concentration enough to facilitate the

formation of aggregation-prone protein conformations and to

enable the protein aggregation.

Two current apparently disparate hypotheses on the toxic gain

of SOD1 functions may not be mutually exclusive when

considering two finding: (1) there is a clear relationship between

protein oxidation, hydrophobic enhancement, and DNA-triggered

aggregation, and (2) SOD1 oxidation or exposure to acidic

environments contributes to aggregation. Oxidation and acidic pH

can alter protein structures and hydrophobicity, but it is uncertain

if the repulsive charges on proteins can be reduced. According to

the above observed DNA-triggered aggregation of the oxidized

SOD1 proteins under neutral conditions, we found that the DNA

binding-mediated reduction in the opposite charges on oxidized

SOD1 protein surfaces provides an avenue to acquire the sufficient

local concentrations to enable the SOD1 aggregation. Further-

more, reduction in the repulsive charge facilitates appearance of

the intermolecular hydrophobic interactions of oxidized SOD1

proteins and formation of protein aggregates. Therefore, the

accelerating effect of DNA in aggregation of the oxidized SOD1

proteins might be a consequence of three effects: reduced

Figure 5. Inhibition of DNA-triggered aggregation of oxidized SOD1 proteins in 20 mM Tris-HCl buffer (pH 7.4). A) Effect of ionic
strength was observed by incubating reactions containing 4 mM SOD1, 2 mM Asc, and 7.5 mM ctDNA at 37uC for 2 h in the presence of 0–800 mM NaCl.
Here, the inhibition degree of aggregation is expressed by [(RALS)0– (RALS)NaCl]/(RALS)06100%, (RALS)0 and (RALS)NaCl represent RALS values in the
absence and in the presence of NaCl at each concentration, respectively. B) The inhibitory effect of GdmCl was monitored by RALS measurements.
Reactions containing 4 mM SOD1, 2 mM Asc, and 7.5 mM ctDNA were incubated at 37uC for 2 h in the presence of 0–6 M GdmCl. The disaggregation
degree of aggregation is expressed as (A). C) The disaggregation and inhibition of aggregates was monitored by agarose gel electrophoresis. The
aggregates were produced by incubating reactions containing 4 mM SOD1, 2 mM Asc, and 15 mM pBR322 DNA for 24 h at 37uC, and re-incubated for
1 min with 0–6 M GdmCl before loading onto gels. D) The inhibition of aggregation caused by EDTA was monitored by agarose gel electrophoresis.
4 mM SOD1 and 2 mM ascorbate were incubated for 2 h at 37uC with 15 mM pBR322 DNA in the presence of 0–100 mM EDTA before loading onto gels.
doi:10.1371/journal.pone.0012328.g005
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repulsively positive charges, altered hydrophobicity, and enhanced

concentrations.

In summary, the reactions of Asc with redox metals on

metalloproteins likely contribute to the redox state of cells that

may play a role in protein aggregation. Using the important

process of metalloenzyme-catalyzed oxidation, the aggregation of

oxidized SOD1 proteins at nano- to micro-molar levels in vitro is

accelerated by DNA. The process of DNA-triggered aggregation

of oxidized SOD1 proteins was proposed as follows: association of

the oxidized SOD1 proteins with DNA, reduction in the positive

charges that might involve the prevention of SOD1 proteins from

aggregation, enhancement in hydrophobicity, concentration of

oxidized SOD1 proteins along DNA, association each other of

DNA-bound oxidized SOD1 molecules, finally, formation of

protein aggregates by the hydrophobic interactions. Recently,

increasing evidence shows that indirect and direct interactions can

occur between SOD1 and DNA or RNA both inside and outside

cells [65–69]. Therefore, understanding the nucleic acid binding

property of SOD1 might be in favor of understanding the

intermolecular forces driving SOD1 aggregation, and provide a

plausible explanation for the SOD1-induced ALS.

Materials and Methods

Materials
Calf thymus DNA (ctDNA), wild type SOD1 (isolated from

human erythrocytes), ascorbate (Asc), ethidium bromide (EtBr), 8-

anilino-1-naphthalene-sulfonic acid (ANS), and guanidinium

chloride (GdmCl) were purchased from Sigma. The plasmid

pBR322 DNA and bacteriophage lDNA were purchased from

TaKaRa, the ssDNA (24-nt, 59-GGTCGGAGTCAACG-

GATTTGGTCG-39) was purchased from Invitrogen. Removal

of impurities from SOD1 samples was monitored by liquid

chromatography-electrospray ionization-mass spectrum on an

Agilent1100 Cap LC/MSD XCT mass spectrometer. Dimeric

SOD1 protein concentrations were estimated by the molar

extinction at 280 nm of 10,800 M21cm21 [70]. Unless otherwise

stated, DNA concentration was expressed in base pairs. All

samples were prepared using distilled water that had been passed

through a Millipore-Q ultrapurification system.

Asc-Mediated SOD1 Oxidation in vitro
First, to examine the Asc dose dependence of SOD1 oxidation,

0–8 mM Asc was added into solutions containing 10 mM SOD1,

and reactions were incubated at 37uC for 2 h in 20 mM Tris-HCl

buffer (pH 7.4).

Non-reducing sodium dodecyl sulfate-polyacrylamide gel elec-

trophoresis (SDS-PAGE) experiments were conducted on a 15%

polyacrylamide resolving gel with a 5% polyacrylamide stacking

gel. Samples were added 56 loading buffer without b-mercapto-

ethanol (b-ME). The gels were run at constant voltage of 80 V and

stained by Coomassie Brilliant Blue R-250. Two-dimensional gel

electrophoresis (2-DE) was carried out using an Ettan IPGphor 3

isoelectric focusing (IEF) unit and an Ettan DALTsix electropho-

resis unit (GE Healthcare). IEF was performed with 7-cm

Immobiline DryStrips (immobilized pH gradient strips, GE

Figure 6. Visualization of aggregate and control samples under
TEM. The controls were 7.5 mM lDNA (A) and 4 mM SOD1 (B) and
incubated for 2 h at 37uC in the buffer (pH 7.4) containing 2 mM Asc
prior to observation. C) Aggregate monomers were produced by
incubating reactions containing 4 mM SOD1, 2 mM Asc and 7.5 mM
lDNA for 2 h at 37uC.
doi:10.1371/journal.pone.0012328.g006
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Healthcare) to generate a nonlinear pH gradient from 3 to 11.

Proteins were visualized using Coomassie brilliant blue R-250 or

Plusone silver staining kit (Amersham Biosciences). To minimize

gel-to-gel variations, three 2-DE gels were run for the samples.

The silver-stained gels were scanned and analyzed with Image-

Master 2D Platinum 6.0 software (GE Healthcare). Isoelectric

points (pI) of spots were calculated according to the plot showing

pH as a function of distance.

Analysis of Hydrophobicity of Oxidized SOD1 Proteins in
the Presence of DNA

To examine changes in hydrophobicity of oxidized SOD1

proteins, the fluorescence property of ANS bound to oxidized

SOD1 proteins was examined on a Varian Cary Eclipse

spectrofluorometer. Aliquots (300 mL) containing (1) 4 mM

SOD1, (2) 7.5 mM ctDNA, (3) 4 mM SOD1 and 7.5 mM ctDNA,

or (4) 4 mM SOD1, 7.5 mM ctDNA and 0–4 mM Asc were first

incubated for 0–72 h at 37uC, and then re-incubated for 10 min

with 20 mM ANS in 20 mM Tris-HCl buffer (pH 7.4), before

measurement of fluorescence spectra between 450–650 nm

(excitation at 365 nm).

Binding Assay of Oxidized SOD1 Proteins to DNA
Isothermal titration calorimetry (ITC) was used to determine

the binding parameters of oxidized SOD1 proteins to DNA and

performed with a VP-ITC MicroCalorimeter. The samples were

incubated for 2 h in the 4 mM Asc-containing buffer at 37uC and

thoroughly degassed prior to titration. The sample cell was filled

with 5 mM oxidized SOD1 or WT SOD1, and the syringe was

filled with 40 mM ssDNA. The same buffer (20 mM Tris-HCl

containing 4 mM Asc, pH 7.4) was used in both the syringe and

the cell. The titration involved a single injection (1 mL) of and a

series of injections (2 mL) of ssDNA solutions into the SOD1

solution. Analysis was carried out using Microcal Origin Software.

Individual injections were integrated following manual adjustment

of the baselines. Dilution and mixing heats were determined from

separate control experiments or from the end point of the titration.

This value was subtracted prior to curve fitting using a one-site

model.

DNA-Triggered Aggregation of Oxidized SOD1 Proteins
in vitro

SOD1 at given doses was added into 20 mM Tris-HCl buffer

(pH 7.4) containing 2–4 mM Asc. To trigger aggregation, ctDNA,

lDNA or pBR322 DNA at given doses was added into the

mixtures. The control reactions were each of reactants, mixtures of

SOD1 with either Asc or DNA under identical conditions at each

level used in aggregation reactions.

To examine the influence of reaction conditions on the

oxidative aggregation, a series of experiments were carried out.

Firstly, time courses of aggregation were observed in 0–120 min,

for reaction consisting of 4 mM SOD1, 2 mM Asc and 7.5 mM

lDNA. Then, 0–75 mM ctDNA was incubated with 4 mM SOD1,

or 0–16 mM SOD1 was incubated with 7.5 mM ctDNA for 2 h in

the buffer containing 2 mM Asc for observations of either DNA or

SOD1 dose dependence. Finally, to recognize inhibition of SOD1

aggregation by ionic strength, GdmCl or EDTA, aggregation

mixtures (4 mM SOD1, 2 mM Asc, 7.5 mM ctDNA) were

incubated with 0–800 mM NaCl, 0–6 M GdmCl or 0–100 mM

EDTA for 2 h. To examine disaggregation, 0–6 M GdmCl was

added into SOD1 aggregates formed by incubation of the mixtures

(4 mM SOD1, 2 mM Asc, and 7.5 mM ctDNA) for 24 h. The

disaggregation reactions were incubated for 1 min at 37uC.

Analysis of DNA-Triggered Aggregation of Oxidized
SOD1 Proteins

The aggregation of oxidized SOD1 proteins with DNA was

monitored with both right angle light scattering (RALS), and

agarose gel electrophoresis. First, to determine the extent of SOD1

oxidative aggregation, RALS measurements were made at on the

Cary Eclipse spectrofluorometer for each sample and each control

(300 mL) according to the previously reported procedures [42].

Excitation and emission wavelengths were set all at 400 nm (band

pass 4 nm) according to the average diameters of aggregates

tested. Then, average hydrodynamic diameters of aggregates were

evaluated by DLS [42]. DLS data were collected at 25uC on a

HORIBA LB-550 dynamic light scattering particle size analyzer.

The average diameters and their distributions were recorded for

each sample and each control. Consecutive measurements (at least

200 times) were made with a cell of 2 mL for normalization

analysis. Each spectrum represents an average of ten accumula-

tions. For time courses, aliquots were taken from the aggregation

mixtures at each designed time point, and DLS values were

immediately recorded. In addition, DNA electrophoresis was

conducted on a 0.8% agarose gel. The DNA gel bands were

visualized by EtBr (0.5 mg/mL) staining.

Visualization of the DNA-Triggered Aggregation of
Oxidized SOD1 Proteins

Aggregates formed by the oxidized SOD1 proteins in the

presence of DNA were visualized with a Tecnai G220 transmission

electron microscope (TEM) [36]. Aliquots (5 mL) taken from

incubation of a mixture of SOD1, lDNA or pBR322 DNA, and

ascorbate at given concentrations for a given period at 37uC were

adsorbed onto a thin carbon film-coated copper electron

microscope grids (200-mesh), washed with the buffer, and air-

dried for 5 min, followed by direct observations with TEM. The

samples were not positively stained and directly imaged at 175 kV.

Digital images of aggregation species were captured for final

magnifications of 25–1,100,0006. All of these operations were also

carried out for both SOD1 and DNA controls.
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