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Abstract

Small-molecule inhibitors imatinib, dasatinib and nilotinib have been developed to treat Chromic Myeloid Leukemia (CML).
The existence of a triple-cross-resistant mutation, T315I, has been a challenging problem, which can be overcome by finding
new inhibitors. Many new compounds active against T315I mutants are now at different stages of development. In this
paper we develop an algorithm which can weigh different combination treatment protocols according to their cross-
resistance properties, and find the protocols with the highest probability of treatment success. This algorithm also takes into
account drug toxicity by minimizing the number of drugs used, and their concentration. Although our methodology is
based on a stochastic model of CML microevolution, the algorithm itself does not require measurements of any parameters
(such as mutation rates, or division/death rates of cells), and can be used by medical professionals without a mathematical
background. For illustration, we apply this algorithm to the mutation data obtained in [1,2].
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Introduction

Chronic Myeloid Leukemia (CML) is a cancer of the white

blood cells. It is characterized by the increased growth of

predominantly myeloid cells in the bone marrow and the

accumulation of these cells in the blood. The disease is associated

with the Philadelphia chromosome, which arises by a reciprocal

translocation between chromosomes 9 and 22 and harbors the

BCR-ABL fusion oncogene [3–6]. The disease mostly affects

adults, and its annual incidence is 1–2 per 100,000 people [7]; the

only well-described risk factor for CML is exposure to ionizing

radiation [8].

Small molecules that specifically target the BCR-ABL gene

product provide a successful treatment approach which can lead to

a reduction of BCR-ABL+ cells below detectable levels, at least

during the early stages of the disease. The drug Imatinib has been

mostly used in this respect [6–11]. It is the first member of a new

class of agents that act by specifically inhibiting a certain enzyme

that is characteristic of a particular cancer cell, rather than non-

specifically inhibiting and killing all rapidly dividing cells. Imatinib

has a number of side-effects, but in general is reasonably well-

tolerated [9], compared to traditional chemotherapeutic agents,

and it has not been found mutagenic [10].

As the disease advances, the chances of treatment failure rise

due to the presence of drug resistant mutants that are generated

mostly through point mutations [11–16]. Drug resistance can

potentially be overcome by the combination of multiple drugs, as

long as a mutation that confers resistance against one drug does

not confer resistance against any of the other drugs in use. In

addition to Imatinib, the drugs Dasatinib and Nilotinib are

alternative inhibitors of the BCR-ABL gene product. Unfortu-

nately, these three drugs exhibit a degree of cross-resistance

because of one mutation (T315I) which confers resistance against

all those drugs [1,17–19]. In addition, there are more than 50

mutations that confer resistance against only one or two of the

three drugs and not against the others [20].

Much research has recently been devoted to understanding the

mechanisms of drug resistance in CML. Drugs in different

combinations and different concentrations have been used in in

vitro experiments to uncover the principles of resistance [21–26]

and to suggest ways to avoid it. It has been suggested that using

several drugs simultaneously, in a combination treatment, rather

than sequentially, will improve the chance of treatment success by

minimizing drug resistance [1,27]. A promising goal is to come up

with different inhibitors [28], and specifically, with agents that are

effective against T315I mutants [2,29–35].

In this paper we will formulate a mathematical model that

allows for a systematic study of drug resistance in cancer and its

effects on treatment. The model will utilize experimental data on

the types of mutants that arise in the context of different

treatments. The goal of this approach is to aid in optimal

treatment strategy design. Our main result is a simple and intuitive

algorithm of finding the optimal combination treatment which (1)

minimizes the chances of treatment failure due to drug resistance,

and (2) minimizes the number and concentration of the drugs

used.

The basic mathematical model used here belongs to the

tradition of stochastic modeling first created by [36–40] and

continued by [41–43]. It is part of the larger effort to model

anticancer therapies in general, and drug resistance in cancer

specifically [44–58]. The approach developed in the present paper

builds on our previous work, where we studied the stochastic
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dynamics of cell populations in the context of combination drug

treatments [59], and created a framework to describe the

phenomenon of cross-resistance [60]. Our goal is to make

stochastic modeling of resistance in CML more relevant for

practicing oncologists by helping them in making the best

treatment protocol choices. To this end, we shift the emphasis

from trying to calculate the probability of treatment success to a

more practical issue of finding the combination of drugs that

maximizes the chances of a successful treatment outcome. In this

paper, we adapt the model to utilize experimental data by

including information on different drug concentrations. Papers

[1,2] suggest that different concentrations of the three available

drugs, imatinib, dasatinib, and nilotinib, can result in the

outgrowth of different numbers of mutations. This means that

resistance generation depends not only on the treatment

composition, but also on the dosages of the various drugs. These

data inspired us to revisit our modeling of combination treatments

with a different approach.

We show that the probability of treatment success is (up to two

significant digits) defined by the cross-resistant mutations. If the

drugs in use possess a degree of triple cross-resistance (such as

imatinib, dasatinib and nilotinib with the T315I mutation), then

the presence of other mutations does not really alter the outcome.

In general, the mutations which confer resistance to the largest

number of drugs in the combination are the ones which define

how likely it is that the protocol fails. Based on this concept, we

developed a counting strategy which can weigh different treatment

strategies according to their cross-resistance properties, and find

the protocols with the highest probability of treatment success.

This algorithm also takes into account drug toxicity by minimizing

the number of drugs used, and their concentration. One useful

feature of this algorithm is that it does not require measurements

of any parameters (such as mutation rates, or division/death rates

of cells), but relies entirely on the knowledge of the number and

resistance types of mutants associated with each of the drugs in

use.

The rest of this paper is organized as follows. First, we

summarize and analyze the biological data which we use in our

scheme. We then describe our analysis of the data, and calculate

the number of mutations resistant to all possible combination

treatments according to the number of drugs, their types and

concentrations. We then present two algorithms to identify the

best possible combination treatments. Finally, we apply both

algorithms to the drugs studied in [1,2] to find the best treatment

strategies.

Materials and Methods

In in vitro experiments described in papers [1,2], CML cancer

cells, Ba/F3 p210bcr-able were exposed to a minimally cytotoxic

agent, N-ethyl-N-nitrosourea (ENU), a potent inducer of point

mutations. The cells were then cultured in 96-well plates

supplemented with graded concentrations of inhibitors. After

some time (about 28 days), wells with positive outgrows were

expanded and then sequenced for mutations.

In [1], three different inhibitors, imatinib, dasatinib, and

nilotinib, were used, in different combinations and solo. Inhibitor

concentrations used for the three inhibitors are listed in Table 1.

The noted concentrations were motivated by the fact that nilotinib

is at least 20-fold and dasatinib at least 300-fold more potent than

imatinib [1]. After analysis of the total of 768 wells, there were 726

mutations. Out of the 30 specific point-mutations that had been

identified in imatinib resistant patients, 25 were recovered in this

experiment. In total, 26 point-mutations were identified.

In [2], an inhibitor of the T315I mutant SGX70393 was used

both solo and in combination with the three inhibitors, imatinib,

dasatinib and nilotinib. 27 different point-mutations were

identified, 17 of which were novel in comparison to the ones

recovered in [1].

Stochastic modeling
In vitro experiments suggest that different concentrations of a

drug give rise to different numbers and types of resistant mutants

in treating CML. We will model this phenomenon by using an

extension of the stochastic model for combination treatments with

cross-resistance, first introduced in [59,60]. The details of the

model are presented in Text S1, Section 1, and here we only give a

conceptual description.

Stochastic dynamics occurs on a mutation diagram which

specifies the mutation processes that create phenotypes resistant to

various drugs, see figure 1. This network’s nodes denote cancer cell

phenotypes which have different characteristics with respect to

their drug susceptibility. For example, if two drugs are used to treat

the tumor, then potentially there could be at least four different

cell types: those that are fully susceptible; we characterize those by

the binary index s = 00; those resistant to drug 1 and susceptible to

drug 2 (s = 10); those resistant to drug 2 and susceptible to drug 1

(s = 01), and those resistant to both drugs (or, fully-resistant), with

s = 11. In general, if m drugs are applied in the course of the

therapy, we have 2m combinatorial resistance types. The binary

index s has m positions corresponding to the m drugs; ‘‘1’’ in a

given position denotes resistance to the corresponding drug, while

‘‘0’’ means susceptibility.

The nodes of the network are connected with arrows

corresponding to mutation processes which transform one cell

type into another. The mutation rates are marked by the arrows

and denote the probability to produce one daughter cell of the

transformed type upon a division of the cell of the given type. We

neglect the back-mutations because they only provide a small

correction to the processes governed by the forward mutations, see

[61] and Section 2 in Text S1.

The dynamics of cells include the following events: a faithful cell

division (such that both daughter cells are of the original type), a

division with a mutation, and cell death (other events such as

cellular quiescence and awakening from the state of quiescence

could also be included, see [62,63]). A division with a mutation

implies that one of the daughter cells acquires a different

phenotype, in agreement with the mutation network, while the

other daughter cell does not carry the mutation. A simultaneous

generation of two mutant cells (with mutations of a type relevant to

the processes of interest) is possible, but it is a rare event compared

to the production of only one mutant daughter cell, and will be

neglected here.

Table 1. Categorization of the doses of each inhibitor.

Low Dose (nM) Medium Dose(nM) High Dose(nM)

Imatinib 2000 4000–8000 16000

Dasatinib 5 10–25 100–500

Nilotinib 50–250 500–1000 2000–5000

SGX70393 120–240 480–960 1920

The drug concentrations that were used in [1,2] are all included in this table. We
define our dose or concentration for each inhibitor (rows) through the doses
used (columns).
doi:10.1371/journal.pone.0012300.t001
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The death rate of various resistance types consists of the natural

death rate of cells (that is, their death rate in the absence of

treatment), and the drug-induced death rate. To model the latter

quantity, we ask: how do individual drug-induced death rates of

several drugs interact under combination treatment conditions? In

particular, what is the combined drug-induced death rate of two

drugs applied in combination? On one extreme, it could be the

same as the killing rate of the stronger of the drugs, which would

mean that adding a weaker drug does not change the rate at which

susceptible cells are killed. On the other extreme we have a sum of

the two killing rates, which means that all drugs contribute

proportionally to the killing rate. In the general case of m drugs, we

assume that the effect of the drug combination on cell types

susceptible to all the drugs is somewhere between the maximum

(individual) killing rate and the sum of all the killing rates (see text

S1 for the exact formulation).

At time t = 0, we assume that a cancerous colony starts growing

stochastically from M0 susceptible cells; at the time when

treatment begins, there are N cells in the colony; this includes

both susceptible cells and cells of other types generated before

treatment starts. A stochastic model based on the processes

described above has been formulated and analyzed in [59,64]. In

this paper we will move a step forward in terms of biological

realism and design a way to incorporate the existing experimental

data on BCR-ABL mutations into the model. One approach

would be to list all the different molecular types (that is, take

account of all the genotypes that appear in the experimental data)

and keep track of whether they are resistant or susceptible to each

of the drugs at each concentration. Consequently, there would be

as many nodes in the network as there are different mutants.

Furthermore, for each drug combination/concentration, different

nodes would be subject to different drug-induced death rates. In

particular, a given node can be susceptible for some drug

combinations, and resistant for others.

However, here we adopt a different approach. We fix a simple

combinatorial mutation network whose nodes have binary indices,

as described above. These nodes correspond to different resistance

phenotypes rather than genotypes. Depending on the drug

combinations/concentrations that are used, the molecular types

that comprise each phenotype will change. In order to capture the

effect of drug concentration we note that as a result of an increase

in a drug concentration, the relevant resistance classes will contain

fewer mutants. In this model we assume that the total mutation

rate between classes i and j is proportional to the number of

different point mutations that transform a cell from class i to class j.

Therefore, a decrease in a number of types comprising a resistance

class will result in a decrease in the mutation rates generating this

class. For example, an increase in the concentration of drug 1 (see

figure 1) will reduce the resistance classes 100, 101, 110 and 111,

and therefore the rates u1, u12, u13 and u123 will be reduced.

Classification of mutations
We will use the following convention for mutation rates:

uk~iku,

where u is the rate of point mutations per cell division per base-

pair, and ik is the number of point mutations conferring resistance

to the kth drug. For cross-resistance we use the same notation,

using subscripts to indicate the particular drug numbers that the

mutant is resistant to; for example, the number of mutations that

confer resistance to drugs 1 and 3 is denoted by i13. We will utilize

the experimental data from papers [1,2] in order to calculate the

quantities is, isk and iskm. To this end, we develop some basic rules

for data analysis.

We divide the concentrations of each drug into three categories:

low dose, medium dose, and high dose; Table 1 describes these

categories for each drug. From this convention, we can use the

data to extract the types of point-mutations resistant to each drug,

according to their category of concentrations. Table 2 lists all the

mutation types found in the experiments and specifies if they are

resistant to different drugs. This table indicates if a mutant is

resistant to each concentration of each drug; this is marked by a

‘‘+’’. If the mutant is susceptible to the concentration of a drug,

then there are no markings in the table. In constructing table 2, we

took the convention that if a mutation was found at a certain

category, say medium dose, then we add this mutant to all lower

categories, even if this was not found in the data (due to certain

random fluctuations involved in any experimental procedures).

The rationale behind this is as follows: if there was outgrowth of a

particular mutant in presence of a drug with some concentration,

then it is likely that this mutant can grow in any lower

concentration of that drug.

We use the data for combinations of inhibitors from both papers

to identify mutants that were present in the different concentra-

tions of the drugs in treatment. If a mutation is present in a

combination of two drugs, then that mutant is resistant to each

drug. For example, the mutant L248K was not recovered for solo

treatments for imatinib or SGX70393. However, in combination

this mutant did arise. Thus, we assume that this mutant confers

resistance to both imatinib and SGX70393 individually according

to their concentrations.

The data in Table 2 allows us to determine the number of

resistant and cross-resistant mutants in the context of combining

drugs at different concentrations. Among all the relevant

mutations (that is, all the mutations that give rise to resistant

phenotypes) in the context of combination treatments, we will

distinguish three types:

1. Singly-resistant mutations, that is, mutations that confer

resistance to only one drug (the number of mutations giving

rise to resistance to drug s is denoted by the is count).

2. Doubly-resistant mutations, that is, mutations that confer

resistance to any two drugs (the isk count).

Figure 1. A mutation network for a three-drug treatment. The
nodes correspond to different resistance phenotypes, and the arrows to
mutation processes; mutation rates are marked next to the arrows.
Singly-resistant mutations are denoted my solid lines, doubly-resistant
mutations – by dashed lines and italic font, and the triply-resistant
mutation by a thick line and bold font.
doi:10.1371/journal.pone.0012300.g001
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Table 2. Possible mutations that may arise in the presence of inhibitors at different concentrations.

I/L I/M I/H N/L N/M N/H D/L D/M D/H S/L* S/M* S/H

M244V +

L248R + + + + + + + +

L248V + + + +

G250E + + + + + + +

Q252H + + + + + + +

Y253H + + + + + + +

E255K + + + + + + +

E255V + + + + + + + +

D276G +

E292V +

V299L + +

F311I + +

F311V +

T315I + + + + + + + + +

F317C + + + +

F317I + + + + + +

F317L + + + + +

F317V + + + + +

M351T +

E355G +

F359C + +

F359V +

V379I +

L384M + +

L387F +

H396R + +

G250W +

Y253F + + + + +

Y253N + + +

G249D + +

Q252E +

Q252H + + + +

Y253C + +

L248M + +

L248Q + + + +

F317S + +

E258K +

G250V + +

N322K +

E355G +

S417Y +

L248K + + + + +

G250A + + +

*This indicates that this drug at this concentration cannot kill the un-mutated Native (or wild-type) cell.
The rows define the particular point-mutations and the columns define the inhibitors imatinib (I), nilotinib (N), dasatinib (D), and SGX70393 (S), with the indicated
concentration (L, M, and H for Low, Medium and High, respectively). A ‘‘+’’ indicates that the mutant is resistant.
doi:10.1371/journal.pone.0012300.t002
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3. Triply-resistant mutations, that is, mutations that confer

resistance to three drugs simultaneously (the iskm count).

The values is, isk, and iskm are calculated from the experimental

data described above, and are presented in Text S1, Section 2 and

Tables 1, 2.1–2.4 and 3.1–3.8.

The stochastic model implemented here will be used for

validating the counting algorithms designed in the next sections.

All the parameters and their definitions are summarized in a table

in Section 1 of Text S1. The parameter value ranges used in the

simulations are as follows: the point mutation rate, u, is

10{8{10{7 per cell division per base-pair, the cancerous

population size at the beginning of treatment, N, is up to 1013

[65], the initial colony size M0~10, the death rate to division rate

ratio is between 0 and 0.9, and the drug-induced death rate to

division rate ratio is between 1 and 10.

Results

The stochastic model described here allows one to calculate the

probability of treatment success, given the values of relevant

parameters (such as the division and death of cells, mutation rates,

etc). The problem is that at this moment we do not have reliable

measurements of all the parameters available. Therefore, instead

of attempting to attach a numerical value to the probability of

treatment success, we will design an algorithm which allows us to

select the best drug combination which maximizes the chances of

successful treatment, while keeping the number and concentration

of drugs as low as possible. It turns out that this is possible to

accomplish without the knowledge of the parameters, but only

based on the mutation information on various drugs at different

concentrations. The algorithm is based on some fundamental

properties of mutations which are described next.

Mutation types and their influence on treatment success
In a three-drug treatment, there are three types of mutations

(figure 1): singly- resistant mutations (the i1, i2, and i3 counts),

doubly- resistant mutations (i12, i13, and i23 counts), and triply-

resistant mutations (the i123 count). In order to see how much each

type of mutations affects the probability of treatment success, we

will turn ‘‘on’’ some of these mutations, while leaving the rest of

them ‘‘off’’. Numerical simulations (see the stochastic model of

Text S1) show that triply-resistant mutations have a large influence

on the probability of treatment success, whereas doubly- and

singly-resistant mutations only give corrections to that probability

of the order of 0.1% or less. In table 3, we show an example of this

behavior by comparing the probability of treatment success in the

presence and in the absence of singly- and doubly-resistant

mutations. For singly-resistant mutations, we usei1~i2~i3~30,

which is the maximum count that appears in Text S1, table 1.

Similarly, for doubly-resistant mutants, we take i12~i13~i23~20
(compare to the values in tables 2.1–2.4 of Text S1). Finally, we let

i123~1, and compute the probabilities of treatment success for

different tumor sizes with different combinations of mutations. In

the body of the table, we present two probabilities corresponding

to the two extreme values of the drug-induced killing rate, see

inequality (7) of Text S1: the 1st value in each cell corresponds to

taking the maximum of the killing rates and the 2nd one

corresponds to taking the sum of the killing rates. We can see

that switching partially-resistant mutations on and off only changes

the probabilities by less than 0.1%.

Using the basic model with all types of mutations on, and

varying the number of triply-resistant mutations, i123, we

calculated the probability of treatment success for different tumor

loads, see table 4. Increasing the number of triply-resistant

mutants, i123, causes a significant decrease in the probability of

treatment success. We conclude that the number of fully cross-

resistant mutants dramatically affects the probability of treatment

success. This implies that as long as there is at least one fully cross-

resistant mutant, the success rate of a treatment solely depends on

the number of these mutants, regardless of how many drugs are

involved.

An analytical justification of these findings comes from an

expansion, in terms of the small mutation rate, u, of the probability

of treatment failure. In long-term drug combination treatments,

the reason for treatment failure is assumed to be the creation of

fully resistant mutants. The expected number of such mutants at

the start of treatment (which is a deterministic quantity) correlates

with the probability of treatment failure. Let us write down the

system of deterministic equations governing the dynamics of all

resistance classes; for illustration purposes we do this for the case of

Table 3. Probability of treatment success for a three drug combination treatment with different mutations ‘‘on’’ and ‘‘off’’.

Log10N
Triply resistant
mutations only

Doubly- and triply-resistant
mutations

Singly- and triply-resistant
mutations All mutations

4.8 0.99930112
0.99934929

0.99930095
0.99934912

0.99930112
0.99934929

0.99930070
0.99934887

5.9 0.99112253
0.99172971

0.99111991
0.99172708

0.99112253
0.99172970

0.99111603
0.99172331

7.0 0.89709172
0.90350403

0.89706178
0.90347364

0.89709172
0.90350401

0.89701783
0.90343032

8.1 0.40499863
0.42232880

0.40491946
0.42224265

0.40499862
0.42232872

0.40480337
0.42211996

9.2 0.05046559
0.05400193

0.05044983
0.05398387

0.05046559
0.05400191

0.05042673
0.05395817

10.3 0.00413271
0.00443748

0.00413136
0.00443592

0.00413271
0.00443748

0.00412937
0.00443370

11.4 0.00032392
0.00034791

0.00032382
0.00034779

0.00032392
0.00034791

0.00032366
0.00034761

We take as parameters L~1, d~0, hk~10, u~10{8 , i0~1, i123~1, i1~i2~i3~30, i12~i13~i23~20 (for detailed definitions of the parameters see Text S1). For each

tumor size and specific mutation gates we have two probabilities: the 1st one corresponds to fm h1, . . . ,hmð Þ~Max hið Þ, and the second one to fm h1, . . . ,hmð Þ~
Pm
i~1

hi .
doi:10.1371/journal.pone.0012300.t003
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two drugs, and later generalize to three drugs:

_xx00~ L00 1{u1{u2{u12ð Þ{D00½ �x00,

_xx10~L00u1x00z L10 1{u2{u12ð Þ{D10½ �x10,

_xx01~L00u2x00z L01 1{u1{u12ð Þ{D01½ �x01,

_xx11~L00u12x00zL10 u2zu12ð Þx10zL01 u1zu12ð Þx01z L11{D11½ �x11,

ð2Þ

where variables xs indicate the average numbers of mutants of

resistance class s, Ls and Ds are the corresponding division and

death rates, and the initial condition isw

x00 0ð Þ~M0, x10 0ð Þ~x01 0ð Þ~x11 0ð Þ~0:

This system was derived by using standard methods from the

stochastic master equation, see text S1. We are interested in

the solution in the lowest order in u, therefore in the parentheses

the mutation rates can be neglected compared to 1:

_xx00~ L00{D00½ �x00,

_xx10~L00u1x00z L10{D10½ �x10,

_xx01~L00u2x00z L01{D01½ �x01,

_xx11~L00u12x00zL10 u2zu12ð Þx10zL01 u1zu12ð Þx01z L11{D11½ �x11:

We can see that the quantity x00 (fully-susceptible cells) is

independent of the mutation rate. Quantities x10 and x01 (one-hit

mutants), in the leading order, are proportional to the first power

on u. Finally, the quantity x11 (fully-resistant mutants) in the

leading order is proportional to the quantity i12u, the rate of

creation of doubly-resistant mutants directly from fully-susceptible

mutants. In the absence of cross-resistance (i12~0), the expected

number of fully-resistant mutants is proportional toi1i2u2.

Similarly, for three-drug treatments, the leading term in the

expansion for the number of triply-resistant cells, x111, is

proportional to i123u. In the absence of triply-resistant mutants

(that is, if i123~0), this quantity’s largest contribution is quadratic

in u and proportional to

i1i23zi2i13zi3i12zi12i13zi13i23zi23i12ð Þu2: ð3Þ

Clearly, fully cross-resistant mutations comprise the dominant

influence on the expressions for treatment failure (i12 for 2-drug

treatments and i123 for 3-drug treatments); notice that the leading

term in the expansion of the probability of treatment failure only

has these mutations. Therefore, we can conclude that only these

highest fully-cross-resistant mutations should be taken into account

when evaluating the chances of treatment success for different

drug combinations. This gives rise to some fairly straightforward

algorithms which allow us to single out the most efficient treatment

protocols. They are described in the next sections.

Algorithm A1 for finding the best treatments in the case
where there is at least one fully cross-resistant mutant

We will now develop an algorithm which allows us to identify

the best possible treatments without the use of stochastic

calculations. Our goal is to maximize the probability of treatment

success, while minimizing the number and concentration of drugs.

In the case where there are triply-resistant mutations, the

number of mutations that confer resistance to all the drugs in the

treatment is of most importance in determining the best treatment

strategy. Therefore, we only need to inspect tables 1, 2.1–2.4 and

3.1–3.8 of Text S1 for the best treatment strategies. The main idea

is as follows. From all possible treatments, we need to identify the

ones with the smallest number of fully cross-resistant mutants.

Among these treatments, choose the ones that contain the smallest

number of drugs at the lowest concentrations. More precisely,

among treatments containing the same sets of drugs, we pick only

the ones with the lowest concentrations, and if a particular

treatment uses a subset of the drugs (at the same concentrations) of

another treatment, we only include the treatment with the smaller

number of drugs. The following algorithm (which we call

Algorithm A1) executes this program and produces a set of the

best possible treatments:

1) Identify all treatments that have the least number of fully

cross-resistant mutants and list them, B~ Tj

� �n

j~1
. That is,

all treatments in B will have the same number of fully cross-

resistant mutants.

2) Divide B into three disjoint subsets: B~B1|B2|B3, where

Bk consists of treatments with k drugs. If the number of fully

cross-resistant mutations is zero, stop and continue with

Algorithm A2 in the next section. Otherwise, continue to

step 3.

3) Note that B1 consists of one-drug treatments, each with a

specific concentration. If a particular drug appears more

than once in B1 with different concentrations, then only

keep the one with the lowest concentration, so that we have

a refined set ~BB1(B1.

4) If a drug with its particular concentration that is in the set B1

appears in B2 or B3, then do not consider those treatments.

This will produce the first refinement of the sets B’2(B2

andB’3(B3.

5) If a pair of treatments in B’2 has the same two drugs and one

of the drugs has the same concentration in the pair, then get

rid of the treatment whose other drug is of a higher

concentration. This will fully refine the set ~BB2(B’2(B2.

6) If two of the drugs with specific concentrations in B’3 appear

in B2, then get rid of it so to refine the set B’’3(B’3.

7) Next, if a pair of treatments in B’’3 has the same three drugs,

and the concentration of one or more drugs is higher in one

treatment than in the other, then keep the treatment with

the drug(s) of lower concentration. This will produce a fully

refined set ~BB3(B’’3(B’3(B3.

Table 4. Probability of treatment success for a three drug
combination treatment with different number of
triply-resistant mutations.

Log10N-. 4.8 5.9 7.0 8.1 9.2 10.3 11.4

i123 = 0 1.000 1.000 0.9999 0.9988 0.9851 0.8376 0.2871

i123 = 1 0.9993 0.9911 0.8970 0.4048 0.0504 0.0041 0.0003

i123 = 2 0.9986 0.9824 0.8133 0.2538 0.0259 0.0021 0.0002

i123 = 3 0.9979 0.9738 0.7439 0.1849 0.0174 0.0014 0.0001

i123 = 4 0.9972 0.9654 0.6854 0.1454 0.0131 0.0010 0.0001

We take as parameters L~1, d~0, hk~10, u~10{8 , i1~i2~i3~30,
i12~i13~i23~20, and fm h1, . . . ,hmð Þ~Max hið Þ (for detailed definitions of the
parameters see Text S1).
doi:10.1371/journal.pone.0012300.t004

ð2Þ
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8) The set ~BB~~BB1|~BB2|~BB3 consists of the best treatment

strategies.

For illustration, we will go through steps 1–8 of Algorithm A1 to

identify the set of the best treatments possible with the three

available inhibitors, imatinib, nilotinib, and dasatinib. Let us

denote by

T IC1
,NC2

,DC3

� �

the treatment with imatinib (I), nilotinib (N), and dasatinib (D).

The subscripts, Ci, meaning concentration, will have four values: 0

for none, L for low, M for medium, and H for high. Thus,

T I0,NM ,DMð Þ, represents treating with twodrugs, nilotinib and

dasatinib, both at medium concentrations.

We first note that any treatment with only one fully cross-

resistant mutation is in the set B. We will turn our attention to B1.

This set consists of T(I0,NH ,D0) and T I0,N0,DHð Þ, and is

already fully refined, so that

~BB1~ T I0,NH ,D0ð Þ,T I0,N0,DHð Þf g:

We next obtain the sets B’2 and B’3 by getting rid of any two or

three drug treatments that have either nilotinib or dasatinib at

high concentrations:

B’2~ T I0,NL,DMð Þ,T I0,NM ,DMð Þf g,

B’3~ T IH ,NL,DMð Þ,T IH ,NM ,DLð Þ,T IL,NL,DMð Þ,T IL,NM ,DMð Þ,f

T IM ,NL,DMð Þ,T IM ,NM ,DMð Þ,T IH ,NM ,DMð Þg:

This completes steps 1–4. Now for step 5, we can refine B’2 by

noticing that both treatments have dasatinib at medium and

nilotinib at low and medium. Thus, we have the fully refined set

~BB2~ T I0,NL,DMð Þf g:

Next, we use ~BB2 to refine B’3:

B’’3~ T IH ,NM ,DLð Þf g:

This set cannot be further refined and thus,

~BB3~ T IH ,NM ,DLð Þf g:

Thus, we have the following set of the best treatment strategies

with imatinib, nilotinib, and dasatinib:

~BB~ T I0,NH ,D0ð Þ,T I0,N0,DHð Þ,T(I0,NL,DM ),T IH ,NM ,DLð Þf g:

In words, the best treatments are as follows:

N 1 drug treatment with nilotinib at a high concentration.

N 1 drug treatment with dasatinib at a high concentration.

N 2 drug combination treatment with nilotinib at a low

concentration and dasatinib at a medium concentration.

N 3 drug combination treatment with imatinib at a high

concentration, nilotinib at a medium concentration, and

dasatinib at a low concentration.

Since all these treatment protocols have a fully cross-resistant

mutant, T315I, they all have similar probabilities. It will be the

physician’s decision influenced by the patient’s needs that will

determine exactly which treatment to use.

Next, we would like to consider incorporating the inhibitor

SGX70393 in a combination treatment with at most three drugs.

Algorithm A2 for finding the best treatments in the case
where there are no fully cross-resistant mutants

If it is possible to use drugs which do not possess a possibility of

triply-resistant mutations, this makes the probability of treatment

success much higher. In this case, Algorithm A1 will not work, and

treatment protocol optimization requires an alternative counting

algorithm. This algorithm, which we call Algorithm A2, is

developed in this section.

We first define two numbers as follows: for two drugs,

S 2ð Þ~i1i2,

and for three drugs,

S 3ð Þ~i1i23zi2i13zi3i12zi12i13zi13i23zi23i12:

These choices are dictated by our theoretical considerations,

see expression (3). It turns out that the quantities S(2) or S(3) (for

two- and three-drug treatments respectively) play a very important

role in the ordering of various combination treatments. They

indicate the main contribution to the probability of treatment

failure (for two-drug and three-drug treatments respectively) due to

resistant mutations. The smaller the S(2) or S(3) index, the larger is

the probability of treatment success. In what follows we will show

that the indices S(2) and S(3) provide a convenient ordering of

drug combinations equivalent to ordering in terms of their

probability of treatment success.

To demonstrate this, we calculated the probabilities of

treatment success using several different parameters, and we

found that an increase in S(2) or S(3) results in a decrease in the

probability of treatment success, such that the numbers S(2) and

S(3) give an ordering of probabilities for any tumor load. In figure 2

we present the calculated probabilities of treatment success, for

tumor load of size N~1010, for different parameter values, for

two-drug (solid markers) and three-drug (empty markers) treat-

ments, as functions of the numbers S(2) and S(3) (see also tables 5

and 6).

From this result, we construct an algorithm (Algorithm A2) for

the case where there are no fully cross-resistant mutants. This

algorithm will narrow down the sets B2 and B3 obtained from step

2 of Algorithm A1, to an ordered set, which starts with the

treatment with the highest probability of success and lists the

treatments in decreasing order; this set is also refined of treatments

that have higher concentrations or more drugs involved than ones

which produce the same probabilities. Here is the main idea of the

algorithm. If there are treatments characterized by the absence of

fully cross-resistant mutations, we arrange those treatments

according to their indices S(2) and S(3). Within each subgroup

(with a given index value), perform refinements identical to those

of Algorithm A1. As a result, we obtain an ordered set of

treatments which differ by their probability of treatment success.

Below are the steps of Algorithm A2:

1) Suppose there are ~ll many treatments in set B2 and the

numbers S(2) kð Þ for the kth treatments in B2 take the

following distinct values: m 1ð Þwm 2ð Þw . . . wm lð Þ, where
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lƒ~ll. From this, we can partition the set B2 according to

these numbers as follows: B2~A2
m(1)| � � �|A2

m(l).

2) Suppose there are ~qq many treatments in set B3 and the

numbers S(3) kð Þ for the kth treatments in B3 take exactly q

distinct values, p 1ð Þwp 2ð Þw . . . wp qð Þ, where qƒ~qq. From

this, we can partition the set B3 according to these numbers

as follows: B3~A3
p(1)| � � �|A3

p(q).

3) We proceed to refine within each subset, A2
m(k) and A3

p(k). For

the subset A2
m(1) we identify all the sets A3

p(k), where

m 1ð Þƒp kð Þ, and perform steps 3–7 of Algorithm A1. Next

for subset A2
m(2) we identify all the sets A3

p(k), such that

m 2ð Þƒp kð Þvm 1ð Þ, and perform steps 3–7 of Algorithm A1.

Continue this process for all m kð Þ, 1ƒkƒl. This will fully

refine each subset of B2 and B3; denote the new refined sets by

~AA2~~AA2
m(1)| � � �|~AA2

m(a) and ~AA3~~AA3
p(1)| � � �|~AA3

p(b):

4) Suppose we order all possible numbers S(2) and S(3) for the

treatments in the sets ~AA2 and ~AA3, respectively, in increasing

order: w 1ð Þ,w 2ð Þ, � � � ,w vð Þ. Then order all subsets ~AA2
m(k) and

~AA3
p(k) according to w 1ð Þ,w 2ð Þ, � � � ,w vð Þ, using the conven-

tion that if S(2)~S(3)~w kð Þ, then we place ~AA2
w(k) before

~AA3
w(k). This will produce an ordered set, ~AA, of the best

treatments in sets B2 and B3, starting with the treatment

with the highest probability of success.

The set ~AA is an ordered set. A physician should consider the first

treatment on the list; if the patient cannot tolerate that treatment,

then the next treatment in the list should be considered, and so on.

Note that this is different from the set ~BB, obtained from Algorithm

A1. In set ~BB, all treatments have the same success rate, give or take

a percent. This is not true with the resulting set, ~AA, of Algorithm

A2; there, the probabilities of treatment success can have a large

range.

We will apply the new algorithm to obtain the best treatment

strategies with the inclusion of the inhibitor SGX70393. Although

the inhibitor SGX70393 is not available for use, it is a good

example of a drug with no fully cross-resistant mutants if it is

combined with any of the existing inhibitors.

We begin by identifying the sets B2 and B3 using step 1 of

Algorithm A1. This produces 45 three-drug treatments and 7 two-

drug treatments. After steps 3 and 4 of the algorithm we have

tables 5 and 6 for the sets A2 and A3, respectively. Notice that we

also provide a probability of treatment success for several cases to

show how well the numbers S(2) and S(3) work in ordering the

probabilities.

We proceed to step 5 by ordering the numbers S(2) in

decreasing order: 29, 24, 20, and 6 (m 1ð Þ, m 2ð Þ, m 3ð Þ, and m 4ð Þ).
For m 1ð Þ~29, we perform steps 3–7 of Algorithm A1 on rows 6

and 7 of table 5 and rows 29–45 of table 6 which correspond to

p 1ð Þ~29, 31, 38, 43, 47, 58, 75, 85§29~m 1ð Þ. This step results

in removing rows 29–38 of table 6, because they contain

treatments which utilize the same drugs at the same concentrations

as the treatments in rows 6 and 7 of table 5, together with

additional drugs. This makes these treatments redundant.

For m 2ð Þ~24, steps 3–7 of Algorithm A1 have to be performed

on row 5 of table 5 and row 28 of table 6 which correspond to

Figure 2. The probability of treatment success as a function of
the numbers S(2) and S(3). Different markers correspond to different
treatment parameters: circles (division rate L = 10, death rate d = 9,
drug-induced death rate hi = 10, mutation rate u = 1027, cancerous
population size at the start of treatment N = 1010), squares
(L~1,d~0,hi~10,u~10{8,N~1011), diamonds (L~5,d~4,hi~10,
u~10{8,N~1012) , triangles (L~5,d~4,hi~10,u~10{8,N~1013) .
Empty markers denote three-drug treatments, and solid ones – two-
drug treatments. The data are presented in tables 5 and 6.
doi:10.1371/journal.pone.0012300.g002

Table 5. Set B2 after step 3 of Algorithm A2.

Concentrations of the drugs in the
following order: Ima, Nilo, Dasa, SGX S(2)

L = 10, d = 9, hi = 10,
u = 1027, N = 1010

L = 1, d = 0, hi = 10,
u = 1028, N = 1011

L = 5, d = 4, hi = 10,
u = 1028, N = 1012

L = 5, d = 4, hi = 10,
u = 1028, N = 1013

1 0, H, 0, H 6 0.3930 0.9985 0.7240 0.2075

2 0, 0, H, H 6 0.3930 0.9985 0.7240 0.2075

3 0, H, 0, M 20 0.1690 0.9947 0.4285 0.0700

4 0, 0, H, M 20 0.1690 0.9947 0.4285 0.0700

5 H, 0, 0, H 24 0.1460 0.9940 0.3830 0.0585

6 0, H, 0, L 29 0.1250 0.9922 0.3380 0.0485

7 0, 0, H, L 29 0.1250 0.9922 0.3380 0.0485

The second column shows the concentrations of each drug in order of imatinib (ima), nilotinib (nilo), dasatinib (dasa), and SGX70393 (SGX). The last 4 columns show the
probability of treatment success given the parameters shown taking the sum of killing rates. For detailed definitions of the parameters see Text S1.
doi:10.1371/journal.pone.0012300.t005
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Table 6. Set B3 after Step 4 of Algorithm 2. Details are as in table 5.

Concentrations of the drugs in the
following order: Ima, Nilo, Dasa, SGX S(3)

L = 10, d = 9, hi = 10,
u = 1027, N = 1010

L = 1, d = 0, hi = 10,
u = 1028, N = 1011

L = 5, d = 4, hi = 10,
u = 1028, N = 1012

L = 5, d = 4, hi = 10,
u = 1028, N = 1013

1 0, H, L, H 6 0.3980 0.9986 0.7400 0.2215

2 L, H, 0, H 6 0.4020 0.9985 0.7240 0.2205

3 L, 0, H, H 6 0.4020 0.9985 0.7240 0.2205

4 0, L, H, H 6 0.4030 0.9986 0.7410 0.2225

5 M, H, 0, H 6 0.4020 0.9986 0.7390 0.2205

6 M, 0, H, H 6 0.4020 0.9986 0.7390 0.2205

7 0, M, H, H 6 0.4030 0.9986 0.7275 0.2110

8 0, H, M, H 6 0.4030 0.9986 0.7285 0.2115

9 H, H, 0, H 6 0.4040 0.9986 0.7295 0.2125

10 H, 0, H, H 6 0.4040 0.9986 0.7295 0.2125

11 0, H, H, H 6 0.4040 0.9985 0.7295 0.2125

12 H, 0, M, H 14 0.2280 0.9966 0.5410 0.1055

13 H, M, 0, H 16 0.2050 0.9961 0.4890 0.0875

14 0, M, M, H 19 0.1800 0.9950 0.4440 0.0740

15 0, H, M, M 20 0.1740 0.9948 0.4340 0.0710

16 M, H, 0, M 20 0.1750 0.9947 0.4320 0.0705

17 M, 0, H, M 20 0.1750 0.9947 0.4320 0.0705

18 0, M, H, M 20 0.1760 0.9948 0.4350 0.0715

19 H, H, 0, M 20 0.1760 0.9948 0.4350 0.0715

20 H, 0, H, M 20 0.1760 0.9948 0.4350 0.0715

21 0, H, H, M 20 0.1760 0.9948 0.4360 0.0715

22 0, H, L, M 20 0.1730 0.9948 0.4325 0.0710

23 L, H, 0, M 20 0.1750 0.9947 0.4310 0.0705

24 L, 0, H, M 20 0.1750 0.9947 0.4310 0.0705

25 0, L, H, M 20 0.1760 0.9948 0.4340 0.0710

26 H, L, 0, H 21 0.1660 0.9945 0.4190 0.0675

27 H, 0, L, H 22 0.1590 0.9942 0.4070 0.0640

28 0, H, H, L 28 0.1340 0.9927 0.3530 0.0520

29 H, H, 0, L 29 0.1300 0.9924 0.3440 0.0500

30 H, 0, H, L 29 0.1300 0.9924 0.3440 0.0500

31 0, H, M, L 29 0.1290 0.9923 0.3435 0.0500

32 M, H, 0, L 29 0.1300 0.9923 0.3425 0.0495

33 M, 0, H, L 29 0.1300 0.9923 0.3425 0.0495

34 0, M, H, L 29 0.1300 0.9924 0.3440 0.0500

35 L, H, 0, L 29 0.1300 0.9923 0.3410 0.0490

36 L, 0, H, L 29 0.1300 0.9923 0.3410 0.0490

37 0, L, H, L 29 0.1300 0.9924 0.3435 0.0495

38 0, H, L, L 29 0.1290 0.9923 0.3425 0.0495

39 0, L, M, H 31 0.1200 0.9922 0.3380 0.0485

40 0, M, M, M 38 0.1010 0.9897 0.2795 0.0375

41 M, 0, M, H 43 0.0920 0.9891 0.2555 0.0330

42 0, M, M, L 47 0.0840 0.9872 0.2380 0.0305

43 L, 0, M, H 58 0.0700 0.9851 0.2010 0.0245

44 0, L, M, M 75 0.0550 0.9794 0.1620 0.0190

45 0, L, M, L 85 0.0490 0.9766 0.1455 0.0165

doi:10.1371/journal.pone.0012300.t006
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m 2ð Þ~24ƒ 28v29~m 1ð Þ. These steps do not lead to any

further refinement.

For m 3ð Þ~20, we perform steps 3–7 of Algorithm A1 on the

rows 3 and 4 of table 5 and rows 15–27 of table 6 which

correspond to m 3ð Þ~20ƒ20, 21, 22v24~m 2ð Þ. This step

results in removing rows 15–25 of table 6.

Finally, for m 4ð Þ~6, we perform steps 3–7 of Algorithm A1 on

the rows 1 and 2 of table 5 and rows 1–14 of table 6 which

correspond to m 4ð Þ~6ƒ6, 14, 16, 19v20~m 3ð Þ. This step

results in removing rows 1–12 of table 6.

We now order the remaining treatments according to step 7 and

produce table 7.

Algorithm A2 allowed us to narrow down the 57 treatments of

step 2 to just 20 treatments. These 20 treatments are in order of

decreasing probability of treatment success. They are presented in

figure 3, as a plot of the probability of treatment success as a

function of different treatment protocols. As we can see, all the

best treatment protocols rely on the usage of the T315I inhibitor.

Furthermore, the treatments corresponding to the highest success

probabilities are two-drug treatments where both drugs are used at

the highest concentrations. These are followed by three-drug

treatments with drugs used at lower concentrations.

Discussion

We have developed a counting method to narrow down all

possible treatments to the best ones. Although the development of

the methodology relies on stochastic calculations, this counting

method can be used by biologists and physicians, and does not

require a strong mathematical background. To implement the

method, one does not need to calculate the specific probabilities

for each treatment, but simply follow the steps to select and order

different protocols. Along with the counting scheme, which

accounts for the hierarchy of probabilities of success, we weed

out many treatments to minimize the number of drugs in

combination and their respective concentrations.

To create this method we used the data from biological

experiments to identify which types of point mutations can cause

resistance to various drugs at different concentrations. In general,

Table 7. Set ~AA after all the steps of Algorithm A2. Details are as in table 5.

Concentrations of the drugs in the
following order: Ima, Nilo, dasa, SGX S(k)

L = 10, d = 9, hi = 10,
u = 1027, N = 1010

L = 1, d = 0, hi = 10,
u = 1028, N = 1011

L = 5, d = 4, hi = 10,
u = 1028, N = 1012

L = 5, d = 4, hi = 10,
u = 1028, N = 1013

1 0, H, 0, H 6 0.3930 0.9985 0.7240 0.2075

2 0, 0, H, H 6 0.3930 0.9985 0.7240 0.2075

3 H, 0, M, H 14 0.2280 0.9966 0.5410 0.1055

4 H, M, 0, H 16 0.2050 0.9961 0.4890 0.0875

5 0, M, M, H 19 0.1800 0.9950 0.4440 0.0740

6 0, H, 0, M 20 0.1690 0.9947 0.4285 0.0700

7 0, 0, H, M 20 0.1690 0.9947 0.4285 0.0700

8 H, L, 0, H 21 0.1660 0.9945 0.4190 0.0675

9 H, 0, L, H 22 0.1590 0.9942 0.4070 0.0640

10 H, 0, 0, H 24 0.1460 0.9940 0.3830 0.0585

11 0, H, H, L 28 0.1340 0.9927 0.3530 0.0520

12 0, H, 0, L 29 0.1250 0.9922 0.3380 0.0485

13 0, 0, H, L 29 0.1250 0.9922 0.3380 0.0485

14 0, L, M, H 31 0.1200 0.9922 0.3380 0.0485

15 0, M, M, M 38 0.1010 0.9897 0.2795 0.0375

16 M, 0, M, H 43 0.0920 0.9891 0.2555 0.0330

17 0, M, M, L 47 0.0840 0.9872 0.2380 0.0305

18 L, 0, M, H 58 0.0700 0.9851 0.2010 0.0245

19 0, L, M, M 75 0.0550 0.9794 0.1620 0.0190

20 0, L, M, L 85 0.0490 0.9766 0.1455 0.0165

doi:10.1371/journal.pone.0012300.t007

Figure 3. The ordered set of the best treatment protocols
resulting from a application of Algorithm A2. The probability of
treatment success is plotted as a function of treatment protocols, see
also table 7. The parameters are as in figure 2.
doi:10.1371/journal.pone.0012300.g003
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in the context of multi-drug treatments, we classify all possible

mutations into three classes, singly-, doubly-, and triply-resistant

mutations, depending on how many different drugs (out of the

three drugs in the combination) they confer resistance to. From the

experimental data, we count the numbers of mutations of each

type, for each possible treatment. From this information, we

provide two algorithms: one that deals with treatments that do not

possess any triply-resistant mutants (Algorithm A2), and another

one for treatments which include only drugs with a possibility of

triply-resistant mutations (Algorithm A1).

The mathematics that we used to develop these methods

included a stochastic model of resistance [59,60] refined to allow

for different drug concentrations. We used analysis on this model

along with numerical results to support the proposed counting

techniques. One important pattern that we found is that in the

presence of a possibility of triply-resistant mutations, other types of

mutations (such as doubly-and singly-resistant mutations) do not

make a noticeable difference in the probability of treatment

success. This result suggests that in choosing the optimal

combination treatment, one should look for drugs with the

smallest number of fully cross-resistant mutants. If for a three-drug

therapy, a triply-resistant mutant exists (which is the case with

imatinib, dasatinib and nilotinib), then the presence of other

mutations (which may change depending on the dosage of the

drugs) does not make a difference for the probability of the

treatment success. Therefore, one should use the lowest possible

doses (and the smallest number of drugs) as long as there is only

one fully-cross-resistant mutant present (note that lowering the

doses too much would lead to a possibility of more than one triply-

resistant mutants). This result is not in contradiction with the

recent work of [66], where it is suggested that once imatinib-based

therapy failed, it is possible to find out what mutants caused

resistance, and then choose the best second-line drug based on

this. The knowledge of the mutations in an individual patient will

of course help refine the treatment strategy. Our approach only

gives a suggestion about the best plan of action before we know

anything about the mutations in an individual patient.

The algorithms of treatment optimization developed here have

the advantage that they do not require any information on the

(usually unknown) parameters which are part of traditional

stochastic modeling. We do not need to know the tumor size,

the mutation rates, the growth/death/quiescence rates of cancer

cells, or the killing rates of individual drugs or drugs in

combination. The only information which is required to execute

the algorithm is the activity spectra of the drugs in use. These are

comprised of data on the numbers and resistance properties of

mutants resistant to each of the drugs. We hope that this technique

will aid physicians in the choice of the best possible combination

therapies with current and future, undeveloped inhibitors, which

maximize treatment success and minimize the harm that a patient

may endure from side effects of such drugs.

In this study, we illustrated the usage of the algorithms with the

data from [1,2]. The method developed here is rather general and

can be applied to other data sets. An example of a recently built

data set which includes mutations in the context of imatinib,

dasatinib, nilotinib and a newer drug bosutinib, can be found in

[67]. A very promising new drug which shows activity against

T315I-mutants is danusertib, whose properties are now being

studied [31,34,35,68]. Once more information is available on the

activity spectrum of this drug, one will be able to use Algorithm A2

in treatment designs involving danusertib together with some of

the older generation inhibitors. In this case, no triply-resistant

mutants exist, and one can come up with a hierarchy of

combination protocols based on the doubly- and singly-resistant

mutations.

In the present study we concentrated on combination

treatments. Although the common present clinical practice is to

treat patients with one drug (usually imatinib) and if resistance

arises, switch to a different drug, it has been suggested that a more

efficient treatment strategy is to combine several drugs [1,12,27].

Combination protocols have the advantage of minimizing the

chance of treatment failure due to drug resistance generation. It

can be shown by means of mathematical modeling that cyclic

therapies (which consist of cycles of single-drug applications) are

not nearly as efficient as combination therapies at achieving the

maximum treatment success. These considerations provided

motivation for optimizing combination protocols on the basis of

cross-resistance and drug concentration data. A similar analysis of

cyclic therapies, and also of informed therapies where certain

aspects of individual patient mutation spectrum are known, is a

subject of current and future research.

Finally, a very desirable future extension of the present study

would be to apply the algorithm to in vivo data when those become

available. For that more clinical trials must be conducted with

combination treatments consisting of imatinib, nilotinib, dasatinib

and any other drugs that are developed, at different levels of

concentration.
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