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Abstract

Adverse drug reactions (ADR), also known as side-effects, are complex undesired physiologic phenomena observed
secondary to the administration of pharmaceuticals. Several phenomena underlie the emergence of each ADR; however, a
dominant factor is the drug’s ability to modulate one or more biological pathways. Understanding the biological processes
behind the occurrence of ADRs would lead to the development of safer and more effective drugs. At present, no method
exists to discover these ADR-pathway associations. In this paper we introduce a computational framework for identifying a
subset of these associations based on the assumption that drugs capable of modulating the same pathway may induce
similar ADRs. Our model exploits multiple information resources. First, we utilize a publicly available dataset pairing drugs
with their observed ADRs. Second, we identify putative protein targets for each drug using the protein structure database
and in-silico virtual docking. Third, we label each protein target with its known involvement in one or more biological
pathways. Finally, the relationships among these information sources are mined using multiple stages of logistic-regression
while controlling for over-fitting and multiple-hypothesis testing. As proof-of-concept, we examined a dataset of 506 ADRs,
730 drugs, and 830 human protein targets. Our method yielded 185 ADR-pathway associations of which 45 were selected to
undergo a manual literature review. We found 32 associations to be supported by the scientific literature.
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Introduction

Adverse drug reactions (ADRs), often informally referred to as

side-effects, are rare complex physiologic phenomena that involve

various molecular processes [1]. Understanding these processes

may greatly impact the fields of drug discovery and personalized

medicine through the development of safer drugs, the discovery of

new bio-markers, and the identification of new uses for existing

drugs. Factors such as the patient’s genetic polymorphism,

personal history, and environmental exposure as well as drug

kinetics, treatment dosage, and molecular metabolism often

contribute to ADRs through a direct or indirect perturbation of

biological pathways [2]. While some ADRs result from the desired

interaction between drugs and their primary targets, in the

majority of cases these effects are caused by promiscuous off-target

binding of the drug [3].

Several recent studies have investigated the promiscuous

relationship between drugs, targets, and observed ADRs (in this

manuscript we will use the terms ADR and side-effect inter-

changeably). Fliri et al. studied the relationships between side-

effect profiles of drugs, their chemical structure, and the organism

response. They clustered drugs according to their side-effect

profiles and clustered side-effects according to the biological

systems of their associated drugs (e.g., immune system) thereby

linking side-effects and interaction patterns of drugs [4]. In a

follow-up study they explored the above relations as a mechanism

for predicting sets of side-effects for new drug candidates [5]. Their

findings reinforce the hypothesis that structurally similar drugs are

likely to induce similar side-effects. Campillos et al. identified

alternative targets for known drugs under the hypothesis that

structurally similar drugs sharing similar side-effect profiles were

also likely to share targets [6]. Keiser et al. analyzed the

relationship between protein targets and their ligands using a

ligand-based similarity metric that groups together seemingly

unrelated proteins [7]. In another study, the same group

constructed a model to identify alternative drug labels (or

functions) for known drugs by comparing their binding promis-

cuity [8]. They explored the similarity between drugs and native

ligands as an indication for possible binding promiscuity and the

use of this information to suggest alternative drug targets. In

general, the studies mentioned above utilized ADR profiles as a

feature set or fingerprint to predict new drug targets. In each case,

the biological process underlying the ADR remained hidden.

Recently, Xie et al. [9] have used virtual docking to study ADRs

related to the cholesteryl ester transfer protein (CETP) and

identified possible off-target interactions for a set of CETP

inhibitors. Their method uses a known 3D protein structure of

the primary target to characterize the binding site of the drugs.
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Then, it identifies potential off-targets by searching for other

proteins having similar binding sites. Possible interactions between

the resulting set of proteins and the drugs are then studied using

virtual docking. In a subsequent work, Durrant et al. [10]

augmented that method by adding an evolutionary model to

account for protein sequence homology. A substantial limitation of

these two approaches is their reliance on the availability of a 3D

structure of the primary target. Thus, this method may not be

feasible when studying many popular drug targets [11] for which

no 3D model yet exists. An approach that does not require any

structural knowledge of the primary target was suggested by Yang

et al. [12]. In their work, they used virtual docking to propose

possible interactions between a set of 845 proteins and a set of 162

drugs all known to induce at least one of four ADRs. Similar to

Xie et al., they aimed to identify off-target proteins involved in the

appearance of ADRs under the hypothesis that drugs causing the

same ADR may target the same proteins. Scheiber et al. [13]

analyzed the structural similarity of drugs associated with similar

ADRs and identified common chemical sub-structures that may be

involved in the induction of ADRs. In a related work from the

same group [14], cheminformatics target prediction methods were

used to identify potential off-targets for drugs that share the same

ADRs. Then, pathways were related to ADRs based on direct

mapping between predicted targets and pathways.

In this work, we developed a computational framework for

proposing associations between the ADRs of clinically approved

drugs and the modulation of underlying biological pathways. In

contrast to the work of Xie et al. [9] and Yang et al. [12], our

model exploits the assumption that drugs capable of modulating

similar pathways may have similar ADR profiles. Under this

assumption, an ADR may be associated with a pathway when

structurally different drugs, known to induce the same ADR, bind

proteins in the same pathway. Using pathway information to

connect between ADRs and predicted protein-drug interactions

provides two advantages. First, it allows our model to observe cases

in which different drugs modulate the same protein target and

second, it allows us to identify cases in which the modulation of a

pathway via different proteins affects the same biological process.

Furthermore, proteins that participate in several pathways can

implicate multiple biological processes with a single ADR. We

reveal ADR-pathway associations by exploiting three knowledge

bases: (i) the SIDER database of ADR profiles for drugs [15], (ii)

the KEGG database of biological pathway annotation [16], and

(iii) the PDB database of protein structures [17]. Each drug is

mapped to several potentially affected pathways by docking the

ligand into a set of pathway annotated human proteins.

The comparison of docking profiles for different drugs producing

the same ADR allows us to exploit both evidence of binding and

non-binding in building a consistent, minimal hypothesis. For

example, consider the case where two drugs produce the same

ADR. If only one of the two drugs is predicted to interact with

pathway X, then it is less likely that pathway X is solely responsible

for the ADR. The drug that does not interact with pathway X

provides evidence that disrupting the pathway is not necessary

(although it may be sufficient). We refer to the information provided

by this non-interacting prediction as negative evidence. The

proposed interactions between drugs and pathways along with the

known co-occurrence of drugs and ADRs are then used to learn

associations between pathways and ADRs. Our method demon-

strates the ability to draw correlations between ADRs and pathways,

despite the virtual docking limitations, and the incomplete catalog of

biological processes. Future improvements in virtual docking

algorithms and expansion of our knowledge of biological processes

should make our method more effective.

Results

We developed a computational model that associates ADRs

with biological pathways. The model is summarized in this

paragraph (full details appear in the Methods section). We used the

empirically observed relations between drugs and ADRs, the

mapping of target proteins into pathways, and the virtual

normalized docking results of drugs onto experimentally deter-

mined human protein structures to construct a graphical

representation of these relations (Figure 1). The current study

utilized 730 small-molecule clinically-approved drugs [15] and 830

target proteins with solved structures [17]. The protein targets

were associated with 176 human related pathways extracted from

the KEGG database [16]. The drugs were associated with 506

ADRs extracted from the SIDER database [15]. Our computa-

tional model learns a set of connections from ADRs to pathways

consistent with the observed drug-ADR relations. We note that for

some drugs, the ADRs listed in the SIDER database are not

traditional ADRs. For example, viral and bacterial infections, such

as herpes and tuberculosis, are listed as ADRs but clearly, do not

result from direct perturbations of a biological pathway. These

ADRs reflect the observations of viral/bacterial infections while

patients were under the administration of corresponding drugs.

Viral infections may be listed as ADR if a drug perturbs some

biological mechanisms and, as a result, increases vulnerability to

viral infections. Alternatively, an ADR may not reflect a causative

relation. For example, cancer or HIV patients having a stressed

immune system, may suffer from increased vulnerability to

infections. Consequently, cancer or HIV related drugs may be

associated with infectious related ADRs without any causative

underlying mechanism. In the results below we demonstrate

several such examples. For clarity, we will refer to these biological

pathway-ADR associations as simply associations. The learning of

these associations employed a 2-phase logistic-regression model

with L1-regularization and feature selection [18,19]. This method

was designed to avoid overfitting the small number of input

samples by using techniques that heavily penalize complex models.

As a result, the model identifies a small informative set of

associations for which there is the most evidence. Utilizing a

multiple testing correction with a false-discovery rate of 2% our

model identified a set of 185 associations worthy of further

investigation (Figure 2 and Table S3). These 185 associations

involve 90 pathways and 121 ADRs and represent an extremely

small fraction of the 89,056 possible pathway-ADR associations

(176 pathways and 506 ADRs).

Analysis of the inferred associations
Validating associations in the predicted set is a challenging task

(see the Discussion). In this work, we manually reviewed relevant

scientific literature for existent evidence of correctness of our

predicted associations. Clearly, the most fundamental limitation of

this approach is that we can only support associations already

discovered while novel associations suggested by our model will

not have any direct support in the literature. In order to facilitate

the process of a manual literature review, we first discarded

associations for which relevant literature is sparse. In the filtering

process, we analyzed the 185 inferred associations using associative

text-mining over the biomedical literature. Similar to Fliri et al. [5]

we used the frequency at which the association’s terms appear in

scientific publications as supporting evidence of correctness. Prior

to performing each search, the terms of the association were

expanded to include equivalent MeSH terms (http://www.nlm.

nih.gov/mesh). Then, for every association we performed a

PubMed search (http://www.ncbi.nlm.nih.gov/pubmed) for en-

Mapping ADRs to Pathways
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tries containing both terms of the association (i.e., the biological

pathway and the ADR). These associations were ranked by the

number of hits and the highly ranked associations were chosen to

undergo a manual literature review. While this text-mining

approach has been used in previous studies [5,20], the technique

does have some limitations. First, it is more likely to return a hit

when the two phrases are directly related. Second, the method can

only validate previously observed associations; consequently, the

inability to validate an association does not imply that it is false, it

may simply be unknown (see the Discussion section). Despite these

caveats, text mining can provide evidence in support of identified

associations. Of the 185 associations identified by our model, 45

exceeded our threshold of having at least 5 PubMed hits and were

selected for manual review. After manual examination of the

relevant literature, we propose that 22 associations are supported

and 10 have slightly less support but remain worthy of further

investigation (Table 1). All drug names related to the validated

associations appears in Table S9. The full set of relations between

drugs, proteins, pathways, and ADRs, is provided in File S1 as a

Cytoscape [21] file. We stress that this PubMed-based filtering was

only used to facilitate a thorough manual literature review. By

selecting a subset of associations that had sufficient annotations in

the literature we able to focus on those associations more likely to

be valid. Nevertheless, associations not passing the 5-hit threshold

may still be correct. For example, the associations of skin nodule

and the GAG degradation pathway or aseptic necrosis and the

Type-II diabetes pathway did not pass the 5-hit threshold yet were

supported by scientific evidences. Another important clarification

is that the identification of an association does not, of course,

necessarily imply causality. A causal relation may be partial such

that the inferred pathway is involved in the occurrence of the ADR

but is not the sole cause for it. Also, since the ADR data is simply a

record of ADR observations coincident with the administration of

drugs, non-causative relations may exist in the data and may be

found by our model. For example, a pathway may characterize a

group of patients for which the ADR is likely to be observed (see

the association of hernia with the prostate-cancer pathway below).

In the remainder of this section, we discuss some of the

associations identified by our method and supported by the

scientific literature. For brevity, we list only a limited set of

supporting references for each association below. The complete set

of references can be found in Table S1 and File S2.

ADRs associated with the glycosaminoglycan degradation

pathway. Glycosaminoclycan (GAG) proteins are abundant in

the extracellular matrix and cell membrane and are the first host

macromolecules encountered by most infectious agents [22]. Our

model associates eight ADRs with the GAG degradation pathway

from which six were supported in the literature. These include

three ADRs of bacterial or viral infection. Tuberculosis (TB) is a

bacterial infection that most commonly affects the respiratory

system [23]. GAG proteins have shown to be involved in bacterial

and viral infection, including TB, by exploiting GAG proteins to

mediate the attachment to target cells [22,23]. Interestingly, there

is also an association between the herpes zoster virus (HZV) and

Figure 1. An illustration of the inference method. Drug-pathway interactions are inferred from the results of protein-ligand docking. The KEGG
database [16] is used to map proteins to biological pathways. The SIDER database [15] associates drugs with their observed ADRs. In the docking
phase each drug (orange star) is docked against each protein (purple diamond) producing a set of docking results (green triangles). Then, two phases
of logistic regression are used to select those associations that are statistically significant. In phase-I, logistic regression with L1-regularization is used
to infer a set of informative connections between pathways (blue circles) and ADRs (red squares). In phase-II, a second logistic-regression model
selects the associations selected from phase-I that are statistically significant under multiple hypothesis correction (see Methods section).
doi:10.1371/journal.pone.0012063.g001

Mapping ADRs to Pathways
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the GAG degradation pathway. Several studied have demon-

strated a connection between viral infection, particularly herpes,

and GAG proteins [24,25]. Furthermore, inspection of the

suggested interactions between drugs associated with TB and

HZV and proteins in the GAG pathway showed that in both TB

and HZV infections a single beta-glucuronidase lysosomal

enzyme (1BHG) plays a central role (Figure 3). Our model also

suggests the association between meningitis infection and the

heparan sulfate biosynthesis pathway. Heparan sulfate is a

member of the GAG family and is known to be involved in

bacterial and viral infection [26]. Thus, for reasons similar to the

above, perturbation of the heparan sulfate biosynthesis may

increase the risk of meningitis. These three infection related

ADRs present an interesting case. Each of the three infection

related ADRs is supported by a relatively independent set of

drugs. Of the 27 drugs predicted to interact with the GAG

degradation pathway, 23 are associated with only one of the three

infection related ADRs (Figure S1). This suggests that the three

associations were independently inferred.

Other ADRs associated with the GAG degradation pathway are

wound dehiscence, amylase increased, and skin nodules. GAG

proteins are involved in wound healing and thus may be involved

in the occurrence of wound dehiscence [27]. Elevated serum

amylase level is one of the indicators of acute pancreatitis [28], an

inflammation of the pancreas that has been associated with the

GAG pathway [29]. Skin nodules are associated with abnormal

level of GAG proteins and particularly heparan sulphate

proteoglycan [30,31].

ADRs associated with the nicotinate and nicotinamide

metabolism pathway. The nicotinate and nicotinamide

(NAD) pathway is involved in the synthesis, utilization and/or

degradation of nicotinate and nicotinamide. Our model associates

eight ADRs with the NAD pathway from which fibrosis, cirrhosis,

and ascites were supported in the literature (Table S1).

Figure 2. An illustration of the network of pathway-ADR associations inferred by our model. Side-effects are represented as red squares
and pathways as blue circles. The full list of 185 associations is available at Table S3. The 22 associations most strongly supported by the literature are
circled. Pathways are colored by their KEGG categories.
doi:10.1371/journal.pone.0012063.g002
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Interestingly, these three ADRs are clinically related. Fibrosis is

the cumulation of excessive collagen in an organ and the

formation of scar tissue [32], cirrhosis is an advanced form of

liver fibrosis and is characterized by formation of a fibrous scar

[33], and ascites is the cumulation of excessive fluid in the

abdominal cavity and has been shown to be associated with

cirrhosis [34,35]. Similar to the GAG degradation pathway

example, each of the three fibrosis related ADRs were supported

by a relatively independent set of drugs (Figure S3).

ADRs associated with the type-II diabetes mellitus

pathway. Type-II diabetes mellitus (diabetes hereafter) is a

disorder of insulin resistance or insulin deficiency characterized by

high serum glucose levels [36]. Our model associates four ADRs

with the diabetes pathway: osteoporosis, aseptic necrosis, alkalosis,

and ptosis, all supported in the literature (Table S1). Particularly

interesting are the first two associations. Osteoporosis is a bone

disorder characterized by an increased risk of fractures due to a

reduction in the bone density [37]. The relation between

osteoporosis and diabetes have been established in several

studies and particularly, diabetic osteopathy, an increased

fracture risk in diabetes patients [38,39]. Inspecting the

Anatomical Therapeutic Chemical classification [40] of the

osteoporosis related drugs showed that 8 drugs were classified as

corticosteroids, a class of drugs that have been associated with both

steroid-induced osteoporosis and diabetes [41]. Aseptic necrosis

(AN) is a disease characterized by the death of cells in bones due to

lack of blood circulation [42]. While fewer indications of possible

connection between diabetes and AN appear in the literature, its

relation to osteoporosis provides support to this association.

Furthermore, an analysis of the drugs associated with

osteoporosis and AN showed that most of them were associated

with only one of the ADRs, thereby suggesting a rather

independent inference of these two related bone disease (Figure

S2).

Hernia – Prostate cancer pathway. A hernia is a

protrusion of a tissue or part of an organ through the cavity that

normally contains it. The prostate cancer pathway mainly

characterizes key molecular alterations in prostate-cancer cells

implicating carcinogen defenses, growth-factor-signaling path-

ways, and androgens [16]. The occurrence of inguinal hernia is

a common phenomenon after radical retropubic prostatectomy

(the removal of the prostate gland) [43,44]. While our model

suggests a connection between hernia and prostate cancer it is

unlikely that perturbations of the prostate related pathways will

result in a hernia. This is a demonstration of a non-causative

association. A plausible explanation for this association is that our

data includes prostate-related drugs that list hernia as an ADR.

Indeed, there are four such drugs (Figure 4) that all list prostate-

related disease as their therapeutic indication [15] and are

suggested by virtual docking to interact with prostate cancer

related proteins. Since a hernia may occur secondary to surgery, it

is likely that the ADR hernia was simply reported as an observed

phenotype for patients treated with prostate cancer related

drugs.

Parkinson’s disease – Pyruvate metabolism pathway.

Parkinson’s disease (PD) is a progressive neurological disorder

characterized by a large number of motor and non-motor features

[45]. Increasing evidence indicates that oxidative stress may play a

crucial role in the pathogenesis of PD and that pyruvate

deficiency, among other anti-oxidant agents, is significantly

involved [46,47]. Our model suggests 33 drugs associated with

PD to interact with 15 proteins from the pyruvate metabolism

pathway (Figure 5) out of which 23 drugs are nervous-system

agents (Table S2). The promiscuity of these drugs is supported by

the fact that 19 of 23 are psychoactive drugs which are well known

for their binding promiscuity [47,48].

Melanoma – Hedgehog signaling pathway. Melanoma is a

malignant tumor of melanocytes. The Hedgehog signaling

pathway plays important roles in determining cell fate, pattern

formation, proliferation, and differentiation. Alteration of the

pathway has been implicated in a number of human cancers,

including melanoma [49,50].

Breast cancer – Non-homologous end-joining pathway.

Non-homologous end-joining (NHEJ) is one of the major pathways

involved in repairing double-strand breaks (DSB) in DNA.

Polymorphisms in NHEJ genes have been shown to be

associated with breast cancer [51,52]. The role of breast cancer

related genes, BRCA1 and BRCA2, in the NHEJ pathway

suggests that the mechanisms involved in DNA DSB repair are of

particularly important during breast tumorigenesis [53].

Table 1. Associations supported by the literature.

Side-effects Pathways

Cerebral infarction Alzheimer’s disease

Osteoporosis Type II diabetes mellitus

Lymphoma Retinol metabolism

Hernia Prostate cancer

Parkinson’s Pyruvate metabolism

Breast cancer Non-homologous end-joining

Pelvic pain Cell cycle

Fibrosis Nicotinate and nicotinamide metabolism

Hepatic encephalopathy Thiamine metabolism

Melanoma Hedgehog signaling pathway

Prostatitis Pathogenic Escherichia coli infection

Alkalosis Type II diabetes mellitus

Stria Heparan sulfate biosynthesis

Tuberculosis Glycosaminoglycan degradation

Herpes zoster Glycosaminoglycan degradation

Cirrhosis Nicotinate and nicotinamide metabolism

Ascites Nicotinate and nicotinamide metabolism

Meningitis Heparan sulfate biosynthesis

Wound dehiscence Glycosaminoglycan degradation

Amylase increased Glycosaminoglycan degradation

Fibrosis Keratan sulfate biosynthesis

Ptosis Type II diabetes mellitus

Aseptic meningitis Systemic lupus erythematosus

Lymphoma Heparan sulfate biosynthesis

Skin carcinoma Lysosome

Alkalosis Biosynthesis of unsaturated fatty acids

Hyperparathyroidism Autoimmune thyroid disease

Fibrosis Metabolism of xenobiotics by cytochrome P450

Vitamin-D deficiency Autoimmune thyroid disease

Skin carcinoma Androgen and estrogen metabolism

Rigmentary retinopathy Sulfur metabolism

ESR increased Parkinson’s disease

The 32 associations supported by the literature. (Top) The 22 associations with
stronger support. (Bottom) The 10 associations with moderate support (see
Table S1 for a full reference list).
doi:10.1371/journal.pone.0012063.t001
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Figure 3. GAG-related ADRs. The illustration represents proteins as green triangles, drugs as orange diamonds, ADRs as red squares, and
pathways as blue circles. Protein-ligand interactions as predicted by virtual docking are represented as green dashed lines. Inferred pathway-ADR
associations are represented by purple dashed lines. Observed ADR-drug pairs come from the SIDER database and are represented by solid brown
lines. Finally, KEGG labels connect proteins to biological pathways and are represented as blue lines.
doi:10.1371/journal.pone.0012063.g003

Figure 4. Relations between hernia and the prostate cancer pathway. An illustration of the model’s suggested interactions between drugs
coincident with hernia and proteins belong to the prostate cancer pathway. This is an example of a non-causative association where drugs listing
prostate-related disease as their therapeutic indication indeed interact with proteins in the prostate cancer pathway. Since patients suffering from
prostate cancer are likely to experience a post-operative hernia, an association between hernia and prostate cancer emerges. Node and edge
representation is the same as Figure 3.
doi:10.1371/journal.pone.0012063.g004

Mapping ADRs to Pathways
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Validation tests
The associations suggested by our model were based on its

ability to identify meaningful correlations in imperfect virtual

docking results. Of course, validated associations could have been

discovered randomly, independent of the information provided by

the docking results and the structure of the biological network. In

order to estimate the accuracy of the docking, to demonstrate that

the docking results convey useful information, and to evaluate the

likelihood of discovering true associations by chance, we

preformed the following sets of experiments.

Ranking benchmarks. In order to test how well the docking

algorithm ranks active ligands we examined the ranking

performance for the 16 DrugBank [54] drug-target pairs that

also exist in our dataset. For each ligand, we tested how well the

docking algorithm was able to rank drugs when docked into their

known targets. In 7 cases, the known interacting drug was ranked

higher than one standard deviation from the mean score (z-score

greater than one, see Table S8). The theoretical probability of

observing such an event (drawing 7 or more numbers greater than

1 from a normal distribution in 16 trials) is less than 0.0016. As a

second test, we used the DUD benchmark [55] to asses the ability

of the docking algorithm to rank active ligands. DUD is considered

the gold standard for benchmarking the ranking provided by

virtual docking algorithms. We measure ranking success using the

area under the curve (AUC) of the decoys verses actives ranking.

Using the DUD benchmark, the docking algorithm achieved a

median AUC value of 0.8717. In 15 out of 35 DUD test cases, the

AUC was greater than 0.9 (See Figure S4).

Randomized control for docking results. We assessed the

information content of the virtual docking by performing 1000

randomized trials. In each trial, we randomly shuffled the

mapping between the drugs and their docking results (note that

this is equivalent to shuffling the mapping between drugs to ADRs)

and used this random data as the input for our model. A

comparison of the number of returned associations by our

predictive model (185) to the distribution of returned

associations from the 100 randomized experiments (mean 116.47

and standard deviation 18.45) showed that there was less than

0.01% chance our number of results were drawn from random

unstructured data. This implies that there is structure to the virtual

screening data.

Randomized control for associations. We demonstrated

the ability of our model to retrieve associations that are supported

by the literature. We evaluated the significance of the identified

associations using a randomized control. Ideally, we could

randomize the input data, use our algorithm to predict

associations, and then assess the correctness of each association

via an expert. Performing 100 randomization trials would require

the infeasible task of manually evaluating up to 18,500

associations. Instead, we determined if the number of PubMed

supported hits in our results (45 out of 185) was statistically

different from the expected number of supported associations

when drawn at random. We emphasize, that in this experiment we

use the PubMed hit count in a different manner than described

before. Initially, we used the PubMed hit count to reduce the

number of associations which underwent a manual literature

review while in this case, we use it as a substitution for the actual

manual review. All terms in the random associations were drawn

only from those that appeared in the 185 predicted associations (90

pathways and 121 ADRs). As before, for each random association

Figure 5. Relations between Parkinson’s disease and the pyruvate metabolism pathway. An illustration of the model’s suggested
interactions between drugs coincident with Parkinson’s disease and proteins belonging to the pyruvate metabolism pathway. Node and edge
representation is the same as Figure 3.
doi:10.1371/journal.pone.0012063.g005

Mapping ADRs to Pathways
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we expanded the search terms using MeSH before querying

PubMed. The expected distribution of random associations with at

least 5 PubMed hits (mean 37.79, standard-deviation 4.85)

suggests a less than 5% chance that our results were drawn from

the random data distribution.

Discussion

The encouraging results presented in this manuscript come

despite several limitations. Our method utilizes computational

predictions of protein-ligand binding across the human proteome.

This requirement means our results are affected by three factors,

the availability of protein structures, the accuracy of virtual

docking, and the complicating effects of genetic polymorphisms.

Although the largest possible set of publicly available human

protein structures contains only 830 macromolecules, we were able

to identify significant pathway-ADR associations that involve the

selected proteins. Virtual docking still struggles with computing

true binding energies; however, our model relies on the easier task

of separating active binders from decoys. Many docking

algorithms, including the eHiTS software utilized in this work

[56], are well suited for this ranking task (See Figure S4). Finally,

although genetic polymorphisms play an important role in ADRs,

we propose that in many cases docking into a wild-type protein

and a genetic variant may show grossly similar results. Further-

more, the effects of a genetic variation may be indirect where an

ADR emerges secondary to the interaction of a variant protein

and a ligand perturbed wild type protein. In this case, our method

does not require docking to the genetic variant. The above

limitations restrict our list of associations from being complete; but,

there are several interesting associations among those identified.

Many problems in machine learning are difficult because they

utilize a small number of training samples to fit a large number of

features. In our work, it is difficult to identify pathway-ADR

associations using the small number of ADRs observed for each

drug. In order to adequately deal with a modest set of positive

examples, our model utilizes two phases of logistic-regression

(Figure 1). In the first phase we use L1-regularization [19] to select

an initial set of associations. An L1-penalty term is commonly used

in continuous model selection to identify a small set of informative

features. L1-regularization reduces the risk of over-fitting by

biasing the feature weights towards zero, thereby only allowing

associations with strong evidence to have non-zero weights [18].

Regularization of this type is particularly important when the

number of possible features exceeds the number of observations.

In the second phase, we perform a traditional logistic regression

using the features selected in phase one. Using the forward-

selection backward-elimination algorithm, the AIC model selec-

tion criteria, and a multiple-hypothesis correction we reduce the

number of features to a set that remains statistically significant.

Experimentally validating associations between ADRs and

pathways is a challenging task since true validation is likely to

require in-vivo experiments similar to clinical trails of drug

candidates. The predicted associations fall into three classes: true-

positive (TP), false-positive (FP), and false-false-positive (FFP). TPs

are associations identified by our model, are inherently true, and

are known to be true. FPs are associations identified by our model

yet are inherently false. FFPs are associations identified by our

model and are inherently true, but are as yet unknown to the

scientific field and may therefore be misinterpreted as false. While

one long range aim of our work is to reveal unknown associations

(FFP), by definition it is impossible to validate FFPs without

conducting additional experiments. Although our current method

is unable to validate FFPs, our use of associative text-mining and

manual evaluation allows us to support 32 (of 185) associations as

likely TPs.

The aim of this manuscript is to introduce a computational

framework for identifying pathway-ADR associations. Our

approach is based on predicting the targets of a drug’s

promiscuous binding using a structural model and then connecting

these interactions with biological pathways. Associations are

determined using a statistically grounded approach to inference.

The initial results presented in this manuscript are promising and

we envision that hypotheses generated by our model may guide

future research.

Methods

Preparation of data sets
Drugs. A list of drugs and their corresponding ADRs was

obtained from the SIDER database [15]. Structural models of all

drugs were retrieved from the PubChem database (http://

pubchem.ncbi.nlm.nih.gov) using PubChem’s compound ID

(CID). If no corresponding structure was found in the database,

a 3D model was generated with OpenBabel [57] using the drug’s

SMILES string [58]. In order to increase the likelihood of

successful docking, ligands were filtered by molecular weight and

flexibility. We removed drugs which had: (i) a molecular weight

outside the range of 100–800 Daltons or (ii) 10 or more rotational

bonds. This filtering step yields 730 drugs most compatible with

virtual docking (Table S7).

Protein Targets. The structures of protein targets satisfying

the following criteria were obtained from the Protein Data Bank

[17]:

(i) The structure was solved by either X-ray crystallography

or NMR spectroscopy.

(ii) Structures solved by X-ray crystallography have a

resolution better than 3Å.

(iii) The protein sequence contains more than 50 amino acids.

(iv) The source organism is human.

(v) The protein target is an enzyme as indicated by the

presence of an Enzyme Commission (EC) number [59].

(vi) The protein has a KEGG annotation [16].

The set of proteins was clustered using the BLASTclust

algorithm [60] removing redundant structures sharing more than

90% sequence similarity over 90% of the sequence length. Finally,

all selected structures were striped of ligands and salts. This results

in set of 830 protein targets (Table S5).

Human pathways. We used the KEGG database [16] to

build a set of human pathways and their corresponding known

protein structures. The 830 protein receptors represent 176

KEGG pathways (Table S4).

Side-effects. A list of drugs and their corresponding ADRs

was obtained from the SIDER database [15] (version 2009-06-19).

In order to deal with similar ADRs that appear under slightly

different names in the SIDER database, we first stemmed all ADR

phrases (extracting the base part of a word or phrase) using the

WordNet lexical database [61]. Then, we measured the

Levenshtein distance [62] between all pairs (the minimal

number of single character edit operations required to transform

one term to the other) and grouped ADRs with an edit distance

smaller than two. For a given drug, we removed an ADR if any of

the following were satisfied:

(i) The ADR has a ‘‘post-marketing’’ label (i.e., the ADR was

only reported after the drug’s approval).
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(ii) The frequency of the ADR is less than 1% after subtracting

the placebo frequency, if available.

(iii) The ADR is associated with fewer than 3 drugs or is associated

with more than 5% (approximately 36) of the drugs.

This procedure yielded a set of 506 ADRs (Table S6). Following

Fliri et al. [4] we discard the frequency information of the selected

ADRs and regard their occurrence as binary.

Docking
Automatic docking, while generally less successful than expert

guided docking, has recently shown to be viable for a large diverse

set of receptors [63]. For every protein target we first identify its two

largest pockets using LIGSITEcsc [64]. It has been suggested that in

proteins having known binding sites, in 80.9% of the cases the

largest pocket is the binding site and in 92.7% of the cases the

binding site is one of the two largest ones [65]. Therefore, we dock

each ligand into the two largest pockets using the eHiTS docking

algorithm [56] (Version 6.2). The docking is performed with full

ligand flexibility, examination of all possible protonation states, and

a clipping box of 15Å around the center of the binding pocket. All

other parameters assume their default values. The docking score for

each drug-target pair is the better of the two pocket docking

attempts. Since docking scores may scale differently when using

multiple receptors, we use the z-score to normalize the docking

results. Finally, we use the docking results to generate a list of drug-

target pairs where for a given pair the drug is expected to bind and

influence the protein target. For each drug, we sort the docking

results and keep only those proteins where the docking score was

better than one standard deviation above the mean. This results in

retaining only the top scoring drug-protein pairs for each drug.

Inference Method
We use logistic regression to study the relations between drug-

activated pathways and ADRs (Figure 1). All putative drug-

pathway interactions are inferred by protein-ligand docking. The

drug-pathway interaction is the sum of docking scores over all

proteins belonging to the pathway. These putative interaction

scores are then combined with drug-ADR observations to generate

candidate pathway-ADR associations.

Statistically significant associations are selected using two phases of

logistic regression. In phase one, we perform a logistic regression

between the drug-pathway interactions and the drug’s observed

ADRs. To perform logistic regression, we utilized the L1-regularized

logistic regression code of Kim et al. [19]. The regularization

parameter, l, restricts the number of non-zero weights. The

likelihood of over-fitting is minimized because only those features

having the strongest evidence in the data can have non-zero weights.

We use a relative regularization parameter, l~0:5l0, where l0 is the

smallest regularization value that yields all-zero regression coeffi-

cients. In phase two, the pathway-ADR associations having non-zero

weights were passed through a second logistic regression to determine

their statistical significance. This process included the forward-

selection backward-elimination method for variable selection, the

AIC model selection criteria [66], and the Benjamini-Hochberg

multiple testing correction method [67] with a false discovery rate of

2%. All phase two statistical tests were used as implemented in the R

programming environment (http://www.r-project.org).

Supporting Information

Table S1 The 32 associations supported by the literature. (Top)

The 22 associations with stronger support. (Bottom) The 10

associations with moderate support. (References appear in File S2.)

Found at: doi:10.1371/journal.pone.0012063.s001 (0.09 MB EPS)

Table S2 Parkinson’s related drugs classified as nervous-system

agents according to the ATC classifications.

Found at: doi:10.1371/journal.pone.0012063.s002 (0.04 MB

RTF)

Table S3 The 185 associations inferred by the model.

Found at: doi:10.1371/journal.pone.0012063.s003 (0.16 MB

RTF)

Table S4 176 pathways used in this work.

Found at: doi:10.1371/journal.pone.0012063.s004 (0.09 MB

RTF)

Table S5 830 protein structures used in this work.

Found at: doi:10.1371/journal.pone.0012063.s005 (0.28 MB

RTF)

Table S6 506 ADRs used in this work.

Found at: doi:10.1371/journal.pone.0012063.s006 (0.23 MB

RTF)

Table S7 730 drugs used in this work.

Found at: doi:10.1371/journal.pone.0012063.s007 (0.25 MB

RTF)

Table S8 Normalized scores of drug-primary-target pairs in our

dataset. Pairs were selected using the DrugBank database [4]

(references appear in File S2).

Found at: doi:10.1371/journal.pone.0012063.s008 (0.07 MB EPS)

Table S9 The 32 associations supported by the literature with

the corresponding drug names. (Top) The 22 associations with

stronger support. (Bottom) The 10 associations with moderate

support.

Found at: doi:10.1371/journal.pone.0012063.s009 (0.06 MB

RTF)

Figure S1 Drugs listing tuberculosis, herpes-zoster, and menin-

gitis as ones of their ADRs. The illustration demonstrates the

degree of overlap in which drugs coincide with more than one of

the three bacterial/viral-related ADRs. The low overlap suggests

that inferences of the associations between the three related ADRs

and the GAG degradation pathway were highly independent of

each other. Node and edge representation is the same as Figure 1.

Found at: doi:10.1371/journal.pone.0012063.s010 (0.28 MB EPS)

Figure S2 Drugs listing osteoporosis and aseptic necrosis as ones

of their ADRs. The illustration demonstrates the degree of overlap

in which drugs coincide with more than one of the three bacterial/

viral-related ADRs. The low overlap suggests that inferences of the

associations between the three related ADRs and the type-II

diabetes mellitus pathway were mostly independent of each other.

Node and edge representation is the same as Figure 1.

Found at: doi:10.1371/journal.pone.0012063.s011 (6.29 MB EPS)

Figure S3 Drugs listing fibrosis, cirrhosis, and ascites as ones of

their ADRs. The illustration demonstrates the degree of overlap in

which drugs coincide with more than one of the three bacterial/

viral-related ADRs. The low overlap suggests that inferences of the

associations between the three related ADRs and the NAD

metabolism pathway were highly independent of each other. Node

and edge representation is the same as Figure 1.

Found at: doi:10.1371/journal.pone.0012063.s012 (5.61 MB EPS)

Figure S4 Ranking benchmark of eHiTS [1] and AutoDock-

Vina [2] docking algorithms using the DUD benchmark set [3]

(references appear in File S2).

Found at: doi:10.1371/journal.pone.0012063.s013 (0.19 MB EPS)
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File S1 Cytoscape file.

Found at: doi:10.1371/journal.pone.0012063.s014 (0.16 MB GZ)

File S2 Supplementary bibliography.

Found at: doi:10.1371/journal.pone.0012063.s015 (0.08 MB

RTF)
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