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Abstract

Background: A complex relationship exists between diet and sleep but despite its impact on human health, this
relationship remains uncharacterized and poorly understood. Drosophila melanogaster is an important model for the study
of metabolism and behaviour, however the effect of diet upon Drosophila sleep remains largely unaddressed.

Methodology/Principal Findings: Using automated behavioural monitoring, a capillary feeding assay and pharmacological
treatments, we examined the effect of dietary yeast and sucrose upon Drosophila sleep-wake behaviour for three consecutive
days. We found that dietary yeast deconsolidated the sleep-wake behaviour of flies by promoting arousal from sleep in males and
shortening periods of locomotor activity in females. We also demonstrate that arousal from nocturnal sleep exhibits a significant
ultradian rhythmicity with a periodicity of 85 minutes. Increasing the dietary sucrose concentration from 5% to 35% had no effect
on total sucrose ingestion per day nor any affect on arousal, however it did lengthen the time that males and females remained
active. Higher dietary sucrose led to reduced total sleep by male but not female flies. Locomotor activity was reduced by feeding
flies Metformin, a drug that inhibits oxidative phosphorylation, however Metformin did not affect any aspects of sleep.

Conclusions: We conclude that arousal from sleep is under ultradian control and regulated in a sex-dependent manner by
dietary yeast and that dietary sucrose regulates the length of time that flies sustain periods of wakefulness. These findings
highlight Drosophila as an important model with which to understand how diet impacts upon sleep and wakefulness in
mammals and humans.
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Introduction

Although the evolutionary significance of sleep is not under-

stood, it contributes to the viability, longevity, health and cognitive

abilities of a wide range of organisms, from invertebrates to

humans. Many reports associate the disruption of sleep in

mammals and humans with the development of metabolic

syndrome, type 2 diabetes and increased risk of cardiovascular

disease [1,2,3,4,5,6], yet the cause and effect relationship between

sleep disturbances and disease remains largely unaddressed. The

fruit fly Drosophila melanogaster is an important model with which to

analyse both sleep and metabolism in adult organisms, however

little information regarding the effect of diet and metabolism upon

fly sleep is available.

Drosophila and mammalian sleep exhibit important similarities,

such as the requirement for dopaminergic and GABAergic

signaling, the existence of an intrinsic (circadian) timing mecha-

nism, the impact of homeostatic (‘tiredness’) factors and sustained

arousal in response to methamphetamine, caffeine and modafinil

[7,8,9,10,11,12,13]. In addition, flies and mammals exhibit similar

patterns of neurological activity when in different states of arousal

[14,15]. Although the effect of diet upon feeding, foraging,

reproduction and longevity has been studied for many years

[16,17,18,19], a detailed study of how diet affects Drosophila sleep-

wake behaviour has not been performed.

In our current work, we aimed to establish how diet affects the

architecture of Drosophila sleep-wake behaviour. Using automated

behavioural monitoring, we find that in male flies, dietary yeast

promotes arousal from nocturnal sleep bouts. In contrast, dietary

carbohydrate determines how long males and females sustain

activity when awake. We also demonstrate that arousal from

nocturnal sleep exhibits an ultradian rhythm with a periodicity of

85 minutes. We conclude that diet profoundly influences the

architecture of Drosophila sleep-wake behaviour and discuss the

relevance of these finding to mammalian sleep.

Methods

Reagents
All stock chemicals and agarose, sucrose, yeast extract,

Metformin and 3-iodo tyrosine were from Sigma (Dorset, UK).

Fly lines and maintenance
The w1118 and Canton S Drosophila lines were obtained from the

Bloomington Stock Centre. Flies were propagated on a maize-

yeast diet, prepared as follows: 14L of H2O, 150g agar, 1100 g
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sucrose, 620 g brewers yeast, 1000 g maize, 80 g dried live yeast

45 ml propionic acid and 38 g nipagin mixed with 380 ml ethanol

and maintained at 25uC in a humidified incubator on a

12 hr:12 hr light:dark cycle.

Monitoring of sleep-wake behaviour
Three to six day old male or female flies that had been socially

housed (see [20]) were anaesthetised using CO2 and single flies

transferred to a 5 mm 665 mm polycarbonate tube containing

food (see below). The tube was sealed at the food end with

Parafilm (Pechiney Plastic Packaging Company, IL, USA), with

the opposing end sealed with a cotton wool plug to allow for air

transfer. Fly sleep-wake behaviour was monitored using the

Drosophila Activity Monitoring System (DAMS, TriKinetics,

Waltham, MA, USA). All experimental procedures were carried

out at 25uC in a humidified incubator. Flies were monitored for at

least four days on a 12 hr:12 hr light:dark cycle. All analysis was

done with data collected from days 2 to 4 after flies were placed

into the DAMS. Sleep was regarded as a period of five minutes

without beam crossing (as defined previously by other investigators

[8,9]). Data was collected using TriKinetics software and analysed

in Excel (Microsoft, Redmond, WA, USA ) and Clocklab

(Actimetrics, IL, USA).

Modulation of diet
Flies in DAMS tubes (or 7 ml bijou bottles for biochemical

assays) were provided with the following diets: agar-sucrose (AS,

1.37% agar, 5% sucrose) or agar-sucrose-yeast (ASY, the AS diet

with 2% yeast extract). In some experiments the sucrose

concentration of the AS diet was increased to 35%. Drugs were

added to the diets to a final concentration of 5 mg/ml for 3IY, and

1 mM or 10 mM for Metformin.

Provocation of arousal
Flies within DAMS were provoked into activity by swiftly

dragging an empty DAMS tube twice (in quick succession) across

the DAMS array at ZT16 (four hours after lights off). Preliminary

studies confirmed that this provocation aroused approximately

half of the male flies within the DAMS tube when on the AS diet

and is similar to the mechanical stimulation of flies used to assess

arousal thresholds used in other studies [9].

Capillary Feeder Assay (CAFE Assay)
A 7 mL bijou vial filled with 1 ml of (1%) agar, to ensure humid

conditions, sealed with Parafilm (Alpha Laboratories Ltd,

Hampshire, UK). Four holes in the Parafilm that were equally

spaced apart, were made using a 26-gauge needle to ensure

adequate air circulation. Through the Parafilm was inserted a

truncated 200 ml pipette tip which held a graduated 5 ml

disposable glass capillary tube (Camag, Muttenz, Switzerland)

containing liquid food (as described in the text) supplemented with

blue food dye (Langdale, Market Harborough, UK) to aid

measurement of feeding. For all experiments, a mineral oil overlay

(0.1 ml) was used to minimize evaporation. Food ingestion was

measured every 24-hr for five consecutive days. Each experiment

included an identical, CAFE chamber without flies to determine

evaporative losses (typically 10% of ingested volumes), which were

subtracted from experimental readings [21].

ATP Assay
The ATP concentration of flies was determined using the Roche

ATP Bioluminescence Assay Kit HS II (Roche, West Sussex, UK).

Briefly, flies were frozen at 280uC for 10 minutes and

homogenised under ice-cold lysis buffer (provided in kit) for 1

minute using a Kontes pellet pestle (Kontes Glass Company, NJ,

USA). Homogenates were centrifuged at 13,000 rpm in a bench-

top microcentrifuge, incubated with luciferin substrate and

bioluminescence determined using a Glomax Multi+ detection

System (Promega, Hampshire, UK).

Analysis of Ultradian Rhythms
For the analysis of ultradian rhythms in arousal the data for three

nights locomotor activity monitoring for individual flies was

combined into one 24 h period and the probability of any fly

ending a period of inactivity at each time point was calculated and

weighted by the length of the preceding inactivity. A moving average

of 30 minutes was applied to smooth the data. This produced a

weighted wake time preference for the population of flies. Chi-

squared periodogram analysis was used to quantify the ultradian

rhythm [22]. This method provides a significance test based on the

chi-squared distribution and remains accurate under the presence of

noise [23]. Linear regression was used to fit a straight line to

weighted wake time preference data and the regression fit was

subtracted to remove any linear trend. Periodogram analysis was

then applied to the data for periods between 10 and 270 minutes.

Statistics
One-way analysis of variance (ANOVA) followed by Tukey’s

post-hoc test was used to identify differences between three or

more means derived from uneven sample sizes. The student’s

unpaired t-test was used to identify significant differences between

two means of uneven sample size. A statistical difference of

P,0.05 was regarded as significant.

Results

Dietary yeast affects Drosophila sleep in a sex-dependent
manner

The study of Drosophila sleep-wake behaviour has typically been

performed with flies fed an agar-based diet that contains 5%

sucrose. Whilst this diet is sufficient for fly viability it is devoid of

macro and micronutrients that might be expected to influence

sleep-wake behaviour. We therefore tested the hypothesis that

dietary yeast extract (2% in agar supplemented with 5% sucrose)

may promote arousal in flies.

Male w1118 flies provided either with 5% sucrose (AS) or the AS

diet containing 2% yeast extract (ASY), exhibited a normal

bimodal pattern of behaviour with distinct periods activity

approximating the time of lights on and lights off (Figure 1 A &

B). However, flies provided with the ASY diet exhibited a

reduction in both daytime and nighttime sleep compared to flies

on the AS diet (Fig. 1C & D), that was associated with shorter,

more numerous nocturnal sleep bouts (Figs. 1E & F), and

increased locomotor activity (Fig. 1G). Although the ASY diet

had no effect on the length of daytime activity bouts, it caused a

small but significant shortening of nocturnal activity bout length

(Fig. 1H). Similar findings were obtained when male flies of the

wild type Canton S line were used (more nocturnal locomotor

activity, reduced nocturnal sleep and shorter, more frequent

nocturnal sleep bouts; data not shown).

The females’ response to the ASY diet was characterized by a

notable decrease in daytime locomotor activity, a finding that was in

stark contrast to the behaviour of males (Fig. 2A, B & G). This

change in behaviour was not associated with an alteration to the

amount of nocturnal sleep or locomotor activity (Fig. 2C, D & G),

nor any change to the length of either daytime or nocturnal sleep

bout length (Fig. 2E). However (and similar to the behaviour of male

Diet and Drosophila Sleep
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flies), the ASY diet led to more bouts of sleep (Fig. 2F), due to a

shortening of daytime and nocturnal activity bouts (Fig. 2H). Again,

similar findings were obtained for female Canton S flies (a

significant reduction in daytime locomotor activity on the ASY

diet and no change to total nocturnal sleep or nocturnal sleep bout

length; data not shown). Providing flies with a source of yeast did not

affect food intake by either sex (Figure S1), thus these results are due

to the ingestion of yeast rather than a change to sucrose intake.

Dietary yeast promotes arousal in males
Arousal from sleep in Drosophila is controlled by dopaminergic

neurons [13,24]. Changes to the mechanism controlling arousal

manifest as a shortening or lengthening of each sleep bout [25]. To

verify that dietary yeast promoted arousal in males, we tested the

hypothesis that the ASY diet may limit the sleep-promoting effect

of 3-iodo tyrosine, a drug that inhibits dopamine synthesis [26].

Consistent with this hypothesis, sleep bouts were approximately

4.5 times longer when 3IY was added to the AS diet, but only

marginally increased when added to the ASY diet, confirming that

the ASY diet modulated arousal (P,0.01; Fig. 3A). This change

could not be accounted for by alterations to food intake by 3IY,

which was reduced to the same extent on the AS and ASY diets

(Fig. 3B). Further verification that dietary yeast promoted arousal

in males, was obtained by provoking flies into activity during the

nocturnal period (ZT 16, four hours after lights off, Fig. 3C). The

percentage of flies that became active on the AS diet was 56% and

31% (trials one and two), whereas 100% and 81% of the flies on

the ASY diet were aroused by the provocation (P,0.01;

Figure 3D).

Dietary yeast does not affect an ultradian rhythm of
arousal in male flies

Although an individual fly can sleep continuously for several

hours and even throughout the entire night, the averaged data

Figure 1. Effects of dietary yeast extract on sleep-wake behaviour of male Drosophila. Male w1118 flies were housed in polycarbonate tubes
and provided with agar containing 5% sucrose (AS) or agar, 5% sucrose and 2% yeast extract (ASY). Locomotor activity was recorded as the number
of times a fly broke the path of an infra-red beam at the midpoint of the tube. Periods of 5 minutes without beam crossing were regarded as a single
period of sleep. (A) Actograms showing averaged beam crossing data for three consecutive days (d2, d3 and d4). The light and shaded areas denote
the 12-hour periods of light and darkness of the 24-hour cycle. A single day’s data is re-plotted on the following line so that the relationship between
the light-dark cycle and the rhythm of locomotor activity can be seen better. (B) Averaged beam crossing data binned to every half-hour of the 24-hr
cycle for flies fed the different diets; dark bars represent night and day activity, respectively. The grey bar denotes an average of 2 beam crosses per
half hour and is presented to aid comparisons of the data. (C) Minutes of sleep per 30 minutes. The white and black bar represents the 12 hour light
and dark phases of the 24 hour cycle. (D) Total amount of time spent asleep for flies fed the agar-sucrose (AS) and agar-sucrose-yeast (ASY) diets. (E)
The average length of each sleep bout by flies fed the different diets. (F) The mean number of sleep bouts. (G) The amount of locomotor activity
undertaken by flies on the different diets. (H) Average length of activity bouts. *P,0.01; #P,0.05; n = 32 flies for each diet in A, B and C; rest of data
is n = 100 flies for each diet, data was pooled from five independent trials.
doi:10.1371/journal.pone.0012062.g001
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from a cohort of experimental flies consistently indicated that

arousal from nocturnal sleep exhibited an ultradian rhythmicity

(Fig. 4). Although dietary yeast shortened nocturnal sleep bouts

(see Fig. 1E and Fig. 4B), flies on both the AS and ASY diets show

a peak rhythmicity at 85 minutes, significant at a 95% confidence

level (Fig. 4C–E). A second ultradian rhythm of approximately 130

minutes was also evident and which neared statistical significance

in flies fed the ASY diet (compare Fig. 4D with 4E). This ultradian

rhythm of arousal from nocturnal sleep was also observed in

female w1118 flies and in Canton S flies (not shown).

Effect of dietary sucrose concentration on sleep-wake
behaviour

We next analysed the effect of dietary sucrose on sleep-wake

behaviour. Although locomotor activity and flight are known to be

affected by dietary carbohydrate (see [27]), the effect of

carbohydrate on sleep has not been addressed. We found that

increasing the sucrose content of the AS diet from 5% to 35% led

to a significant increase in locomotor activity that was associated

with reduced total sleep in both males and females (Figs. 5 & 6,

respectively). The increase in locomotor activity was due (in both

sexes) to longer bouts of activity and an increase in the intensity of

locomotor activity (i.e. more beam crossing per waking minute).

Despite these changes to locomotor activity, there was no change

to the length of daytime or nocturnal sleep bouts, indicating that

changes to the concentration of dietary sucrose were not sufficient

to alter the arousal threshold and that the loss of sleep on the

higher sucrose concentration was due to flies maintaining longer

periods of activity when awake. We also confirmed that flies

ingested the same amount of sucrose on the low and high sucrose

diets (Figure S2), indicating that the effects of dietary sucrose were

related to the amount of sucrose in each ‘meal’ rather than a

change to the total amount of sucrose ingested over the day. A

similar increase in both total daytime locomotor activity and

daytime activity bout length was recorded for male and female

wild type (Canton S) flies (data not shown).

Metabolic inhibitors affect locomotor activity but not
sleep

The data from several different experiments and trials

overwhelmingly indicated that increases in locomotor activity

did not result in compensatory increases to total sleep time nor

changes to arousal status. Hence the amount of time a fly sleeps

and the ‘depth’ of sleep is uncoupled from prior amounts of

activity, a conclusion that agrees with the findings from sleep-

deprivation studies [8]. This predicts that decreased locomotor

activity will not reduce the amount of sleep nor would it affect

sleep bout length. To address this question we fed male flies

Figure 2. Effects of dietary yeast extract on sleep-wake behaviour of female Drosophila. (Legend as for figure 1). *P,0.01; #P,0.05; n = 48
flies for each diet, data pooled from two independent trials.
doi:10.1371/journal.pone.0012062.g002
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Metformin, a drug which inhibits complex one of the respiratory

chain [28], and which would be predicted to reduce locomotor

activity due to limiting ATP production in muscle. Consistent with

this we found that Metformin significantly reduced the locomotor

activity of flies by shortening the length and intensity of daytime

(but not nighttime) activity bouts (Fig. 7A–D). Importantly, this

reduction to daytime activity occurred in the absence of any

change to the total amount of daytime or nocturnal sleep (Fig. 7E)

and the length of daytime or nocturnal sleep bouts (Fig. 7F).

Interestingly, we recorded no significant change to basal ATP

levels in flies fed Metformin (Fig. 7G), nor any change to the

amount of sucrose ingested (Fig. 7H), suggesting that energy

homeostasis may have been maintained by the reduction in

locomotor activity. These findings further support the conclusion

that total sleep time and the arousal threshold are uncoupled from

the amount of locomotor activity and energy expenditure in

Drosophila.

Discussion

Drosophila melanogaster is an important model organism with

which to study the relationship between diet and behaviour. In the

past decade Drosophila has been used to study sleep, a behaviour

that impacts upon the physiology and viability of humans and a

phylogentically diverse array of animal models. A significant

limitation to the understanding of sleep and its impact upon

health, is the lack of inexpensive, tractable models and a high

degree of variability in sleeping behaviours across phyla. The

importance of understanding the physiological relevance of sleep is

highlighted by recent research into obesity, which has linked sleep

disruption with the development of metabolic syndrome, type II

diabetes and cardiovascular disease [1,2,3,4,5,6]. Thus, the aim of

our current study was to characterise the effects of diet on

Drosophila sleep-wake behaviour. We present data that demon-

strates for the first time that dietary yeast, a food eaten by flies in

the wild and under laboratory conditions, fragments sleep-wake

behaviour by promoting arousal in males and by shortening

periods of locomotor activity in females. We also demonstrate that

Drosophila can exhibit an ultradian pattern of arousal from sleep, a

finding of considerable interest, as it resembles the pattern of sleep

in mammals and humans. Finally we show that dietary

carbohydrate concentration determines the length of time that

male and female flies sustain periods of wakefulness but that, on its

own, it has no effect on arousal.

Sleep exhibits a highly structured, ultradian architecture in

humans and rodents that is characterised by several hours of non

rapid eye movement (NREM) sleep during the early part of the

night, followed by shorter periods of rapid eye movement (REM),

interspersed by NREM until arousal. Our observation that flies

also show an ultradian pattern of arousal from nocturnal sleep is

further evidence that the mechanisms controlling sleep in flies may

be conserved in mammals and humans. Although ultradian

locomotor activity is reported for flies without functional circadian

oscillators [29,30], our data are the first to show ultradian

rhythmicity of arousal in flies with an intact circadian oscillator.

We found that flies of both sexes aroused during several discrete

Figure 3. Dietary yeast affects arousal. The behaviour of male flies was assessed as described in Figure 1 and the Methods section. (A) The graph
shows the fold change in sleep promoted by 5 mg/ml 3IY, an inhibitor of dopamine synthesis, when supplemented in either an agar-sucrose (AS) or
yeast-containing AS diet (ASY). (B) CAFE data showing that amount of food ingested after five days on the AS and ASY diets, supplemented with the
dopamine synthesis inhibitor, 3IY. (C) Average percentage of flies fed the AS diet or the ASY diet (black and grey line, respectively) aroused in
response to a mechanical provocation (arrow) performed at ZT16. (D) Quantified data for the provocation test. #P,0.01, *P,0.01; CAFE assays used
9–10 flies per treatment; for the arousal provocation tests (C and D) two independent trials were performed involving 16 flies for each treatment.
doi:10.1371/journal.pone.0012062.g003
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epochs during the night. Quantitative analysis of males revealed

that the ultradian rhythm’s periodicity was 85 minutes on both the

AS and ASY diets, but that there is a trend towards a second,

longer rhythm of approximately 130 minutes when flies are fed

yeast extract. It is important to note that the expression of

ultradian behaviour was variable and that statistical significance

was only reached when the analysis was performed on a

considerable number of flies. Nonetheless, these findings indicate

the existence of an ultradian oscillator within the fly brain that

controls the initiation of arousal from nocturnal sleep. The

mechanism controlling this ultradian rhythmicity of arousal

remains unclear. Several reports indicate that dopamine regulates

arousal and sleep in flies [13,24], suggesting the ultradian rhythm

of nocturnal arousal in Drosophila may reflect the ultradian

regulation of dopamine know to exist in mammals [31,32].

Studies of Drosophila sleep do not currently utilise a standard

diet. Instead, diets range from the medium used for fly

propagation (typically an agar based diet containing high

concentrations of carbohydrate and yeast), to a nutritionally-

limited agar based diet that contains sucrose but which is devoid of

other nutrients. Our data indicate that dietary yeast reduces the

arousal threshold in males and shortens the length of wakeful

periods in females, leading to a more fragmented sleep-wake

architecture for both sexes. The relevance of these adaptations is

unclear, however diets that promote nocturnal activity may be

advantageous for the reproductive strategy of males, which have

increased sex drive at night [33] and court females during the day

and night [34,35]. Whilst the omission of dietary yeast may be of

little consequence within a given study of fly sleep, our findings

highlight an important source of variation between different

experimental protocols.

How dietary yeast affects the arousal behaviour of males is not

clear. Dietary yeast yields amino acids such as glutamic acid, L-

tryptophan, and L-tyrosine for the synthesis of c-butyric acid,

serotonin, octopamine and dopamine; salts such as potassium, and

cholesterol - a precursor or 20-hydroxyecdysone, all of which

affect sleep in flies [7,36,37,38,39]. In rodents and mammals the

ratio of carbohydrate to protein, and the ratio of amino acid

species within a meal, affect both the concentration of amino acid

species within the blood and the rate at which neuroactive

monoamines are synthesized [40,41]. Similarly, the regulation of

electrolytes in Drosophila by the Malpighian tubules is highly

dependent upon the concentration of amino acids within the

hemolymph [42]. Therefore, a simple, linear correlation between

Figure 4. Arousal from sleep is ultradian and disrupted by dietary yeast. The time of day that a male fly aroused from a sleep bout was
recorded and the length of that sleep bout was calculated and plotted as a 1-hour running average over 2.5 consecutive days. (A) Data from 250
different male flies from five independent experiments is presented. During the daytime there is no obvious ultradian rhythm of arousal, whereas at
night there are several discrete epochs during which flies are more or less likely to arouse from sleep. (B) The effect of the AS (black line) and ASY
(gray line) diets upon the ultradian pattern of nocturnal arousal. Data for the maximum length of sleep bouts is presented. Flies fed the AS diet show
an ultradian rhythm of arousal, whereas, flies on the ASY diet have similar periodicity ultradian rhythm of arousal but lower peaks of sleep length due
to shorter periods of sleep on the ASY diet (arrows). (C) Periodogram analysis of the data combined from all experiments (n = 360 male w1118 flies)
established that arousal occurs according to a significant ultradian rhythm with a periodicity of 90 minutes. (D) Periodogram showing a significant
ultradian rhythm of nocturnal arousal for male flies fed sucrose only. (E) The periodogram for male flies fed sucrose and yeast extract shows a
significant ultradian rhythm of 85 minutes and a trend towards a longer frequency rhythm, of approximately 130 minutes, that does not reach
significance. The black and white bar denotes the 12-hour light and dark periods. n = 189 and 180 flies from independent experiments for the AS and
ASY diets, respectively.
doi:10.1371/journal.pone.0012062.g004
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dietary constituents and the amounts and quality of sleep or

wakefulness is unlikely to exist. In stark contrast to the effect on

male behaviour, yeast reduced daytime activity and increased

daytime sleep in females, a finding similar to that reported by

Broughton et al., [43]. As dietary yeast did not affect sleep bout

length in females, we conclude that the effect of dietary yeast on

the females’ daytime sleep is due to the shortening of activity bouts

and unrelated to changes in arousal. This sex-dependent difference

in the response to dietary yeast is not understood but may involve

insulin signaling, which is implicated in the regulation of sexually

dimorphic locomotor behaviour and the regulation of sleep

[44,45,46,47].

In contrast to yeast, we found that dietary carbohydrate (in the

form of sucrose) regulated the length of time that flies remained

active whist having no influence on the length of sleep bouts.

Thus, the period of sleep immediately following a bout of

locomotor activity is not related to the amount of exercise

undertaken during that bout: this uncoupling of sleep from

‘exercise’ is highlighted by the effect of Metformin, an inhibitor of

oxidative phosphorylation, that caused reduced locomotor

Figure 5. Effect of dietary sucrose on male Drosophila sleep-wake behaviour. Male w1118 flies were fed diets containing different sucrose
concentrations and their sleep-wake behaviour monitored for three consecutive days. (A) Activity plots binned to every half-hour of the 24-hr cycle
for flies fed the different diets; dark bars represent night and day activity, respectively. The grey bar denotes an average of 2 beam crosses per half
hour and is presented to aid comparisons of the data. (B) Sleep (periods of 5 minutes without a fly crossing the beam) of flies on the two diets. (C)
Length of sleep bouts. (D) The number of sleep bouts. (E) The amount of locomotor activity undertaken by flies on the different diets. (F) Average
length of activity bouts. (G) Intensity of activity bouts. Grey boxes refer to 24 hr data, open boxes refer to the 12 hour light period and filled boxes
relate to data collected during the 12-hour dark period. *P,0.01; #P,0.05; n = 32 flies for each diet and is representative of four independent trials.
doi:10.1371/journal.pone.0012062.g005
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activity but which had no effect on any parameter related to sleep

or arousal. The restriction of Metformin’s effect to the morning is

consistent with a diurnal influence on food intake (and therefore

drug ingestion), which is maximal at this time [48]. Models of

sleep deprivation have demonstrated that the amount of sleep

following deprivation does not correlate with the amount of

locomotor activity during deprivation [8]. Similarly, others have

reported either no, or only a weak correlation between waking

activity (activity per waking minute) and sleep [49,50]. Therefore,

it appears that fly sleep does not contribute significantly to

metabolic homeostasis, which is far better maintained by

adaptations to food intake and locomotor activity. However, this

conclusion does not exclude the possibility that pathological and/

or chronic disruption of oxidative phosphorylation or glucose

metabolism, may impact upon sleep by modulating the function

of neurons controlling arousal.

Conclusions
Diet has profound, sex-dependent effects on the sleep

architecture of Drosophila. Flies exhibit an ultradian rhythm of

arousal that resembles the cyclical sleep patterns of mammals and

humans. Dietary yeast promotes the fragmentation of sleep-wake

behaviour in both sexes but by different mechanisms: in males it

reduces the arousal threshold and thus shortens bouts of sleep;

whereas in females it shortens bouts of locomotor activity. When

flies of either sex awaken from sleep, the length of time they

remain awake and the amount of activity they undertake, is

dependent upon the sucrose content of their diet. Changes to total

Figure 6. Effect of dietary sucrose on female Drosophila sleep-wake behaviour. Female w1118 flies were fed diets containing different
sucrose concentrations and their sleep-wake behaviour monitored for three consecutive days. (A)–(G) Legend as for figure 5. *P,0.01; #P,0.05;
n = 15–16 flies for each diet and is representative of two independent trials.
doi:10.1371/journal.pone.0012062.g006
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Figure 7. The effect of Metformin on sleep-wake behaviour, basal ATP and food intake. (A) Flies were provided with agar based diet
containing 30% sucrose, supplemented with Metformin at the stated dose. The three charts show mean (6SEM) beam crosses from three days of
behavioural monitoring. The arrows are identically placed within each chart and point to the decrease in morning activity. (B) Locomotor activity
(beam crosses) on diets containing difference concentrations of Metformin. (C) Length of each activity bout. (D) Intensity of locomotor activity. (E)
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locomotor activity do not correlate with changes to the amount of

sleep, suggesting that sleep is uncoupled form energy expenditure

in Drosophila. These findings indicate that Drosophila will be a

valuable model with which to understand the relationship between

diet, sleep and physiology that exists in mammals and humans.

Supporting Information

Figure S1 Dietary yeast does not affect food intake. CAFE

assays were used to monitor food intake by male and female flies

for five days. The provision of 2% yeast extract in the 5% sucrose-

water had no effect on food intake. ns = not significant; n = 8–10

flies per diet.

Found at: doi:10.1371/journal.pone.0012062.s001 (0.08 MB TIF)

Figure S2 Sucrose ingestion on diets containing different sucrose

concentrations. Sucrose ingestion was monitored by CAFE assay

for five days. The provision of sucrose at either 5% or 35% in

water, had no effect on the total amount of sucrose ingested over a

five day period. (n = 8–10 male flies per treatment; P.0.05 by two

way ANOVA).

Found at: doi:10.1371/journal.pone.0012062.s002 (0.08 MB TIF)
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