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Abstract

Neurons display a high degree of variability and diversity in the expression and regulation of their voltage-dependent ionic
channels. Under low level of synaptic background a number of physiologically distinct cell types can be identified in most
brain areas that display different responses to standard forms of intracellular current stimulation. Nevertheless, it is not well
understood how biophysically different neurons process synaptic inputs in natural conditions, i.e., when experiencing
intense synaptic bombardment in vivo. While distinct cell types might process synaptic inputs into different patterns of
action potentials representing specific ‘‘motifs’’ of network activity, standard methods of electrophysiology are not well
suited to resolve such questions. In the current paper we performed dynamic clamp experiments with simulated synaptic
inputs that were presented to three types of neurons in the juxtacapsular bed nucleus of stria terminalis (jcBNST) of the rat.
Our analysis on the temporal structure of firing showed that the three types of jcBNST neurons did not produce qualitatively
different spike responses under identical patterns of input. However, we observed consistent, cell type dependent variations
in the fine structure of firing, at the level of single spikes. At the millisecond resolution structure of firing we found high
degree of diversity across the entire spectrum of neurons irrespective of their type. Additionally, we identified a new cell
type with intrinsic oscillatory properties that produced a rhythmic and regular firing under synaptic stimulation that
distinguishes it from the previously described jcBNST cell types. Our findings suggest a sophisticated, cell type dependent
regulation of spike dynamics of neurons when experiencing a complex synaptic background. The high degree of their
dynamical diversity has implications to their cooperative dynamics and synchronization.
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Introduction

The biophysical mechanisms underlying the conversion of

synaptic inputs into action potentials have been subject of intense

experimental and theoretical research [1,2,3]. Neurons show a

remarkable degree of computational complexity that is the result

of the differential activation and inactivation of their voltage-gated

membrane conductances during the integration of synaptic inputs.

The multitude of the voltage-gated ionic channels suggest that they

all make an important contribution to the firing pattern of

neurons. Indeed, physiologically distinct cell types can readily be

identified in most brain areas that display different voltage

responses when stimulated with rectangular current waveforms.

The temporal structure of firing in response to depolarizing

current pulses is commonly used for their categorization [4,5].

Additionally, sag-responses and rectification during constant

hyperpolarizing current or post-inhibitory rebound are hallmarks

of specific membrane conductances that can be used for

physiological classification of neurons. Nevertheless, accumulating

evidence suggests that boundaries between physiologically distinct

cell types might be less clear than usually believed. For instance,

cortical neurons in vivo conditions have been shown to display

richer dynamics and a wider repertoire of firing patterns than

when studied in slice preparations where neurons usually

experience sparse synaptic inputs [5]. It is therefore an important

and challenging problem of neurophysiology to understand how

biophysically different types of neurons function in a complex

synaptic environment such as that in the functioning brain. If

synaptic inputs arrive synchronously to distinct populations of

postsynaptic neurons, how different spike responses will they

produce? How this will affect the synchronization of microcircuits

and the transfer of temporally precise firing patterns? Clearly, the

biophysical variability that is observed in different cell types

presents the possibility that the output of component neurons

might represent different motifs of network activity when receiving

synchronous synaptic inputs [6]. Nevertheless, physiologically

distinct cell types as defined by conventional methods in in vitro

preparations might appear less different when experiencing intense

synaptic bombardment and operating in the high conductance

state [7].
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In the present paper we used synthetic synaptic inputs

introduced with dynamic clamp to stimulate biophysically distinct

types of neurons in a brain slice preparation. The bed nucleus of

stria terminalis (BNST), the subject of our investigation, is a brain

area that plays an important role in the regulation of stress and

reward. The BNST is part of the extended amygdala, an

anatomical macrostructure that comprises several basal forebrain

structures to form a grey matter continuum sharing similarities in

morphology, neurochemistry and connectivity [8,9]. Drugs of

abuse and stress have been shown to produce changes in synaptic

and non-synaptic forms of neural plasticity in the BNST [10,11].

The juxtacapsular BNST (jcBNST) is a small nucleus in the

dorsolateral BNST that has direct projections to the medial part of

the central nucleus of the amygdala (CEAm) and can indirectly

also influence the CEA through its projections to the basolateral

amygdala (BLA) and other cell groups that in turn send projections

to the CEA [12]. Thus, changes in the computational properties of

jcBNST neurons may contribute to the overall amygdala output

[13].

The jcBNST contains three types of physiologically different

GABAergic interneurons. These cell types have different amounts

of specific voltage-gated membrane conductances such as the

hyperpolarization-activated nonspecific inward current, the tran-

sient K- current or the low-threshold Ca-current [14]. We sought

to determine if these neurons produce different spike responses -

firing signatures - to the same pattern of simulated random

synaptic inputs under dynamic clamp conditions. Somewhat

unexpectedly, the three types of jcBNST neurons did not display

marked differences in their spike responses under such conditions.

However, our experiments revealed remarkable, cell type

dependent behavior at the level of single spikes and their timing

precision. In this respect, biophysical variability and diversity

might have a stronger impact on the millisecond-resolution

temporal structure of postsynaptic spike trains than on their

dynamics at longer time scales.

Results

General physiological properties of jcBNST neurons
To identify the physiological type of jcBNST neurons first we

performed experiments with standard protocols of intracellular

current injection [14]. Specifically, we used rectangular current

pulses of both hyperpolarizing and depolarizing polarity and

observed the neurons voltage responses. According to this

protocol, three cell types can be distinguished in the rat jcBNST,

as previously noted [11], and consistent with a previous

description in the rat anterolateral BNST as a whole [14]

(Fig. 1). The 3 cell types display characteristic differences in their

voltage responses and these visual features indicate the presence

and amount of specific voltage-gated ionic conductances in their

membrane. Specifically, type I neurons were characterized by the

presence of a depolarizing sag in response to hyperpolarizing

current injection indicative of activation of Ih, and the absence of

rebound firing after release from hyperpolarization (Fig. 1, Type I).

In all, 25 type I neurons were used in our experiments, first

subjected to rectangular current stimulation and then dynamic

clamp stimulation. Type II neurons (n = 34) had a larger depolariz-

ing sag, indicative of a stronger Ih, and they also displayed robust

post-inhibitory rebound firing (Fig. 1, Type II) partly caused by the

activation of the low-threshold Ca-current (IT). Type III neurons

(n = 35) did not have either a depolarizing sag or rebound firing, but

exhibited rectification with hyperpolarizing current injection (Fig. 1,

Type III). When the three types of neurons received suprathreshold

depolarizing current injection, they displayed firing patterns that

were also distinguishable. Specifically, type I neurons exhibited a

regular firing pattern with moderate spike frequency adaptation.

Conversely, responses of type II neurons under DC depolarizing

current injection usually showed a depolarizing ‘‘hump’’ shortly

after the onset of current injection resulting in an initial burst that

developed into more regular firing. Type III neurons exhibited a

depolarizing ramp and delayed firing under DC step depolarization

and their firing patterns showed an accelerating behavior unlike the

other two types of neurons. Importantly, type III neurons displayed

more hyperpolarized resting membrane potentials than the other

two types of neurons (Table 1.). Furthermore, these neurons had

lower input resistance and required stronger depolarizing current to

fire than the other two types. Type O neurons represent a new class

and they are described later.

Reliability and precision of spike timing in three types of
jcBNST neurons

Synaptically isolated jcBNST neurons were at rest with no sign

of subthreshold oscillations or slow modulations in their mem-

brane potential. To induce temporally complex, in vivo-like firing

in these neurons, we subjected them to a barrage of stochastic,

computer-generated synaptic inputs (frozen noise) via dynamic

clamp. The noisy input consisted of an excitatory and an

inhibitory presynaptic waveform, two trains of artificial spikes

both having a mean firing rate of 30 Hz and Gaussian distributed

interspike intervals with a standard deviation of 25 ms. This

stimulation proved to be efficient to induce vigorous and complex

firing patterns in the jcBNST neurons so they visited a wide

dynamical range of their activity space. At the same time, the

impact of individual EPSPs and IPSPs on the postsynaptic firing

Figure 1. DC current stimulation reveals three physiologically
different types of jcBNST neurons. The bottom trace shows the
injected current waveform (350 ms steps, current level incremented by
20 pA). The type I neuron on top shows a depolarizing sag during
hyperpolarizing steps but no post-inhibitory rebound firing (PIR). The
type II neuron in the middle displays a larger depolarizing sag and
robust PIR following more hyperpolarized levels of the membrane
potential. The type III neuron lacks the sag-response visible in the
previous traces and starts firing at higher levels of depolarizing current
than the others. Resting membrane potential values were as shown
above each trace.
doi:10.1371/journal.pone.0011920.g001
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could be accurately evaluated, because, on average, there was a

15 ms separation between consecutive synaptic events.

First we compared spike responses of the 3 jcBNST neuronal

types under frozen noise stimulation via dynamic clamp as shown

in Fig. 2. As a first observation on the evoked firing patterns,

jcBNST neurons, regardless of their physiological type, responded

with high reliability and precision under synaptic stimulation via

dynamic clamp (Table 1). Peri-stimulus scatter plots of the evoked

responses revealed accurate reproduction of spike patterns

appearing as vertically aligned spike events in such plots

(Fig. 2C). To identify spike events, i.e. spikes that were reliably

reproduced in more than 33% of stimulus presentations we used

the peri-stimulus spike density function (PSDF, Fig. 2D) as a

continuous estimate of firing frequency along the course of the

stimulus. Peaks in a PSDF correspond to single spike events and

the amplitude of the peaks is positively correlated with both the

reliability and precision of firing (Fig. 2B1–D1). The mean reliability

and precision are temporal measures of the entire spike response

(multiple presentations of the same input) and they are calculated

by averaging the reliability and precision values determined for the

individual spike events. These measures are pooled and shown for

the three different cell types in Table 1. However, both the

reliability and precision vary greatly across events even in the same

pattern of stimulation, i.e. both very precise and more ‘‘jittery’’

spike events are observed along the stimulus (Fig. 2B1–D1). Indeed,

the precision of spike timing ranged from 0.2 ms to 3 ms in our

experiments. As observed frequently and to be shown later, EPSPs

barely crossing the spike threshold of the neuron result in less

reliable and less precise spikes than strong EPSPs with fast rise

times. Hence, the mean values of reliability and spike jitter serve

only as gross metrics of the observed spike dynamics and

additional parameters are to be used to describe the rich dynamics

of neurons under physiologically realistic inputs.

As noted above, type III neurons were the most hyperpolarized

and required stronger depolarization to fire. Hence, a particular

set of conductance parameters that was effective in driving

vigorous firing in a type I or II neuron was usually ineffective for a

type III neuron. However, comparing spike responses of various

types of jcBNST neurons required not only that they received the

same temporal pattern of synaptic input but also that they fired

nearly the same number of spikes during the stimulation (under

one sweep of the stochastic input). Hence, we made an effort to

keep the spike count constant across different neurons. A target

spike count of 20 was used in most experiments meaning that the

5 s stimulus was expected to evoke approximately 20 spikes in

each successive trial of the experiment. As shown in the example of

Fig. 3, a type II neuron easily produced up to 40 spikes in response

to the synaptic stimulation (5 s trials), so a target spike count of half

of that offered a good choice. This way we were able to obtain

sufficient number of spike responses for statistical evaluation while

limiting the risk of degrading the cell due to overstimulation.

As anticipated from their passive electrical properties, different

types of neurons required different values of maximal conduc-

tances to emit the targeted number of spikes. One way to

determine the required parameter settings was to change the 3

maximal conductances manually (but keeping the 1/1/2 ratio) and

to observe the spike response in one or two successive trials. The

target spike number was typically found after testing 3 or 4

parameter settings. However, in most cases we used a more

efficient and systematic method by automatically incrementing the

synaptic conductance values in the dynamic clamp (by scripting).

Here we set a low initial value for the maximal conductances (e.g.

2/2/4 nS) and increased those in small equal steps in the

successive trials. These experiments revealed interesting features of

the spike responses and showed how spike timing reliability/

precision depended upon the strength of the EPSPs.

Correlation of latency and precision of spike timing
Figure 3 demonstrates the behavior of a representative neuron

in an experiment where gradually increasing conductances were

used. The spike count in the successive trials increased

progressively with the conductance gain. Initially only 3 spikes

were observed while gradually stronger EPSPs resulted in more

robust firing (Fig. 3B). Furthermore, spikes that appeared at some

time in the experiment remained ‘‘in place’’ in the successive trials

i.e. whenever a particular EPSP became suprathreshold, the

corresponding postsynaptic spike was reliably emitted in the

subsequent trials. Peri-stimulus analysis of the responses also

showed that increasingly stronger EPSPs evoke postsynaptic spikes

with shorter latency resulting in a slight bending of the individual

spike events (tick marks moving to the left) in the peri-stimulus

scatter plots (Fig. 3A1–A4). The spike time vs. maximal con-

ductance relationship could be well fitted by a negative slope

monoexponential for each spike event. This behavior was remark-

ably accurate and consistent among spike events in the entire

spectrum of neurons we studied. The slope of the spike count vs.

conductance relationship and the shape of the exponentials

depended on the particular cell and also on the particular spike

event, but the overall behavior was very consistent. Hence, the

magnitude of the local EPSC has a strong influence on the timing

of the corresponding postsynaptic spike. As the exponential fits

show, the latency (interval between the pre- and postsynaptic

spike) is determined by the EPSC strength at millisecond precision.

As noted, gradual amplification of the synaptic inputs resulted in

increase of the spike count rather than re-patterning of the

response. Still, newly arriving spikes imposed a profound effect on

the timing of ones already present in the response. For instance,

when an EPSP became suprathreshold and a new spike appeared

Table 1. Physiological properties of four types of jcBNST neurons (numbers indicated in parentheses).

Resting Vm [mV] Resistance [MV] Reliability [%] Precision [ms]

Type I (7) 259.467.5 258659 86.268.2 0.8060.28

Type II (8) 261.066.7 329697 88.0467.5 0.8360.18

Type III (8) 272.965.1*# 171672*# 90.564.0 0.9260.21

Type O (4) 268.569.1 2726121 71.0611.8 { 1.2560.36

The input resistance of the neurons was measured using 2100 pA hyperpolarizing current and by seeking the local minimum of the membrane potential. The reliability
and precision parameters are means (6 S.D.) calculated from responses containing in average 20 spikes per trial under the 30 Hz tonic protocol. Average spike jitter is
below 1 ms for all three cell types under dynamic clamp stimulation. Symbols *, # and { indicate significant differences (p,0.05) from the corresponding values of type
I, II and III neurons, respectively.
doi:10.1371/journal.pone.0011920.t001
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in the spike train, it imposed a shifting effect on an adjacent ‘‘old’’

spike that was already present in the previous trials (Fig. 3A2 and

A3). This effect is very clearly seen when the interval between the

new and the old, trailing spike is less than 50 ms. The spike shifting

effect results in a discontinuity in the conductance-spike timing

relationship, i.e. a sudden jump from the course of the mono-

exponential (see arrows in Fig. 3A2, A3). This interference between

adjacent spikes becomes more significant when short interspike

intervals occur more frequently as observed with increasing firing

rates.

Similarity of spike responses in different types of neurons
The experiments with gradually increasing synaptic inputs

described above provided information on the conductance

dependence of the spike number and precision of spike timing.

When the target number of spikes was achieved, we repeated the

stimulation with fixed maximal conductances for the three

synaptic inputs. Due to the different biophysical properties of

the three main types of jcBNST neurons, i.e. differential expres-

sion of their specific voltage gated membrane conductances, we

expected that they would produce different spike responses to the

same temporal pattern of synaptic inputs. However, as shown in

Fig. 4, most spikes appear in the same locations for the three types

of neurons. In fact, qualitatively the spike responses appear very

similar for the three neuron types. Well reproduced features of the

spike responses, for instance, are the doublets at t = 2 s of stimulus

time, the long spike-free period between t = 2 and 3 s and the

relatively intense firing after 4 s. These features are very similar

across the entire spectrum of cells when this particular input

(30 Hz noisy pattern) is presented. Using different voltage

Figure 2. jcBNST neurons display highly reproducible spike responses under the action of simulated synaptic inputs. One excitatory
and one inhibitory presynaptic voltage waveforms are used to generate a total of three synaptic conductances: 1 fast (AMPA-type), 1 slow (NMDA-)
excitatory and 1 fast inhibitory (GABA-) inputs for the jcBNST neuron (A). The type II neuron on B responds with irregular firing when stimulated with
the above inputs, but this pattern is very reproducible across trials, as shown by the peri-stimulus scatter plot in C. Peri-stimulus spike density
function (PSDF) of the above pattern is shown in D. The right side panels (B1, C1, D1) are zoomed sections of the corresponding graphs (6 overlapping
voltage traces shown in B1). The third spike event is less reliable and less precise than the preceding two. The schematic of the dynamic clamp system
is shown in E.
doi:10.1371/journal.pone.0011920.g002
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waveforms as presynaptic inputs results in different firing

responses, but again, they are well reproduced across different

cells (20–200 Hz frequency range as well as Poisson-trains, not

shown). One might conclude that the synaptic input appears to

have a stronger role in determining jcBNST spike emissions than

the biophysical character of the neurons.

This view was further strengthened by pairwise comparison of

the spike responses using similarity matrices. As earlier studies

have shown, various implementations of spike train distance

(analogous to similarity) perform well in distinguishing between

neuronal responses or classifying cell types [15,16]. In our analysis

we used two methods for calculating pairwise similarities each

offering its advantages. In the first case we started the procedure

by calculating PSDFs for the neurons receiving the same frozen

noise stimulus (30 Hz template). Then normalized spike train

distances were obtained using the formula

dij~
1

T

ðT

0

DPSDFi tð Þ{PSDFj tð ÞDdt

where T is the duration of the stimulus (5 s). This method is

sensitive to both the existence and precise alignment of spike

events in particular locations of the stimulus. Note that the shape

of a particular peak in the PSDF depends on the number of

observed spikes in that particular event (reliability) as well as their

spike jitter (precision). Similarity is at maximum when peaks in the

PSDFs of both neurons appear in the same locations and with

similar shape. The second method only examines whether peaks in

particular locations appear in the PSDF (amplitude and precise

alignment is not taken into account). Whenever a reliable spike

event is triggered by the same EPSP (same location) in both

neurons, two peaks in the corresponding PSDFs will appear in

identical locations and the total number of such occurrences is

counted. The similarity is maximal when all 20 peaks appear in

the same locations. Here, spike train distance is simply the count of

matches subtracted from 20.

Using the two methods for calculating the spike train distances

we built matrices of the pairwise data. Figure 5 shows the results of

such calculations. Type I, II and III neurons are grouped

separately so within-group and between-group comparison can

be quickly achieved. The grayscale maps show that pairwise

similarities of spike responses between cell type groups are not

markedly different from those within groups. Cell type III appears

the most consistent across experiments in the sense that neurons

within this group display a higher degree of similarity than the

other types as indicated by the lighter gray within the III/III field.

At the same time, responses of cell type II neurons show greater

Figure 3. Gradually increasing synaptic inputs leads to an increasing number of spikes and decreasing latency between the pre-
and postsynaptic spikes. (A) Peri-stimulus scatter plot of a type II neuron receiving synaptic inputs with increasing maximal conductance (from
5 nS to 18 nS; trial number 1 to 14, respectively). The spike count in the successive trials increases monotonously (B). Four selected sections (gray
bars) of the peri-stimulus plot are displayed below. A1 is an example of a single ‘‘clear’’ spike with exponentially decreasing latency. A2 shows the
effect of a new spike in trial #7 which delays the following spike already present in the earlier trials. A3 is similar, but here two new spikes appear in
trial #3 and #13, respectively; the delaying effect is weaker when the excitatory synaptic conductance is stronger, i.e. at trial #13 (17 nS). A4 is
another example for a ‘‘clear’’ spike with exponentially decreasing latency (like on panel A1).
doi:10.1371/journal.pone.0011920.g003
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distances from cell type III and in a lesser degree, from cell type I

responses, as indicated by the relatively darker parts of the

similarity matrices (I/II and III/II fields). The two similarity maps

also contain data from a novel cell type (type O for oscillatory) that

are qualitatively very different from the other neurons responses.

In fact, we find the highest distance values when responses of type

O cells are compared to those from the other 3 types of neurons.

These cells are described in detail later.

While the above analysis showed that spike responses from the 3

originally described biophysically different types of neurons are

generally similar, we decided to have a closer look at the fine

structure of firing so our analysis might reveal more subtle

differences that are hidden in a qualitative assessment or when

calculating the above gross measures of similarity. At this level of

analysis we managed to identify several features and temporal

parameters that were significantly different between but not

significantly different within groups. One of such features that

distinguish type II neurons from the rest is that they tend to fire

more spikes in the beginning of the stimulus than the other types of

neurons (compare Fig. 4B to A and C). Type III neurons, on the

other hand, fire more spikes in the last part of the stimulus (after

t = 3.5 s) with short interspike intervals being common here

Figure 4. Different types of jcBNST neurons produce qualitatively similar firing patterns in response to identical synaptic inputs
but display stronger differences at the single spike resolution. Type I, II and III neurons received the same 30 Hz noisy synaptic input and
emitted spike trains depicted in A, B and C, respectively (voltage output, injected current and peri-stimulus scatter plots for each). Counting spikes in
4 equal and successive segments of the 5 s stimulus (1.25 s each, see gray arrows on A) we obtain the spike count bar graphs on D (mean6S.D., n = 6
for each cell type). Cell type III appears to fire less spikes in the first segment than cell type II and the relationship is reversed in segment #4.
Significant differences are indicated by single or double asterisks (p,0.05 and p,0.01). Panel E shows the analysis of the fine structure of firing. Spike
events in 27 locations along the stimulus are compared for the three cell types. Firing probability in the particular location is indicated by grayscale,
white for p,0.2 and black for p.0.9 (linear grayscale between). Asterisks mark specific spike events, where firing probability is significantly different
between cell types I and II or II and III. Some of the corresponding spikes events are labeled in A and B (see numbers 1–27 above spikes).
doi:10.1371/journal.pone.0011920.g004
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(Fig. 4C). Indeed, spike counts in four consecutive sections of the

responses clearly demonstrate the differences between the cell

types (see Fig. 4D). This comparison shows that type II and III

neurons differ stronger than type I and III neurons do and this is in

agreement with the visual assessment of the similarity matrices.

We note that the statistical properties of the excitatory and

inhibitory inputs were constant when designing the template

waveforms, however, there are sections when the excitation is by

chance stronger than the inhibition, and vice versa. Hence, we can

identify sections - four in our example - where the overall synaptic

input is qualitatively different from the others.

Finally we compared the relative occurrence of spike events in

particular locations (specific EPSPs) of the stimulus for the three

cell types. Evaluating the peri-stimulus density functions of 18

neurons (3 types, 6 neurons of each) we identified a total of 27

possible locations where marked peaks could be found. Although

the cells were stimulated in a way that they produced in average 20

spikes per trial, the spikes did not always appear in the same

locations among cells, hence the number for possible spike

locations is greater than 20. In the following, we counted the

number of trials where we did observe spikes at the 27 pre-selected

locations for different type of neurons. Dividing this count by the

total number of trials we obtained pooled event probabilities for

the three types of neurons (Fig. 4E). This analysis showed that only

a small percentage of spike events accounted for the bulk of all

differences between the three neuron types. A grayscale map of

Figure 5. Similarity analysis of spike responses of jcBNST neurons reveals slight differences across cell types. Grayscale-coded
matrices demonstrate pairwise spike train distances calculated from the responses of 27 neurons. The neurons were grouped into four clusters (types
I, II, III and O for oscillatory) as defined by their responses to rectangular current stimulation. Panel A shows pairwise distances obtained from the
absolute differences between the PSDFs (method 1). C is the result of the peak match counting (method 2). Average pairwise distances within groups
and between groups are not significantly different, however, cell type III neurons within the group appear to produce more similar spike responses
than others (III/III field is the brightest). Also, the average distance between type II and III neurons exceeds those between the I/II or I/III types. Panels
B and D display the average distance values within the main partitions of the matrices (line of identity not included). The new oscillatory type neurons
display firing patterns that are dramatically different from those of the other types of neurons.
doi:10.1371/journal.pone.0011920.g005

Spike Dynamics in BNST

PLoS ONE | www.plosone.org 7 August 2010 | Volume 5 | Issue 8 | e11920



event probabilities shows that most of the observed spikes are

emitted in the same locations of the stimulus independent from the

cell type, however, there are a few locations, ‘‘bits’’, where the

responses are markedly different. These locations are indicated

with asterisks. For instance, type III neurons rarely fired in the

beginning of the stimulation and location #1 and #2 (first two

bits) see few spikes from this type of neurons. Type II neurons,

however, fire reliably here, so the pooled spike event probability is

high. Also, marked differences are seen at locations #9, #12, #18

and #20. Consequently, biophysical differences in the three types

of jcBNST neurons lead to detectable differences only in a small

percentage of events. Conversely, the majority of spikes (,80%)

are generated uniformly in most neurons despite their different

biophysical characteristics. In this aspect these spikes can be

considered as ‘‘trivial’’ events.

A novel type of neurons with oscillatory properties
Cell type II neurons are relatively easy to identify because of

their prominent sag-current in response to moderate hyperpolar-

ization with a DC pulse and because they fire spikes when released

from hyperpolarization. Such post-inhibitory rebound is very

characteristic and robust in cell type II neurons while absent in

types I and III neurons. In a small number of cells we found a sag-

current associated with a post-inhibitory rebound, which,

however, lacked the burst appearance of typical type II neurons

and was instead more protracted firing (Fig. 6A). Specifically, these

cells produced near theta-frequency tonic firing (5–8 Hz) rather

than a short burst after released from hyperpolarization.

Furthermore, the spikes appeared to follow the time course of

an endogenous membrane oscillation that usually dampened after

a few cycles and the neuron ceased firing (Fig. 6A, asterisk).

Another interesting feature of this type of neuron is that they fire

only a single spike in response to maintained DC depolarization

(+40 pA and higher). This indicates a biophysical mechanism for

prevention of recurrent spiking under depolarization. Again, in

this aspect they are markedly different from the other known cell

types, including type II neurons. Considering the above findings

these neurons might represent a novel cell type rather than being

anomalous type II neurons. Remarkably, spike responses of these

neurons under dynamic clamp stimulation were markedly different

from the 3 previously described jcBNST cell types. We grouped

these oscillatory type neurons together and calculated spike train

distances from their responses as we did for the other three types of

neurons. The grayscale similarity matrices shown in Fig. 5

demonstrate that such neurons produced firing responses that

were vastly different from those of type I, II and III neurons.

Besides, this group was found to be less homogenous than those of

the standard cell types, especially type III, because within group

similarities were only slightly higher than between group

similarities. Inspecting the fine structure of spike responses of such

oscillatory neurons we found that they tend to maintain a more

tonic and steady firing than the other cell types under the

stimulation with 30 Hz synaptic input (Fig. 6B). Indeed, strong

spike events are found in locations where the other well known cell

types produce no spikes at all (e.g. from t = 2 to 3 s of stimulus

time). Besides, the firing patterns of the oscillatory neurons lack

short interspike intervals like those found in the responses of cell

type III neurons (ISIs as shorts as 10 ms). While the reliability and

Figure 6. A novel type of neuron in the jcBNST displays oscillatory properties. A shows the effect of hyperpolarizing and depolarizing
current steps (+20 pA increment). While this neuron displays post-inhibitory rebound firing like type II neurons, it maintains repetitive firing rather
than emitting a short PIR burst. Intrinsic oscillation is apparent after releasing it from 220 pA hyperpolarization (asterisk). (B) The spike response of
this neuron under the standard 30 Hz stimulus is fairly regular and appears very different from that of other type of neurons (compare to Fig. 4A–C).
doi:10.1371/journal.pone.0011920.g006
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precision of spike events along the stimulus were not significantly

different from those in the other type of neurons, the oscillatory

cells transform the 30 Hz synaptic input into a very different firing

pattern than the type I–III neurons. Qualitatively, the spike

responses of the type O neurons are more regular and interspike

intervals are more even than in the other cell types. As we have

shown for the known cell types (I, II and III), the majority of their

spikes were trivial in the sense that they reflected more the

dynamics of the synaptic input than the biophysical character of

the neuron. In the latter group of oscillatory neurons we find that

most of the spike events are non-trivial because they have weak

overlap with the responses of the other cell types. In fact, the main

effect of the synaptic input is the initiation of a relatively stable and

regular firing reminiscent to pacemaker activity.

Diversity of spike dynamics at the millisecond scale
The results we obtained with dynamic clamp stimulation on

various types of jcBNST neurons lead to interesting consequences.

Conventionally, neurons in a wide range of nervous systems are

classified into different physiological types using simple protocols

of rectangular current steps. As we observed, jcBNST neurons

classified as type I, II or III cells and displaying clear differences in

their voltage output under DC stimulation, do not markedly differ

when stimulated with stochastic inputs via dynamic clamp.

Conversely, the latter approach identified a novel oscillatory type

of neuron that produced markedly different spike responses despite

resembling type II neurons under DC current stimulation. If we

choose to focus on the very obvious physiological (or dynamical)

differences between jcBNST neurons, we can identify three main

cell types using the DC step method and only two cell types using

the synaptic stimulation via dynamic clamp. One could say, cell

type classification might depend on the stimulus protocol the

experimenter happens to choose.

The fact that differences between the neurons’ firing were

detected only in a small percentage of spikes suggests that they

integrate their synaptic inputs in a fairly similar manner (except

the type O neurons). Nevertheless, biophysical diversity of neurons

- even of the same - type has been demonstrated in a number of

brain areas. The diversity is caused by the differential expression of

specific voltage-gated membrane conductances and random cell-

to-cell variations on the passive membrane properties of the

neurons. We assumed that such random variations in the

biophysical properties of neurons would have an impact on their

firing responses in a way that appeared as random, within-group

variations in one of the temporal parameters yet to be determined.

To test this hypothesis we performed a thorough analysis of the

fine structure of the spike responses.

As a general strategy, the spike responses of neurons are to be

analyzed in relation to the input that was presented to the neuron

and processed into a specific output firing pattern. Therefore, we

analyzed the temporal relationship between the local synaptic

conductance transients and the corresponding spikes in the

receiving neuron. As described, the input coupled to the dynamic

clamp consisted of excitatory and inhibitory waveforms containing

‘‘spikes’’ of variable amplitude, hence the jcBNST neurons

received EPSCs and IPSCs of variable amplitude. Due to the

small amount of overlap between the EPSCs it was always possible

to determine which excitatory transient was the triggering event

for any spike in the jcBNST neuron, hence we were able to

measure pre- and postsynaptic spike latency for each event in the

peri-stimulus plot (Fig. 7A). These latencies were distributed in a

wide range, from 2 to 20 ms for most neurons. However, latencies

in particular locations of the stimulus are well reproduced across

trials as shown by their low spread (S.D.). Indeed, the standard

deviation – identical to spike jitter of peri-stimulus scatter plots – is

a small fraction of the local latency. The coefficient of variation,

defined as S.D. divided by the mean is 0.1 for events with 10 ms

latency and even less with shorter latencies. The relationship

between the mean spike latency and its standard deviation is

illustrated in Fig. 7C. This graph reveals a tight, positive

correlation between these measures, a general behavior that is

well reproduced among all types of neurons in the jcBNST. The

slope of the regression line and the scattering of points varies from

cell to cell, but the overall behavior is always discernable.

Reasonably, one would expect that perhaps the most important

factor setting the value for pre-postsynaptic latency is the strength

of the synaptic input that triggers the spike emission. Clearly, a

stronger EPSP would bring the postsynaptic neuron above firing

threshold faster than a weaker EPSP. This is, indeed, clearly

shown by the analysis of firing under gradually increasing EPSCs

(Fig. 3). Due to the positive correlation between latency and spike

jitter (Fig. 7C) one would then expect a clear, negative-slope

relationship between the EPSC amplitude and the jitter. However,

when examining the relationship between the amplitude of local

EPSCs and the latency of their corresponding spikes, we find

virtually no correlation (Fig. 7D). Hence, when synaptic inputs

arrive to the postsynaptic cell continuously and in a temporally

complex pattern, local EPSP strength is not the determining factor

setting the latency of the postsynaptic spike. Seemingly, this

contradicts the findings shown in Fig. 3. However, note that the

accurate exponential relationship is observed for individual spike

events where the synaptic strength is gradually increased. When

spike events are compared among different EPSPs in a temporally

complex stimulus, a different exponential relationship can be

found for each EPSP-spike coupling. Latencies for event A and B

can be very different even if the amplitudes of the triggering EPSPs

were identical.

If latencies are so well reproduced in the responses of single

neurons receiving the noisy synaptic inputs (low coefficient of

variation), are the latency maps similar across neurons of the same

type? This comparison is possible mostly because the neurons tend

to fire in response to the same EPSPs, i.e. in similar locations of the

stimulus waveform. As we observed, identical type of neurons fire

spike patterns that overlap in 80 or higher percentage of the spikes.

For example, a spike latency at t = 0.9405 s can be compared for

neuron A and B, because they both fire in that particular location.

Somewhat unexpectedly, we find no two similar latency maps

when comparing these diagrams for type I, II or III neurons. In

fact, each neuron produces a unique pattern of latencies in these

diagrams, hence they are similar only to themselves. As noted, the

low C.V. of latencies indicates that the neuron reproduces the

same spike event with remarkable precision in the successive trials,

but another neuron, even within the same type of cells, will fire in

response to the same input with a different latency. A simple

explanation for this finding would be that neuron A tends to fire

with a latency that is, on average, a constant percentage (e.g. 50%)

of that of the latency of neuron B. In this case, rescaling the latency

map of neuron A would result in a map that nicely overlaps with

that of neuron B. However, some spike events have a shorter

latency in neuron A than in B but others have the reversed

relationship. Hence, the simple linear rescaling does not work and

the latency maps are found to be distinctive for every neuron. To

verify our interpretation on the qualitative differences in the

latency diagrams, we decided to perform a systematic pairwise

comparison of the spike latencies between neurons. Again, we

selected time series that contained approximately 20 spikes per

trial (30 Hz tonic stimulus) and which were recorded from neurons

that were clearly identified as type I, II or III cells according to
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their voltage responses to DC stimuli. Then we calculated latency

values and their variance for spike events that were present in the

spike responses of both neurons to be compared (i.e. spikes at

identical locations). Since the spike jitter (variance of the latency)

was heterogeneous for different neurons, the use of Welch-statistics

was justified. A total of 3138 t-tests were performed (including 21

neurons) and significant differences were found in 83% of the pairs

(p = 0.05). Within group comparison revealed significant differ-

ences in 75, 80 and 88% of pairs for type I, II and III neurons,

respectively. In this respect, the fine structure of firing revealed

substantial variations across the population of neurons even if they

are classified as the same cell types. At the millisecond time scale

and when considering the dynamics of EPSP-spike coupling, every

neuron appears to process synaptic inputs in a way that is different

from the rest.

Discussion

Our experiments revealed several intriguing features of synaptic

processing in the neurons of the juxtacapsular bed nucleus of stria

terminalis. Our first finding was that biophysically distinct types of

neurons as determined by conventional means of classification did

not produce markedly different firing responses when stimulated

with physiologically realistic synaptic conductance waveforms

under dynamic clamp. Although the qualitative features and gross

temporal parameters of the spike responses were similar across cell

types, we observed significant differences in the fine structure of

the firing, i.e. at the single spike resolution. In addition to the

known three cell types, we identified a new type of jcBNST neuron

with intrinsic oscillatory properties that displayed spike dynamics

markedly different from the others. Finally, we showed that spike

latency maps of neurons even from the same groups display great

variations most likely due to the diversity of their intrinsic

biophysical properties.

Conventional vs. realistic stimulation of single neurons
According to the conventional view, the voltage output of

synaptically isolated neurons under DC current stimulation

reveals several important physiological properties that might

suggest some feature of their operation in the intact brain. The

Figure 7. Analysis of pre- and postsynaptic spike timing in a type II neuron reveals strong correlation between latency and spike
jitter. Latencies for each spike event are plotted against the stimulus time in A. Here, approximately 20 spikes were emitted in every trials. Means and
S.D.s of the latencies were calculated and plotted in B. Latency values for specific locations of the input are well reproduced across trials, shown by
the small S.D.s (same as spike jitter in per-stimulus plots). Spike latency and spike jitter are strongly correlated and the relationship is close to linear
(C). At the same time, we find no correlation between the spike jitter and the amplitude of EPSC just preceding the postsynaptic spike (D).
doi:10.1371/journal.pone.0011920.g007
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voltage output in response to current steps, on the other hand

depend on the intrinsic biophysical properties of the neurons such

as the abundance or lack of specific voltage-gated ionic con-

ductances. Indeed, this quick and reliable method has been com-

monly used to assess the neurons’ overall physiological properties

and to classify them into distinct cell types [4,14,17,18]. When

observing the behavior of the neuron under DC stimulation, one

can identify several telltale signs of specific voltage-gated con-

ductances that shape the voltage output. The slope of depolar-

ization leading to the first spike, the sag-response under negative

current injection or the post-inhibitory rebound are often con-

sidered as physiological correlates of important membrane con-

ductances, especially when voltage clamp experiments confirm

their existence.

Considering the wide repertoire of biophysical properties that

mammalian neurons display one can expect correspondingly rich

behavior in their dynamics. While computational models of

neurons have been of great value in such investigations, biological

experiments with physiologically realistic inputs are to be per-

formed to gain a clearer understanding on how these neurons

might work in the active synaptic environment of the intact brain.

The dynamic clamp technique offers a great opportunity for such

investigations [7,18,19]. When repetitively stimulating the neurons

using the same random conductance waveforms as artificial

synaptic inputs, one can assess the reliability and precision of their

firing [20,21,22]. These parameters are considered as quantitative

measures of the neurons performance in the processing of synaptic

inputs. Admittedly, exact repetitions of synaptic messages such as

those in the frozen noise experiments are unlikely in the natural

conditions. On the other hand, a population of presynaptic

neurons can synchronously deliver inputs to multiple postsynaptic

targets often with different biophysical character. Our experiments

were designed to mimic these very conditions. It is also notable

that a single sweep of the noisy stimulus template (5 s length) is

actually consisted of hundreds of excitatory and inhibitory

conductance transients, therefore the stimulated neuron experi-

ences a rich and variable input unlike in experiments with DC

current injection.

The 30 Hz template waveform we used the most frequently in

our experiments can be considered as a way to simulate a

moderate intensity synaptic input, but we did not aim to simulate

strong synaptic bombardment that is characteristic of highly active

circuits in the awake brain [7]. Our stimulus was, however, well-

suited to study the impact of single EPSPs on postsynaptic activity

and to assess how the biophysical character of the neuron affected

the temporal pattern, reliability and precision of spike responses.

In our experiments the potency/impact of each EPSP could be

quantified, pre- and postsynaptic spike latencies could be

accurately measured.

Distinct cell types can function in a qualitatively similar
manner under synaptic input

The jcBNST neurons of our study have been characterized

using conventional DC current stimulation as well as voltage

clamp [14]. The three cell types contribute to the majority of the

jcBNST neurons and they have been classified as medium-sized

spiny neurons according to their morphological properties [23].

Our observations on the voltage output of such neurons in

response to hyperpolarizing and depolarizing current injections

were in good agreement with those in the Hammack study. The

authors of this work identified five important voltage-gated ionic

currents that are differentially expressed in the cell types and each

of those has a strong impact on the voltage output of the neurons

under DC stimulation. These are the hyperpolarization-activated

nonspecific cation current (Ih), the low-threshold Ca-current (IT),

the fast transient K-current (IA), the inwardly rectifying K-current

(IK(IR)) and the persistent Na-current (INaP). Clearly, these are

ubiquitous in neurons of other brain areas, too, hence the jcBNST

neurons offer a good experimental subject to study how the

neurons integrative/computational properties depend on their

biophysical character.

Our experiments showed that neurons with different biophysical

properties can produce rather similar spike output in response to

the same synaptic input. Indeed, type I, II and III neurons as

classified by the conventional methods produce apparently

different voltage output in response to DC current steps, but they

can produce similar firing patterns when receiving the synaptic

input under dynamic clamp. One would expect, the differential

activation and deactivation profile of voltage-gated conductances

in the three types of neurons will eventually result in deviations in

their spike responses, i.e. they will follow different trajectories in

their phase spaces. However, we observed that the majority of the

spikes emitted by the three types of neurons occur in the same

locations of the input waveform. Our preliminary calculations also

showed that these ‘‘trivial’’ spikes can be well reproduced in a

simple leaky integrate-and-fire model that is presented the same

input as the biological neurons. In this respect, the trivial spikes are

input driven events that occur with high probability and

independently from the intrinsic biophysical properties of the

neuron. As previously showed, the three types of jcBNST neurons

differ significantly in the relative magnitude of their Ih, their low-

threshold Ca-currents and their inwardly rectifying K-currents

[14]. Our results suggest that even strong differences in the

magnitude of these conductances will not cause qualitatively

different firing output in the neurons. Considering the low voltage

threshold of activation for many of these conductances one can

envision that they play a relatively minor role in shaping the

ongoing firing patterns of neurons when they are relatively

depolarized and bombarded by excitatory inputs. In agreement

with this notion, qualitatively similar firing patterns have been

demonstrated in pyramidal neurons with markedly different

amount of Ih currents [24]. Nevertheless, qualitatively similar

responses - as interpreted by the experimenter - do not mean that

the three types of neurons function the same way under identical

synaptic inputs. Indeed, a small percentage of spikes, the ‘‘non-

trivial’’ ones are reliably emitted by one type of neurons but not

the other types. Typically, these are the spikes where the integrate-

and fire model fails to reproduce the dynamics. We suggest that

these spike events correspond to the specific conditions of synaptic

input interacting with the intrinsic properties of the neuron when

the biophysical differences grow to the detectable level. Such

conditions can occur during the summation of excitatory

postsynaptic potentials [24]. If 80–90% of spikes are reproduced

consistently in the three types of neurons, does the smaller fraction

of non-trivial spikes matter? Clearly, if neurons are considered as

rate-coders, then a small percentage of ‘‘missed’’ spikes will

probably not make much of a difference and the downstream

populations of neurons will not detect the differences in the output

patterns. However, synchronization of spatially distinct groups of

neurons or fast sensory processing requires temporally precise

regulation of spiking and the impact of non-trivial spikes can be

significant in such processes. Also, forms of short-term synaptic

plasticity such as depression or facilitation especially when coupled

with resonant properties of the postsynaptic neuron can result in

high sensitivity to the temporal structure of the input spike pattern

[25]. In such systems the presence or lack of even single spikes in

the input can lead to markedly different output from the

postsynaptic cell.
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As part of our study, we identified a novel cell type of

oscillatory neurons. Analyzing the behavior of this new type of

neurons we realize that in some cases neurons do produce very

different output in response to the same synaptic input. While the

previously identified three types of neurons produce qualitatively

similar patterns, this new type follows a very different trajectory.

One of the intriguing features of its firing is that the interspike

intervals display far less variations than those in the other 3 types

of cells. Apparently, the newly identified oscillatory neurons tend

to fire tonically in the presence of synaptic input and single

EPSPs and IPSPs play a modulatory rather than a driving role

in spike emissions. As we observed, this neuron type can fire

tonically and persistently after the termination of a strong

inhibition (DC pulse). This pacemaker type activity might be

initiated by the synaptic inputs as delivered by the dynamic

clamp. Hence, under such conditions the dynamics of the

oscillatory type cells is not governed by the input but equally or

even more shaped by their intrinsic properties. The specific

voltage-gated conductances that might be responsible for the

intrinsic oscillation and regenerative spiking in such cells are yet

to be determined.

Consistency and diversity of firing
The three types of neurons reproduced firing patterns with high

reliability and precision when stimulated with a stochastic synaptic

input via dynamic clamp. As we showed, the majority of spikes

were emitted in the same locations of the stimulus, therefore, spike

responses were consistent across neurons from different groups. At

the level of single spikes we found another very consistent

behavior, namely the exponential dependence of spike timing on

the magnitude of the excitatory input [21]. When the total

conductance gain of the synaptic input was incremented in small

steps, spikes in specific locations were emitted with gradually

decreasing latency, and the relationship between the conductance

and latency was accurately fitted with a monoexponential. In this

respect, the latency of single spikes even in complex firing patterns

could be well predicted if the amplitude of the preceding

excitatory conductance transient (or its EPSC) is known. How-

ever, this is not feasible for several reasons. When spikes are

produced in response to temporally complex conductance inputs,

each spike latency will depend on the local EPSC and the

preceding history of the postsynaptic membrane potential. Al-

though gradual increase of the total synaptic gain will result in

exponential decrease of individual spike latencies, they will follow

different paths, so there is no one-fits-all relationship that can

be applied to every spike events. The other problem is the

interference between adjacent spikes. Refractoriness and the

activation of potent outward currents following a spike can delay

the emission of the next one. These findings show why it becomes

increasingly more difficult to predict the latency – and precision –

of a spike event when it is embedded in an intense barrage of

excitatory synaptic inputs. When we compare latency maps of

different neurons, the picture becomes even more colorful.

Notably, even using identical types of neurons and after careful

normalization of stimulation conditions, we find no two firing

patterns that contain statistically matching latency pairs for

specific locations of the stimulus. At this level we can conclude

that all neurons behave differently from the others and they will

fire spikes with different latencies in response to synchronous

synaptic excitation. The mismatch between the timings of

postsynaptic spikes can be several milliseconds, a rather significant

dispersion and presenting a potential problem for explaining

precise synchronization in further downstream populations of

neurons. However, convergence of many, temporally distributed

excitatory inputs have been shown to be effective in reducing

postsynaptic spike jitter [21], so precise synchronization can be

maintained by appropriate synaptic topology. Additionally,

inhibitory feedback might be also effective in reducing the

temporal spread of spikes as they are transmitted through different

stages of processing [26].

In conclusion, our results show that neuronal types with

distinct biophysical properties can produce similar spike patterns

in response to the same complex synaptic input. However, the

degree of similarity depends on the time scale that is chosen to

analyze their responses. At the longer time scale neuronal

responses in the three previously described neuronal cell types

appear similar, so this analysis does not distinguish them. A

higher resolution analysis at shorter time scales reveals the

existence of non-trivial spikes that show consistent variations

among the three previously described neuronal cell types. A great

degree of diversity among neurons independently of their distinct

biophysical properties is observed at the highest resolution (ms).

Therefore, the biophysical properties of neurons as revealed by

conventional DC stimulation protocols are not performing well in

predicting their responses to complex synaptic stimulation. Thus,

caution should be taken when extrapolating results with

conventional stimulation to the functional properties of neurons

in microcircuits or higher levels of organization in the nervous

systems.

Materials and Methods

Brain slices and electrophysiology
All experimental protocols were consistent with guidelines

issued by the National Institutes of Health and approved by our

Institutional Animal Care and Use Committee (protocol number

07-0068). Acute brain slices were prepared as previously described

[11,27] with minor modifications. Briefly, coronal rat brain slices

(350 mm) were collected from the rostral cerebrum of Wistar rats

using a Capden vibrating microtome (Loughborough, England) in

oxygenated artificial cerebrospinal fluid (ACSF) consisting of (in

mM) 130 NaCl, 3.5 KCl, 24 NaHCO3, 1.25 NaH2PO4, 2.2

CaCl2, 10 d-glucose, and 2 MgSO4, pH 7.4. Slices were

preincubated in ACSF for 1 hour at 32uC and then maintained

at room temperature for at least 30 min before being transferred

to a submerged recording chamber at 31uC.

Slices of brain tissue containing the BNST were placed in a

superfusion chamber and visualized with a Leica stereomicroscope

under low magnification. Single neurons were not visualized

during electrode insertion and the experimental session (blind

recordings). Intracellular current clamp and dynamic clamp

experiments were performed in whole-cell configuration using

10–12 MV patch pipettes filled with intracellular solution con-

taining (in mM): KMeSO4 120, KCl 10, MgCl2 3, HEPES 10,

Phosphocreatine 10, MgATP 2, GTP 0.2; osmolarity set to 280–

290 mOsm, pH 7.2. Synaptic isolation of jcBNST neurons was

achieved by blocking glutamate and GABA receptors using 10 mM

6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 50 mM AP-5 and

30 mM bicuculline in the bath.

Recordings and intracellular stimulation were made using a

Multiclamp 700 amplifier (Axon Instruments) in the bridge mode.

Stimulus waveforms (both rectangular and spike-like) were

generated using the data acquisition software DASYLab 6.0

(Dasytec, Amherst, NH) in a Windows computer equipped with a

National Instruments PCI-MIO-16-E4 multifunctional board. We

used standard rectangular current commands for conventional

physiological characterization of the jcBNST neurons. Specifically,

we delivered 350 ms pulses of intracellular current incremented by
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20 pA from 2200 pA to +100 pA or higher levels, depending on

the cell type.

Dynamic clamp
We elicited firing activity in the jcBNST neurons by injecting

them with simulated excitatory and inhibitory synaptic inputs via

dynamic clamp (Fig. 2). To achieve this, we first generated

artificial presynaptic voltage waveforms resembling random firing

activity in populations of excitatory and inhibitory neurons. These

analog waveforms (templates) consisted of 5 ms wide spike-shaped

voltage transients that departed from and returned to a rest state of

260 mV. In order to induce variable amplitude synaptic currents

in the postsynaptic biological neurons, we also introduced

amplitude variation of the spike-shaped voltage transients such

that their peak value ranged from 230 to 0 mV in a uniform

distribution. In each experiment we used one excitatory and one

inhibitory input that were designed using the same template

parameters but uncorrelated otherwise. The excitatory and

inhibitory voltage waveforms were coupled to the analog inputs

of the dynamic clamp computer. Simulated chemical synaptic

currents were computed using the formula

Im~gsynS tð Þ Vrev{Vm tð Þð Þ

where Im is the postsynaptic current (injected into the jcBNST

neuron), gsyn is the maximal synaptic conductance, Vrev is the

synaptic reversal potential and Vm(t) is the neuron’s membrane

potential. Transmitter release is modeled by an instantaneous

activation term S(t) given by the differential equation

1{S? Vinð Þð Þtsyn
dS tð Þ

dt
~ S? Vinð Þ{S tð Þð Þ, where

S? Vinð Þ~tanh
Vin tð Þ{Vth

Vslope

� �
when VinwVth,

otherwise S? Vinð Þ~0:

Vin is the input voltage waveform (either the excitatory or the

inhibitory voltage) and it serves as the presynaptic membrane

potential for the dynamic clamp, S? is the steady state synaptic

activation, tsyn is the synaptic characteristic time constant, Vth is

the synaptic threshold voltage, and Vslope is the synaptic slope

parameter. The above parameters were set independently for the

three synaptic conductances used in our experiments. The input

from the excitatory voltage waveform (Fig. 2E, Exc) was used to

evoke rapid (AMPA-type) and slow (NMDA type) excitatory

postsynaptic potentials. The synaptic time constant (tsyn) was 10

and 50 ms for the AMPA- and NMDA-type connections,

respectively and the reversal potential (Vrev) was 0 mV for both.

The second voltage waveform served as the GABAergic inhibitory

input (Fig. 2E, Inh; Vrev = 268 mV, tsyn = 10 ms). Excitatory inputs

drove the firing, while the inhibitory input played a modulatory

role in spike emissions.

The template waveforms and the postsynaptic voltage signal

were connected to the analog inputs of a Digidata 1200B board

that was the interface to the dynamic clamp software StdpC v. 1.9.

[28]. This software can provide up to 6 independent inputs from

simulated presynaptic neurons to the biological neuron. Addition-

ally, it allows the experimenter to automatically change synaptic

parameters such as maximal conductances in predetermined time

points during the experimental trials. We used equal conductances

for the two excitatory inputs (AMPA and NMDA type) and twice

the conductance for the GABAergic input (e.g. 5/5/10 nS). The

rationale for this setting was to keep excitation and inhibition

balanced and proportional across experiments. Additionally, this

setting assured that both types of inputs would exert their impact

on the spike dynamics by differentially activating/deactivating

intrinsic membrane conductances. Typically, the duration of the

random presynaptic waveforms was 5 s and they were repeatedly

presented every 13 s (frozen noise protocol), hence, the neurons

were at rest for 8 s between stimuli. The two synthetic presynaptic

voltage waveforms, the injected synaptic current and the voltage

output of the biological neuron were acquired simultaneously at a

20 kHz sampling rate. To compare spike responses of the 3

jcBNST neuronal types we maintained the spike count constant

(mostly 20) among different neurons by adjusting the 3

conductances while maintaining the aforementioned 1/1/2 ratio.

The 3 maximal conductances were either changed manually until

the targeted spike response was observed in two successive trials or,

more frequently, they were automatically incremented by using

the scripting feature of our software. Spike emissions in the

stimulated neurons were detected on-line (by seeking local maxima

of the derivative of membrane potential) and the arrival times were

saved into ASCII files. We measured spike arrival times at 50 ms

accuracy and in reference to the onset of the stimulus in each trial

(sweep). The presynaptic voltage waveforms (Exc, Inh) were

generated and the response of the jcBNST neuron was recorded

by the DASYLab 6.0 program (Dasytec, Amherst, NH), hence,

two separate computers were used for data acquisition and for the

dynamic clamp (Fig. 2E).

Data analysis
Firing patterns obtained in the dynamic clamp experiments

were initially analyzed using peri-stimulus scatter plots. Reliable

spike events in such plots manifested as vertically aligned tick

marks, i.e. when a spike was emitted repeatedly in the same

location of the stimulus. The statistical analysis was based on the

evaluation of peri-stimulus density functions (PSDFs) construct-

ed from the spike arrival times of the successive trials [29].

PSDFs were obtained by convolving the spike times with a

unity-area Gaussian function called the kernel according to the

formula:

PSDF tð Þ~ 1

n

X
i

ð
K t0{tð Þd t0{tið Þdt0~

1

n

X
i

K t{tið Þ

where d(t) is the delta function, K(t) is the kernel withÐ
K t0ð Þdt0~1, and n is the number of stimulus presentations.

The PSDF is a function of time relative to the stimulus onset.

The Gaussian-kernel based PSDF provides a smooth and

accurate estimation of firing frequency along the time of the

stimulus and excels over conventional peri-stimulus time

histograms. Reliability for each spike event was calculated by

counting the trials with successful spike emission and dividing

this count by the total number of trials. When this ratio was

below 33%, the event was considered as unreliable and not

taken into account to obtain the mean reliability for the entire

experiment. The rationale for discarding the low-reliability

events is that such spikes often introduce small peaks in the

PSDFs that can interfere with the detection of spike events. This

type of pre-filtering removed only a small percentage of spikes.

The mean reliability was calculated by simple averaging of

single event reliabilities. The precision of spike timing was

characterized by the temporal jitter of spikes within reproduc-
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ible events. The standard deviation of spike times was calculated

for each spike event in a peri-stimulus plot and the arithmetic

mean of the individual S.D.s was calculated. The mean spike

jitter served as a scalar measure of the overall spike timing

precision in the experiment.
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