
Role of NAD(P)H Oxidase in Superoxide Generation and
Endothelial Dysfunction in Goto-Kakizaki (GK) Rats as a
Model of Nonobese NIDDM
Sachin Gupte1, Nazar Labinskyy3, Rakhee Gupte1, Anna Csiszar2,3, Zoltan Ungvari2, John G. Edwards3*

1 Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America, 2 Reynolds Oklahoma Center on Aging,

University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America, 3 Department of Physiology, New York Medical College, Valhalla,

New York, United States of America

Abstract

Background: Cardiovascular disease is the leading cause of mortality in diabetics, and it has a complex etiology that
operates on several levels. Endothelial dysfunction and increased generation of reactive oxygen species are believed to be
an underlying cause of vascular dysfunction and coronary artery disease in diabetes. This impairment is likely the result of
decreased bioavailability of nitric oxide (NO) within the vasculature. However, it is unclear whether hyperglycemia per se
stimulates NADPH oxidase-derived superoxide generation in vascular tissue.

Methods and Results: This study focused on whether NADPH oxidase-derived superoxide is elevated in vasculature tissue
evoking endothelial/smooth muscle dysfunction in the hyperglycemic (16964 mg%) Goto-Kakizaki (GK) rat. By
dihydroethidine fluorescence staining, we determined that aorta superoxide levels were significantly elevated in 9
month-old GK compared with age matched Wistar (GK; 19566%, Wistar; 10063.5%). Consistent with these findings,
1026 mol/L acetylcholine-induced relaxation of the carotid artery was significantly reduced in GK rats compared with age
matched Wistar (GK; 4167%, Wistar; 10065%) and measurements in the aorta showed a similar trend (p = .08). In contrast,
relaxation to the NO donor SNAP was unaltered in GK compared to Wistar. Endothelial dysfunction was reversed by
lowering of superoxide with apocynin, a specific Nox inhibitor.

Conclusions: The major findings from this study are that chronic hyperglycemia induces significant vascular dysfunction in
both the aorta and small arteries. Hyperglycemic induced increases in NAD(P)H oxidase activity that did not come from an
increase in the expression of the NAD(P)H oxidase subunits, but more likely as a result of chronic activation via intracellular
signaling pathways.

Citation: Gupte S, Labinskyy N, Gupte R, Csiszar A, Ungvari Z, et al. (2010) Role of NAD(P)H Oxidase in Superoxide Generation and Endothelial Dysfunction in
Goto-Kakizaki (GK) Rats as a Model of Nonobese NIDDM. PLoS ONE 5(7): e11800. doi:10.1371/journal.pone.0011800

Editor: Ian Lanza, Mayo Clinic, United States of America

Received April 21, 2010; Accepted July 4, 2010; Published July 26, 2010

Copyright: � 2010 Gupte et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Supported by the National Institutes of Health under the following grant numbers: HL077256, HL43023, HL085352; as well by the American Heart
Association (Grant#0435070). These funding agencies had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: j_edwards@nymc.edu

Introduction

Of the 24 million diabetic Americans, the vast majority suffer

from noninsulin dependent diabetes mellitus or type 2 diabetes,

while another 57 million Americans are pre-diabetic. Originally

thought to be a metabolic problem, widespread systemic

complications are now recognized. Cardiovascular disease is the

leading cause of mortality in NIDDM has a complex etiology that

operates on several levels to include both atherogenic and

myocardial components [1,2]. The vascular complications include

intermittent claudication, atherosclerosis, hypertension, retinopa-

thy, nephropathy, and congestive heart failure. The vascular

problems of NIDDM individuals are believed to be traceable to

alterations in endothelial function.

Diabetes results in significant impairment of endothelium-

dependent vasodilatation in response to acetylcholine or increases

in flow. This impairment is likely the result of decreased

effectiveness of NO mediated functions within the vasculature. It

is unclear if this impairment is the result of decreased NO synthesis

or bioavailability as a result of an altered vascular phenotype. NO

signaling not only regulates vascular tone, but also inhibits of

components of the atherogenic process including platelet aggre-

gation, monocyte adhesion, and vascular smooth muscle migration

[3,4,5]. Endothelial dysfunction and increased generation of

reactive oxygen species are believed to be an underlying cause

of vascular dysfunction and coronary artery disease in diabetes.

Increased NAD(P)H levels have been observed in the spontaneous

diabetic BB rat also a model of type 1 diabetes [6]. We have

reported in the Zucker fa/fa, a model of type 2 diabetes, an

increase in superoxide generation was observed [7]. All of these

models have both components of hyperlipidemia, hypercholester-

olemia, and hyperglycemia, and it is unclear if hyperglycemia

alone may stimulate NADPH oxidase-derived superoxide gener-

ation in vascular tissue.
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Increased generation of reactive oxygen species is believed to be

an underlying cause of vascular dysfunction and coronary artery

disease in diabetes. Recent studies have shown that components of

NADPH oxidase are up-regulated in type 1 diabetes in the

vasculature [8]. However, it is unclear whether hyperglycemia per

se stimulates NADPH oxidase-derived superoxide generation in

vascular tissue. The GK rats are a nonobese model of NIDDM

that have elevated fasting glucose, impaired response to glucose,

and increased HbA1c levels at an early age [9,10,11]. Compared

to other diabetic animal models, including the Zucker fa/fa and

Leprdb mouse, the GK rats are not severely hyperlipidemic or

hypercholesterolemic and present as a model of hyperglycemia

[7,12]. Therefore, the objective of this study was to elucidate

whether endothelial or smooth muscle dysfunction was evident in

the hyperglycemic GK rats and the potential role NADPH oxidase

function may have.

Materials and Methods

Animal Model
Male euglycemic Wistar and diabetic Goto-Kakizaki rats were

used throughout this study (with the exception of Figure 1A) [13].

The GK rats are a nonobese model of NIDDM that have elevated

fasting glucose, impaired response to glucose, and increased

HbA1c levels at an early age [9,10,11]. Experimental protocols

using animals had approval from the New York Medical College

Institutional Animal Care and Use Committee (A3362-01).

Animals were maintained in accordance with institutional polices

and the Public Health Service (NIH:PHS) Policy on Humane Care

and Use of Laboratory Animals (revised 8/2002).

Glucose Tolerance Test (GTT)
Glucose was tested following an overnight fast and started

between 0930 and 1030 the following morning. The animals were

injected with Nembutal (40 mg/kg, i.p.), and then at least

15 minutes allotted to achieve a suitable plane of anesthesia.

Sterile glucose (1.0 g/kg i.p.) was injected into the abdominal

cavity being careful to avoid the g–i tract. Tail vein blood (50 ml)

was sampled at selected intervals (pre-injection, 15, 30, 60,

120 min). HbA1c was determined using the A1CNow kits (Bayer

Healthcare, Tarrytown NY). Blood glucose was determined using

an Accu-Chek monitor (Roche Diagnostics, Indianapolis, IN)

calibrated using known standards. At the end of the protocol, the

animals were given an addition injection of Nembutal (75 mg/kg,

i.p.) prior to tissue harvest.

Vessel isolation and functional studies
The aorta of each animal were carefully exposed and isolated

from the surrounding tissues. The vessels were cleaned from the

adventitia using an operating microscope and microsurgery

instruments. Endothelial function was assessed as previously

described [14,15]. In brief, aortic segments of each animal were

cut into ring segments 1.5 mm in length and mounted on 40 mm

stainless steel wires in the myographs chambers (Danish Myo

Technology A/S, Inc., Denmark) for measurement of isometric

tension. The vessels were superfused with Krebs buffer solution

(118 mmol/L NaCl, 4.7 mmol/L KCl, 1.5 mmol/L CaCl2,

25 mmol/L NaHCO3, 1.1 mmol/L MgSO4, 1.2 mmol/L

KH2PO4, and 5.6 mmol/L glucose; at 37uC; gassed with 95%

air and 5% CO2). After an equilibration period of 1 hour during

which a optimal passive tension was applied to the rings (as

determined from the vascular length-tension relationship), relax-

ations of pre-contracted (by 1026 mol/L phenylephrine) vessels to

acetylcholine (ACh; from 1028 to 1026 mol/L) and the NO donor

S-nitrosopenicillamine (SNAP, from 1029 to 1025 mol/L) were

obtained.

Microvascular dilation
NO-mediated microvascular responses were compared by assess-

ing acetylcholine-induced dilation in isolated, pressurized first-order

skeletal muscle arterioles, as we previously reported [16].

Dihydroethidine fluorescence
Production of O2

.2 was determined in segments of the aortas

that were used for functional studies. Hydroethidine, an oxidative

fluorescent dye, was used to localize superoxide production in

situ as we previously reported [17]. In brief, vessels were incubated

with hydroethidine (361026 mol/L; at 37uC for 60 min). The

arteries were then washed three times, embedded in OCT

medium and cryosectioned. Fluorescent images were captured

at 610 magnification and analyzed using the Zeiss Axiovision

imaging software. Ten to fifteen entire fields per vessel were

analyzed with one image per field. The mean fluorescence

intensities of ethidium–stained nuclei in the endothelium and

medial layer were calculated for each vessel. Thereafter, these

intensity values for each animal in the group were averaged.

Unstained aortas and vessels pre-incubated with PEG-SOD were

used for background correction and negative control, respectively.

Superoxide Activity
In brief, aortas were homogenized in ice-cold buffer (20 mM

HEPES-pH 7.4, 0.1 mmol/L EDTA, 1 mM glutathione,

1025 mol/L BH4, 16 proteinase inhibitor. Protein concentration

was determined by the Bradford method. NADPH oxidase

activity, using 5 mM lucigenin, was determined as we have

previously described [18]. NOX-dependent activity was deter-

mined by the addition of (361024 mol/L apocynin, 561025 mol/

L gp91ss-tat, or 1026 mol/L diphenyleneiodonium (DPI).

Western Blot Analysis
Tissues were stored at 280uC until used. Aorta samples were

homogenized in ice-cold buffer (20 mmol/L HEPES pH7.5,

50 mmol/L NaCl, 1% SDS, 16 protease inhibitor (Sigma-

Aldrich, P-8340). Protein concentration was determined by the

Bradford method (BioRad reagent). Samples were mixed with

Lamelli buffer, heated to 95uC for 5 min, and loaded onto a SDS-

PAGE and electrophoresis was performed at room temperature.

The gels were blotted onto Hybond-P (Amersham Biosciences,

Piscataway NJ) by a semi-dry transfer protocol. Western analysis

was performed as described previously [19]. Antibodies used

included mouse monoclonal anti-Nox-1, anti-Nox-2, anti-

p67phox, and smooth muscle alpha-actin (Transduction Labora-

tory, San Jose, CA, USA), goat polyclonal anti-Nox-4 and anti-

p47phox (Santa Cruz Biotech, Santa Cruz, CA). Antibody

dilutions were 1:500 for all Nox subunits and 1:2000 for alpha-

actin. Antibody binding was visualized using the Amersham ECL

Plus kit. Band density was quantified using AlphaEaseFC software

(AlphaInnotech, San Leando CA).

RNA Analysis
Total RNA from was isolated using a FASTRNA ProGreen Kit

(Q-Biogene, Irvine CA). Quantification of mRNA levels was done

by QRT-PCR by real-time fluorescent using a Stratagene

MX3000p as described previously [19,20]. The data was

normalized by D2Ct method using b-actin and the fidelity of the

reactions were verified by melting point analysis. Data presented

are the mean6SEM with respect to sedentary control values.
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Statistical Analysis
Statistical analyses were performed using NCSS Software

(NCSS, Kaysville UT). Where appropriate, student t-test or

ANOVA was utilized, post-hoc analysis was done using a Fisher’s

LSD analysis. Values presented are mean6SEM and statistical

significance was set at p,.05.

Results

At 9 months of age the GK weighed significantly less than the

Wistar group (Table 1). When this difference was considered there

was no indication of cardiac hypertrophy, but a significant

increase in the Kidney/BW ratio was observed. Similar to

previous reports the GK rats are both hyperglycemic and have

impaired glucose tolerance (Figure 1).

An impaired vasodilator response has been observed in several

models of diabetes. In the present study we observed that

acetylcholine induced vasorelaxation was impaired in the small

arteries of the diabetic GK (Figure 2A), while, no differences

between control Wistar and diabetic GK were observed in

response to SNAP(a NO donor) (Figure 2B). These results suggest

that diabetes impaired NO bioavailability. One underlying

Figure 1. GK rats are hyperglycemic. A. Fasting blood glucose from GK and Wistar rats at indicated ages. Samples taken in morning after
overnight fast of 16 hours. Values are mean6SEM of 3 to 8 animals. B. GK rats have impaired glucose tolerance. Animals were anesthetized with
Nembutal (40 mg/kg, i.p.). Glucose was injected (1.0 mg/kg i.p.) and blood glucose determined at select intervals. Area under the curve (AUC) analysis
determined that the GK was significantly (p,.05) increased compared to Wistar following injections (Goto-Kakzaki:1263161191 n = 8, Wistar:
490261247 n = 9 AUC arbitrary units).
doi:10.1371/journal.pone.0011800.g001
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mechanism for impaired NO bioavailability is superoxide reaction

to convert NO to ONOO and H2O. TO determine if superoxide

was increased in the diabetic artery, tissue was stained using DHE.

As shown in Figure 3, we observed significant increases in the

present of superoxide.

Similar to our earlier findings in the myocardium [7], NADPH

directed lucigenin chemiluminescence was significantly increased

in the diabetic aorta compared to the Wistar controls (Figure 4).

No differences in NADH directed lucigenin chemiluminescence

were observed (data not shown). The presence NAD(P)H

inhibitors including pg91ds-tat, apocynin, and diphenyleneiodo-

nium all reduced chemiluminescence and no differences between

the Wistar and GK groups were observed (Figure 4).

Superoxide may be derived from several sources including

mitochondria, monomeric eNOS, and NAD(P)H oxidase. We have

previously observed that apocynin (an NAD(P)H oxidase inhibitor)

decrease NAD(P)H-directed superoxide generation in the myocardi-

um [21]. To determine the potential role of NAD(P)H derived

superoxide on vascular function, the aorta was preincubated in

apocynin. In response to acetylcholine induced vasorelaxation, no

differences in vasorelaxation between diabetic and control aortas

were observed (Figure 5). This would suggest that NAD(P)H derived

superoxide generation may have been the underlying cause of

vasoactive dysfunction in GK arteries.

NAD(P)H oxidase consisting of 6 subunits and regulation of its

activity is a complex event that we only now just beginning to

understand. One possibility is an increase in the presence of the

responsible components. Etoh et al. reported that the expression of

both Nox4 and p22phox were increased in a STZ-induced model

of diabetes [8]. To that end we have examined expression of

NAD(P)H oxidase components at both the protein and mRNA

levels. We found no significant differences in expression between

the Wistar and GK aortas (Figure 6).

Discussion

The GK rats are a nonobese model of NIDDM that have

elevated fasting glucose, impaired response to glucose, and

increased HbA1c levels at an early age [9,10,11]. Compared to

other animal models of diabetes, the GK rats are not

hyperlipidemic or hypercholesterolemic and present as a model

of hyperglycemia. We have previously determined that GK

hyperglycemia is progressive with age and that exercise training

will significantly lower fasting blood glucose (sedentary; 20569,

exercise trained; 17469 mg%) [20]. Although not hypertensive,

the GK rats exhibit a small but significant increase MAP and

systolic blood pressure compared to their Wistar controls [22]. GK

rats present with many diabetic related complications observed in

human diabetic patients, including reduced nerve conduction

velocity and progressive renal involvement with thickening of the

glomerular basement membranes [10,13,23,24,25,26,27]. It has

been suggested that impaired pancreatic mitochondrial function

may partially explain the depressed insulin release [28,29].

Whether this is related to a shift in mitochondrial antioxidative

capacity resulting in accelerated apoptosis is unclear [30]. Beta-cell

mass and beta-cell replication is decreased in the GK pancreas and

as such the GK rat may represent a model of beta-cell degradation

for human NIDDM [31,32,33]. Genetic linkage analysis of the

Goto-Kakizaki rats has localized different quantitative trait loci to

those involved in diabetes [33,34,35,36,37]. Some regions show

remarkable synteny homology to the diabetic loci found within

human chromosome 1q21–25 [34,35]. More recently Rosengren

et. al. identified a polymorphism in the GK that resulted

overexpression of the a2A-adrenergic receptor leading to

depressed insulin sensitivity [37]. This polymorphism was also

associated with a decreased insulin sensitivity in humans

supporting the concept decreased insulin sensitivity may be one

Table 1. Morphometric Data.

Body
Wt.

Kidney
Wt.

Heart
Wt.

Kidney/
BW

Heart/
BW HbA1c

(g) (g) (g) (%)

Wistar 375619 1.0660.03 1.1460.03 2.5760.05 3.0760.20 4.9060.14

GK 23263 0.8060.02 0.7460.01 3.4160.09 3.1760.04 7.3360.48

p,.05 p,.05 p,.05 p,.05 ns p,.05

doi:10.1371/journal.pone.0011800.t001

Figure 2. Vasorelaxation of small arteries (,150 mm) from 9 month-old GK or Wistar rats is endothelia dependent. A. Diabetes
significantly decreased acetylcholine-induced dilation ($1026 mol/L) in GK compared to Wistar. B. Diabetes did not alter the response to SNAP (a
nitric oxide donor). Values are mean6SEM of 4 animals. * p,.05 compared to Wistar.
doi:10.1371/journal.pone.0011800.g002
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contributing cause of NIDDM, further linking the GK model to

the human condition.

Diabetes impacts the vasculature on several levels. Increased

generation of reactive oxygen species leading to endothelial

dysfunction is believed to be the major cause of vascular

dysfunction and coronary artery disease in diabetes. The GK rats

represent a model to examine the role of hyperglycemic in

diabetes. The major findings from this study are that chronic

hyperglycemia induces significant vascular dysfunction in both the

aorta and small arteries. Our studies indicate that NAD(P)H

oxidase accounts for a significant portion of intracellular ROS in

the vasculature. Hyperglycemic induced increases in NAD(P)H

oxidase activity did not come from an increase in the expression of

the NAD(P)H oxidase subunits, but more likely as a result of

chronic activation via intracellular signaling pathways.

Endothelium-dependent macrovascular dysfunction has been

observed in several models of diabetes and our results are similar

to others for the larger conduit vessels [22,38,39]. Decreased

endothelial-dependent relaxation of GK aorta and small skeletal

muscle arteries (Figs. 2 & 5), suggest that endothelium-derived NO

is inactivated presumably by hyperglycemia-induced oxidative

stress. Although not hypertensive, the GK rats have a small but

significant increase in MAP and systolic blood pressure compared

to their Wistar controls, and have found to be salt sensitive [22].

Our findings are consistent with an increase in blood pressure as a

function of vascular pathology.

NAD(P)H oxidase, the mitochondrial electron transport chain,

and dysfunctional nitric oxide synthase are the three major sources

of ROS within the cell. Although these sources are thought of as

separate entities, recent papers have suggested significant interac-

Figure 3. DHE fluorescence staining for superoxide. A. 9 month-old Wistar aorta, B. 9 month-old GK aorta. C. Quantification of DHE staining.
Images were collected with a CoolSnap CCD camera attached to an Olympus BX60 microscope. Values are mean6SEM of 4 animals. * p,.05
compared to Wistar.
doi:10.1371/journal.pone.0011800.g003

Figure 4. Diabetes significantly increased superoxide production in aortic tissue. A small portion of the abdominal aorta was resected
from nine month old GK and Wistar rats. Superoxide was determined by lucigenin chemiluminescence, using 561026 mol/L lucigenin and
261024 mol/L NADPH. To determine if superoxide generation was derived specifically from NADPH tissue samples were incubated with three
different inhibitors of NADPH; apocynin (APO), diphenyleneiodoium (DPI), and gp91ds-tat. Values are mean6SEM of 5 animals. * p,.05 compared to
Wistar control, #p,.05 compared to GK control.
doi:10.1371/journal.pone.0011800.g004
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tions [40,41,42,43,44]. Any source of superoxide will exacerbate

the conversion of NO to ONOO2 and uncoupled eNOS and

increased iNOS expression have both been shown to contribute to

oxidant stress in diabetes [40,41,45]. In obese models of NIDDM,

NAD(P)H oxidase derived ROS is increased, and it has been

suggested that elevated vasculature ROS contributes to mitochon-

drial dysfunction in the GK rat [7,46,47]. NOX4 is constitutively

active not requiring activation by p47phox or p67phox and its

expression is increased in diabetes and aging [42,44]. Subcellular

localization of NOX4 is cell type dependent with NOX4 being

localized to the mitochondria in cardiomyocytes, in the nucleus of

endothelial cells, and at focal adhesions within vascular smooth

muscle [42,43,44,48,49]. Within vascular smooth muscle, NOX4

is involved in maintenance of the smooth muscle phenotype and

localization to focal adhesions suggests its participation in cell

migration [49,50]. Localization of NOX4 to the endothelial nuclei

could significantly accelerate oxidant stress induce DNA modifi-

cations [49]. In the present study, we find, using an animal model

of chronic hyperglycemia, significant increases ROS generation

via elevated NAD(P)H oxidase activity. The NAP(P)H inhibitors

apocynin as well as gp91ds-tat, and DPI all reduced superoxide

generation by NAD(P)H oxidase in aortic extracts. Blockage of

NAD(P)H oxidase by apocynin restored endothelial dependent

vasorelaxation. Although our present results clearly demonstrated

NADPH oxidase impacts on endothelial dependent vasculature

function, future work to more clearly examine diabetic induced

changes in NADPH oxidase by cell type and subcellular local are

warranted.

Chronic hyperglycemia did not increased expression of several

components of the NAD(P)H oxidase system and this was observed

at both the protein and mRNA levels These results are similar to

the Zucker fa/fa/rat (type 2) but differ from that observed by

Bitnar et.al who observed increases in p47phox in younger GK rats

[8,51,52]. Other studies examining T1D models observed

significant increases in NAD(P)H oxidase subunit expression in

the heart and the vasculature suggesting that the pathogenic

mechanisms are not necessarily similar in all models of diabetes

[41,53] In the vasculature, the increase was evident after 4 weeks

but not 16 weeks of diabetes suggesting that altered NAD(P)H

oxidase expression may be a transitional event [53]. The increased

NAD(P)H oxidase activity observed in the present study may have

arisen as a function of chronic activation of the oxidase, either by

increased substrate presentation or increased turnover. Kitahara

et.al reported that G6PD activity is significantly elevated in GK rat

liver and we have observed similar increases in the myocardium

from the Zucker fa/fa rat [51,54]. The primary function of G6PD

is to produce NADPH within the cells and its chronic activation

will elevate NAD(P)H levels. In the Zucker fa/fa rat, chronic

activation of glucose-6-phosphate dehydrogenase (G6PD) was

brought about via a Src kinase [51]. More recently, Liu reported

that high glucose will increased p47phox phosphorylation leading

to activation of NAD(P)H oxidase [55]. Others have reported that

high glucose will enhance p47phox translocation into the

membrane promoting activation of NAD(P)H oxidase [56].

Collectively these reports suggest that NAD(P)H oxidase activity

may be the result of increased activation.

The GK rats are a model of type II diabetes that presents with

hyperglycemia but without severe hyperlipidemia. We have found

that endothelial-dependent dysfunction was observed in both large

and small arteries. Endothelial dysfunction was brought about as a

Figure 5. Apocynin restores vasorelaxation of the diabetic aorta. A. Diabetes significantly decreased acetylcholine-induced dilation $1 mM
in GK compared to Wistar. Apocynin (APO) was used to inhibit NADPH-dependent generation of superoxide. B. Diabetes did not alter the response to
SNAP (a nitric oxide donor). Values are mean6SEM of 5 animals. * p,.05 compared to Wistar.
doi:10.1371/journal.pone.0011800.g005

Figure 6. Diabetes did not significantly alter NOX protein expression. A. Representative western blot, B. Quantification of western blot data
normalized to alpha-actin. No differences were observed between the GK and Wistar groups. C. QRT-PCR of aortic-mRNA. Values are mean6SEM of
4–7 animals. * p,.05 compared to Wistar.
doi:10.1371/journal.pone.0011800.g006
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result of increased intracellular superoxide generation that was

likely to be the result of chronic activation of NAD(P)H oxidase

activity.
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