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Abstract

Background: Identifying drug targets is a critical step in pharmacology. Drug phenotypic and chemical indexes are two
important indicators in this field. However, in previous studies, the indexes were always isolated and the candidate proteins
were often limited to a small subset of the human genome.

Methodology/Principal Findings: Based on the correlations observed in pharmacological and genomic spaces, we develop
a computational framework, drugCIPHER, to infer drug-target interactions in a genome-wide scale. Three linear regression
models are proposed, which respectively relate drug therapeutic similarity, chemical similarity and their combination to the
relevance of the targets on the basis of a protein-protein interaction network. Typically, the model integrating both drug
therapeutic similarity and chemical similarity, drugCIPHER-MS, achieved an area under the Receiver Operating Characteristic
(ROC) curve of 0.988 in the training set and 0.935 in the test set. Based on drugCIPHER-MS, a genome-wide map of drug
biological fingerprints for 726 drugs is constructed, within which unexpected drug-drug relations emerged in 501 cases,
implying possible novel applications or side effects.

Conclusions/Significance: Our findings demonstrate that the integration of phenotypic and chemical indexes in
pharmacological space and protein-protein interactions in genomic space can not only speed the genome-wide
identification of drug targets but also find new applications for the existing drugs.
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Introduction

Identification of drug targets is one of the major tasks in drug

discovery [1]. In recent years, drug phenotypic effects and

chemical structures have been used to infer drug-target interac-

tions. Phenotypic effect-based approaches are based on the various

phenotypic responses, such as expression profiles and side effects,

to external compounds [2–5]. Such studies treat the biological

system as a whole, and associate one drug to other drugs which

have similar biological activity or genes with related phenotypic

outcomes. The associated drug pairs are assumed to have the same

the targets and the drug-gene pairs are predicted as novel drug-

target interactions. On the assumption that structurally similar

drugs tend to bind similar proteins, another kind of study using

chemical structure-based approaches [6–8], especially integrating

drug chemical similarity and protein sequence or structure

information [9–11], has shown lots of encouraging results. These

studies also demonstrate that drug chemical structure information

is a good indicator for drug biological activity [12].

Though great progress has been made in this field, some

challenges still exist. In phenotypic effect-based approaches,

similar drug responses may be due to the drugs affecting different

targets in the same pathway or in the same biological process,

rather than having common targets; also, expression patterns

cannot distinguish target genes from downstream regulated genes.

Chemical structure-based approaches often focus on a handful of

proteins [7,8], such as those with known interacting drugs [6,11]

or with known three dimensional (3D) structures [9,10]. For the

majority of proteins without such prior information, these

approaches are insufficient. Moreover, the underlying assumption

in chemical structure-based approaches is not universally true.

Examples exist where structurally similar drugs can bind proteins

without obvious sequence or structural similarity [13,14]. Besides,

a clear boundary still exists between these two kinds of approaches.

Under these circumstances, there is an urgent need to integrate

phenotypic and chemical indexes together and develop new

methods to predict drug-target interactions on a large scale.

With the development of systems biology and the emergence of

chemogenomic approaches, it has been possible to integrate multi-

dimensional information and heterogeneous data in drug studies

[15–17]. Recently, studies found that in pharmacological space, (a)

therapeutic similarity (phenotypic index) is, in part, due to the

functional relatedness of targets [18,19], and (b) drugs with similar

chemical structure usually bind related proteins [13,20]; in

genomic space, (c) protein (or target) relevance can be character-

ized by protein-protein interaction (PPI) network features such as

modularity or distance [21]. With this understanding, we believe

that the similarities in pharmacological space, termed drug
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Therapeutic Similarity (TS) and drug Chemical Similarity (CS),

are correlated with the relatedness of the targets on the basis of the

PPI network in genomic space. Based on this assumption, we

created a network-based computational framework, drugCI-

PHER, to relate pharmacological and genomic spaces with

multi-dimensional information and predict drug targets on a

genome-wide scale (Figure 1).

DrugCIPHER takes as input drug TS, drug CS, known drug-

target interactions and the PPI network. The TS is established

based on the Anatomic Therapeutic Chemical (ATC) classification

system [22,23]. We originally proposed a probabilistic model to

characterize the similarity between ATC codes by using a

semantic method in machine learning [24], and then to infer the

TS. The CS is defined as the 2D structural similarity. Known

drug-target interactions and PPI information are obtained from

the DrugBank database [25] and the Human Protein Reference

Database (HPRD) [26] respectively.

In this work, we first associate a drug and a protein (not

necessarily a known target) by defining the ‘closeness’ on the basis

of the PPI network. Then, we formulize the previous assumption

into three regression models which relate the predefined closeness

to TS, CS and the multiple similarity (MS) information combining

TS and CS, named drugCIPHER-TS, drugCIPHER-CS and

drugCIPHER-MS respectively (Figure 1). For a query drug, each

protein in the PPI network is assigned three concordance scores

based on the different regression models. We did not make a

quantitative decision about which protein is the target, as the drug-

protein binding affinity itself is a continuous value, not a binary

one [14]. Instead, the genome-wide concordance scores describe

the importance of the protein to in the activity of the drug, and

proteins with large concordance scores could be hypothesized as

potential drug targets. As a result, we demonstrate that

drugCIPHER-MS outperforms drugCIPHER-TS, drugCI-

PHER-CS as well as the current Bipartite Local Model (BLM)

method [11] in predicting drug-target interactions. Based on

drugCIPHER-MS, a genome-wide map of biological fingerprints

for 726 drugs is built, and unexpected drug relations, which imply

potential novel drug applications and side effects, are generated.

Results

We extracted 726 Food and Drug Administration (FDA) approved

drugs that had at least one known ATC code and known chemical

structure information from DrugBank [25] as our reference set. This

set was composed of 1176 drug-ATC code interactions and 2225

drug-target interactions. 678 drugs were found with known targets.

The human PPI network was retrieved from HPRD [26], and

included 38,788 interactions among 9630 proteins. We expanded

this network to 9981 proteins by adding, as isolated nodes, 351 target

proteins not recorded in the HPRD database. By investigating the

relations between drug TS and drug CS, we demonstrated that TS

and CS played complementary roles to each other in pharmacolog-

ical space. The enrichment analysis for drug pairs with common

targets with respect to TS and CS was also performed. The results

show that drugs with a high TS and CS had a high probability to

share targets (Text S1 and Figure S1).

Figure 1. Principle of drugCIPHER. Drugs are solid nodes and presented by ‘d’; proteins are hollow nodes and presented by ‘p’. A). Drug
Therapeutic Similarity (TS) (blue solid edges) and Drug Chemical Similarity (CS) (green solid edges) comprise the pharmacological space. The protein-
protein interaction (PPI) (gray solid edges) network represents the information in the genomic space. Together with drug-target interactions (gray
dashed edges), the closeness (brown dashed edges) is defined to associate a drug with any arbitrary protein. B). For drug d and protein p, two
similarity vectors for d in pharmacological space (TSd and CSd) and one closeness vector for p (Wp) are constructed. C. The concordance scores
between drug d and protein p are computed based on three linear regression models, which assume linear correlations exist between TSd and Wp,
Wp and CSd, Wp and the combination of TSd and CSd.
doi:10.1371/journal.pone.0011764.g001

Drug Target Identification
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Comparison between pharmacological metrics and
genomic metrics

As a step toward drugCIPHER, we investigated the relations

between drug similarities in the pharmacological space and drug

genomic relatedness (GR) in the genomic space, where GR is

defined as the average closeness of drug targets in the PPI

network (See Materials and Methods). The similarity

matrixes for TS, CS and GR are shown in Figure 2. Drugs

are ordered by clustering of their GR for observation. In the GR

matrix, we observe many small blocks enriched in the diagonal,

indicating the targets of these drugs were strongly related in the

PPI network. Some blocks can be matched in both the CS

matrix and the TS matrix (block a and e), suggesting a

consistency between the two spaces. There are also some blocks

with no similar patterns in other matrixes (block b, c and d).

These phenomena show that drugs with high genomic

relatedness and chemical similarity may generate different

therapeutic effects (block b and d), and drugs with diverse

structures could still have a similar therapeutic activity and

related targets (block c).

To quantify the correlations between TS, CS and GR, we

computed Spearman correlation coefficient between GR and

the corresponding TS and CS. The correlation coefficients are

0.0957 for GR and TS and 0.1465 for GR and CS, indicating

that each has a slight positive correlation. We randomly shuffled

the drug labels 10,000 times to evaluate the significance of such

correlations. The results suggest that correlations between TS,

CS and GR are about 2.2 and 1.5 fold of the maximum

permuted coefficients, demonstrating that such modest correla-

tions are still significant (P,0.0001) (Text S1, Figure S2).

Figure 2. Correlation in pharmacological space and genomic space. Drugs are ordered by clustering their genomic relatedness (GR).
Corresponding TS and CS matrixes are aligned next to the GR matrix, and all of them are demonstrated by heat maps. Modest but significant
correlations are observed between pharmacological similarities and genomic relatedness (P,0.0001).
doi:10.1371/journal.pone.0011764.g002

Drug Target Identification
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Performance of drugCIPHER
We proposed a novel method, drugCIPHER, to relate

pharmacological and genomic spaces, and demonstrated the good

performance of this method in recovering known drug-target

interactions in DrugBank by using leave-one-out cross-validation.

For each known drug-target interaction, 19 negative controls from

the 9981 proteins in the PPI network were added, forming a

candidate set. To simulate the prediction of unknown targets, we

equated this process to remove all targets except one (See
Materials and Methods). The three models of drugCIPHER

were employed to prioritize the proteins in the candidate set. We

defined a success if the known target was ranked at the top, and

the precision as the proportion of successes after running

drugCIPHER on all known drug-target interactions. After 100

repeats, on average, drugCIPHER-TS, drugCIPHER-CS and

drugCIPHER-MS get precisions of 0.783, 0.903 and 0.908

respectively (Table 1). The results show that the performance of

drugCIPHER-MS is not only much better than drugCIPHER-TS

but also better than drugCIPHER-CS with statistical significance

(P = 7.94e-015, Wilcoxon rank sum test) (Figure 3A).

Then, based on the known drug-target interactions in

DrugBank, we applied drugCIPHER to the 726 FDA approved

drugs in the reference set and the 9981 proteins in the PPI network

to give a genome-wide inference of drug-target interactions.

Known drug-target interactions were used as golden standards to

evaluate the overall performance of drugCIPHER. We ranked the

9981 proteins according to the concordance score for the 678

known-target drugs. Proteins above a given rank threshold were

treated as predicted targets (positives), and the rest were viewed as

non-targets (negatives). Following this principle, sensitivity and

specificity could be defined. The results show the Area Under the

ROC Curve (AUC) for drugCIPHER-MS reaches 0.988

(Figure 3B), and for drugCIPHER-TS and drugCIPHER-CS

the values are 0.964 and 0.981 respectively (Table 1). For

example, when we set the rank threshold to 100, 1299 out of 2225

known drug-target interactions (58.4%) are successfully identified

by drugCIPHER-TS, and 1721 (77.3%) are identified by

drugCIPHER-CS; 1166 (52.4%) are identified by both of the

models (Figure 3C). Moreover, the 1166 interactions are all

ranked above the given threshold by drugCIPHER-MS, which in

total identifies 1742 (78.3%) known drug-target interactions above

this threshold (Figure 3C).

We further introduced an independent data set to test the

generalization ability of drugCIPHER. We extracted drug-protein

binding information from the Psychoactive Drug Screening

Program (PDSP) Ki database [27]. Interactions with a Ki binding

affinity lower than 10 mM were viewed as drug-target interactions

[5]. We eliminated the interactions which have already been

recorded in DrugBank. 513 additional drug-target interactions

were found. Using the previous rank lists, we computed the ROC

curves for the additional interactions. An AUC of 0.935 for

drugCIPHER-MS is observed (Figure 3B), whereas drugCI-

Table 1. Performance comparison of drugCIPHER-TS,
drugCIPHER-CS and drugCIPHER-MS.

drugCIPHER TS CS MS

Validation procedure (precision) 0.783 0.903 0.908

Training set (AUC) 0.964 0.981 0.988

Test set (AUC) 0.849 0.917 0.935

doi:10.1371/journal.pone.0011764.t001

Figure 3. Performance of drugCIPHER. A). Comparison between
drugCIPHER-CS and drugCIPHER-MS in leave-one-out cross-validation.
The outliers are defined as the points larger than q3+1.5*(q32q1) or
smaller than q121.5*(q32q1), in which q1 and q3 are the 25th and 75th

percentiles, respectively. B). ROC curves of drugCIPHER-MS for the
training set and the test set. The AUC is 0.988 for the training set, and
0.935 for the test set. C). The constitution of known drug-target
interactions ranked in the top 100 by drugCIPHER-TS, drugCIPHER-CS
and drugCIPHER-MS.
doi:10.1371/journal.pone.0011764.g003
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PHER-TS and drugCIPHER-CS have an AUC of 0.849 and

0.917 respectively (Table 1), indicating the drugCIPHER models

do not overfit the data.

To give an illustration of the best model, drugCIPHER-MS, we

investigated Oxytocin, Nefazodone and their targets. Oxytocin is

famous for its pleiotropic activities including induction of labor

and influences on social behaviors [28]. As shown in Table 2, two

targets of Oxytocin recorded in DrugBank are ranked 1st and 2nd

by drugCIPHER-MS. Additionally, we find 4 proteins with a Ki

lower than 10mM in the PDSP Ki database. Without prior

knowledge, drugCIPHER-MS ranks them at 3rd, 47th, 48th and

91st out of 9981 possibilities. For Nefazodone, an antidepressant

therapy [29], all 5 of the targets in DrugBank are ranked in the top

3% by drugCIPHER-MS, generating a ,33 fold enrichment

(P = 4.9e-6, Fisher exact test, one sided). Three additional drug-

target binding interactions are identified in the PDSP Ki database,

all of which are ranked above 120th (1.2%), with a ,84 fold

enrichment (P = 3.1e-5, Fisher exact test, one sided) (Table 2). It

should be noted that other high-ranking proteins may also be of

interest and may be indicative of potential off-target effects.

Comparison with other methods
Previously, related studies which focused on a limited number of

proteins [6–8,11] suffered from limitations in high-throughput

discovery of new drug-target interactions. To the best of our

knowledge, though target identification on a genome-wide scale

has been performed [3], there are no quantitative results we can

compare with. Thus, we only try to compare drugCIPHER with a

currently available non-genome-wide method, the BLM [11],

which is also the most precise model for target prediction. We find

that the AUCs in the BLM achieve 0.973, 0.970, 0.953 and 0.858

for four drug sets: drugs targeting enzymes, ion channels, G

protein-coupled receptors and nuclear receptors with known drug-

target interactions of 2926, 1476, 635 and 90 respectively. We

averaged the performance of the BLM by the weights of the

number of corresponding interactions, generating an AUC of

0.9676. As shown in Figure 3B and Table 1, both drugCI-

PHER-CS (AUC = 0.981) and drugCIPHER-MS (AUC = 0.988)

have better performances. Moreover, there is no clear result about

the generality of the BLM. In contrast, the generality of

drugCIPHER-MS is well demonstrated.

A genome-wide map of drug biological fingerprints
The genome-wide concordance scores produced by drugCI-

PHER-MS implied the importance of each protein in the

biological activity of a given drug, therefore they can be viewed

as a drugs biological fingerprint. We eliminated unspecific proteins

which always received consistent scores for the 726 drugs, leaving

9639 proteins (Text S1, Figure S3A). A genome-wide map of

predicted biological fingerprints is comprised of the 9639

concordance scores (http://bioinfo.au.tsinghua.edu.cn/drugCI-

PHER/Drug_biological_fingerprints.rar). We find the predicted

fingerprint a better indicator for identification of drug targets

compared to the therapeutic index and chemical structure, which

merely include information in pharmacological space (Text S1,
Figure S3B). A two-way hierarchical clustering for the 726

biological fingerprints was also performed to explore the global

drug-target (protein) interactions (Text S1, Figure S4).

Potential novel drug applications and side effects
We further define the drug activity resemblance as the cosine of

the drug biological fingerprints and find the fingerprints can

provide an alternative way to discover new drug applications and

side effects. We find that some drugs, though with different main

ATC categories, have similar biological fingerprints and are

clustered tightly in the hierarchical clustering. Such drug pairs

with an activity resemblance less than the significance level of 0.05

(resemblance = 0.84) were extracted (Figure 4A, Table S1),

including 501 unexpected relations among 158 drugs.

Drug pairs with no clear chemical similarity and no common

targets were extracted, as none of these interactions is obviously

predictable using current knowledge. For example, Estrone, an

estrogen classified as ‘G’ in the ATC main category, is closely

associated with four antineoplastic drugs classified as ‘L’ in the

ATC main category (P,0.05) (Figure 4B). Typically, Estrone is

connected with Exemestane (an Aromatase inhibitor, that disrupts

the synthesis of estrogens and is used to treat various cancers [30])

with an activity resemblance of 0.906 (P = 0.024). Interestingly,

Table 2. Ranks of known targets (DrugBank) and binding proteins (PDSP database) for Oxytocin and Nefazodone.

Drug Database drugCIPHER-MS Rank Target Gene Symbol Entrez ID Ki

Oxytocin DrugBank 1 PREP 5550

2 OXT 5020

PDSP 3 OXTR 5021 0.5nM

47 AVPR1B 553 1782nM

48 AVPR2 554 1544nM

91 AVPR1A 552 123nM

Nefazodone DrugBank 9 HTR2A 3356

12 SLC6A4 6532

33 SLC6A2 6530

267 ADRA1B 147

305 ADRA1A 148

PDSP 32 DRD2 1813 910 nM

103 SLC6A3 6531 360 nM

119 HTR1A 3350 80 nM

doi:10.1371/journal.pone.0011764.t002

Drug Target Identification
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although Estrone and the drugs it clusters with have different

therapeutic effects and dissimilar chemical structures (maximum

TS = 0 and CS = 0.4) and although they do not have any known

common targets, the apoptotic action of Estrone has already been

discovered, which makes it a promising antineoplastic agent

[31,32]. DrugCIPHER-MS successfully predicted this novel

Figure 4. Exploration of novel drug applications and side effects. A). Unexpected drug relations less than the significance level of 0.05,
including 158 drugs and 501 relations. Drugs are colored according to their first level of ATC code. Drug pairs with known common targets are
highlighted by red edges. B). Estrone and the corresponding cluster. Four antineoplastic drugs are associated with Estrone, a hormonal therapy
(P,0.05). From small to large, the linkage resemblances (averaged) are 0.86, 0.90, 0.93, and 0.97 in this cluster. C). Cetirizine and the corresponding
cluster. Three nervous system related-drugs are associated with Cetirizine, an anti-allergic therapy (P,0.05). The linkage resemblances (averaged) in
this cluster are 0.85, 0.95, and 0.97 respectively.
doi:10.1371/journal.pone.0011764.g004

Drug Target Identification

PLoS ONE | www.plosone.org 6 July 2010 | Volume 5 | Issue 7 | e11764



application. Another example is Cetirizine, an anti-histamine

agent used as an anti-allergic therapy [33] (Figure 4C), which was

connected with three nervous system related-drugs (P,0.05).

Similarly, no significant TS or CS is found (the maximum TS and

CS are 0 and 0.5), and no common target between Cetirizine and

other drugs has been identified. Nevertheless, the side effects of

Cetirizine on the nervous system have been reported [34] and

supported by the SIDER database [35] (Text S1). DrugCIPHER-

MS also successfully detected these unexpected interactions.

Discussion

In this study, by relating pharmacological space with genomic

space on the basis of the PPI network, drugCIPHER successfully

identified drug-target interactions and predicted biological finger-

prints in silico for 726 FDA approved drugs. Previously, drug

biological profiles have been addressed by experimental approaches

or computational methods [2,4,16,36]. Alternatively, we presented

another way to generate such profiles (biological fingerprints) and

provided an interesting perspective for understanding drug activity.

More importantly, our methods extend the candidate target

proteins to a genome-wide scale (9981 proteins), which greatly

enlarges the number of known targets (935 proteins) in DrugBank.

Owing to the fact that every protein could be susceptible to drugs,

this preliminary study provides us with valuable clues for

identification of drug-target interactions on a large scale.

The success of drugCIPHER-MS can be attributed to a number

of aspects. First and most importantly, the two complementary

indexes, therapeutic activity and chemical structure, are integrated

together in this model, enabling us to capture compound activity

comprehensively and bolster the efficiency of target identification.

Second, our method benefits from current knowledge such as the

known drug-target interactions, which provide us with golden

standards for understanding drug mechanisms. Third, topological

properties in the PPI network reflect certain basic characteristics of

biological systems. Together with known drug-target interactions,

such information makes it possible to relate pharmacological space

with genomic space. Thus, we believe that combining heteroge-

neous information could help to generate new hypotheses and

boost further drug discovery.

Based on drugCIPHER-MS, a genome-wide map of drug

biological fingerprints for 726 drugs was predicted. One aspect of

the results merits emphasis. By integrating TS and CS in

pharmacological space and PPIs in genomic space, unexpected

drug relations emerge, which demonstrate that the integration of

existing multi-dimensional information may generate additional

knowledge. At a significance level of 0.05 of the activity

resemblance, 501 unexpected drug-drug relations are obtained

(Table S1). Nevertheless, drug pairs with an activity resemblance

smaller than 0.84 may still present pharmacological meaning. As

shown in Figure S5, the blocks in the activity matrix which are

not present in the TS matrix may indicate new drug applications

or side effects (Text S1, Table S2).

With the development of pharmacology, more and more

attention has been paid to chemogenomics [15], a discipline that

tries to understand the global effects of a compound in a

complete biological system. Analogous to reverse and forward

principles in chemogenomics, two primary applications of the

biological fingerprints can be found. (a) Reverse applications:

when a new gene of interest is identified, one could quickly aim

at a handful of candidate drugs which are most relevant to this

gene, therefore effectively narrowing down the entire compound

library and increasing the efficiency of high-throughput

screening in drug discovery. (b) Forward applications: the

biological fingerprints are predicted on the basis of the whole

biological system. To identify new drug targets, one can select

the top ranked proteins in the fingerprints, and design

experiments to validate these proteins, such as docking or in

vitro binding assays. Together with other experimental data

[4,36], these biological fingerprints allow us to identify drug

targets more quickly and confidently.

Currently, there are still some limitations in our methods. First,

our methods are limited to a part of the entire genome: proteins

with known PPIs. Therefore the completeness and quality of PPIs

influence the results. As we used the gene name to represent the

protein, the gene-protein discordance caused by events such as

alternative splicing is currently not considered. Our future work

will address the variations in the protein structure brought about

by alternative splicing and its effects on drug-target interaction

patterns as well as drug biological activities. Second, we assume

each protein has the potential to bind small molecules. Actually,

more aspects should be considered such as the druggability,

cellular compartmentalization and protein level. Third, in our

models, some prior knowledge about the drugs is needed, e.g. the

chemical structures and the ATC codes. As the chemical structure

information has been extensively addressed, we can use drugCI-

PHER-CS instead of drugCIPHER-MS to enlarge the reference

set while sacrificing some precision. It must be noted that the ATC

classification system is not the only way to address the drug

therapeutic similarity. Alternatives include pharmacology annota-

tions or clinical records.

In summary, this work demonstrates that the integration of

multi-dimensional information in pharmacological space and

genomic space gains advantages in target identification and yields

additional knowledge. More importantly, the global concordance

score presents a novel understanding of drug-protein interactions,

and the predicted biological fingerprints could also provide us new

insights into associating drugs with diseases and pathways,

predicting new drug applications, as well as deciphering drug side

effects. Together with network pharmacology [37], this prelimi-

nary study is one step toward genome-wide drug target

identification.

Materials and Methods

Data sources
The drug-ATC code interactions and known drug-target

interactions were obtained from DrugBank [25] in January

2010. We extracted drugs which were (a) FDA approved, (b) with

at least one ATC code and (c) with chemical structure

information recorded in the KEGG compound database [38].

726 drugs were obtained (Figure 5A), together with 1176 drug-

ATC code interactions. Targets which were DNA or small RNAs

were removed, as we only considered interactions between drugs

and proteins, generating 2225 drug-target interactions for 678

drugs.

Protein-protein interaction information was retrieved from

HPRD [26] in January 2010. 38,788 interactions among 9630

human proteins were obtained. 351 target proteins absent in the

interactome were added into the PPI network as isolated nodes,

expanding the network to 9981 proteins.

Drug-protein binding interactions were retrieved from the PDSP

Ki database [27] in February 2010. Interactions with a Ki binding

affinity lower than 10mM were viewed as drug-target interactions

[5]. We eliminated the interactions which have already been

included in DrugBank to make the training set and test set

independent of each other. After mapping this data to our reference

set, we found 513 additional drug-target interactions for 86 drugs.

Drug Target Identification
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Drug therapeutic similarity (TS) and chemical similarity
(CS)

The drug (TS) was addressed based on the similarity of ATC

codes (Figure 5B) by proposing a probabilistic model [24]. The

similarity between two ATC codes is derived according to their

prior probabilities (frequency) and the probability of their

commonality, which is defined as their longest matched prefix:

S i,jð Þ~ 2 � log Pr prefix i,jð Þð Þð Þ
log Pr ið Þð Þz log Pr jð Þð Þ , ð1Þ

where prefix(i,j) is the longest matched prefix of ATC code i and j.

Note that drugs may have more than one ATC code, we define the

maximum ATC code similarity as TS:

TS d1,d2ð Þ~ Max
i[ATC d1ð Þ, j[ATC d2ð Þ

S i,jð Þð Þ, ð2Þ

where ATC(d) represents all the ATC codes belonging to drug d.

The drug CS was computed based on the Tanimoto coefficient

[39].

Drug-protein closeness and drug genomic relatedness
(GR)

We associate pharmacological space with genomic space by

defining the closeness between a protein p and a drug d on the

basis of the PPI network:

Qpd~
X

pk[T dð Þ
e
{L2

ppk , ð3Þ

where pk is the known target of the given drug d. Lppk is the

shortest distance between p and pk in the PPI network. e
{L2

ppk is

used to convert protein-protein distance to protein-protein

closeness. This equation denotes that the closeness between drug

d and protein p equals the summation of closeness between p and

all targets of d. If two proteins are disconnected, we define

Lppk = ‘.

Then, given drugs d1 and d2, we define the drug GR as the

averaged closeness among their known targets:

Rd1d2
~

P
pi[T d1ð Þ

Qpid2

No:T(d1)zNo:T(d2)
~

P
pj[T d2ð Þ

Qpj d1

No:T(d1)zNo:T(d2)
, ð4Þ

where No.T(d) represents the count of known targets belonging to

drug d.

DrugCIPHER
Previously, by integrating phenotypic similarity and the PPI

network, we successfully proposed a model named CIPHER to

infer disease-gene relations [40]. Here, we extrapolate this idea to

predict drug-target interactions and call the current framework

drugCIPHER, named after CIPHER.

DrugCIPHER-TS
We assume the relevance in genomic space is responsible for

drug TS. With equation (3), given two drugs d and dj, we formulize

this assumption into the following equation:

TSddj
~bdz

X
pk[T dð Þ

adpk
Qpkdj

, ð5Þ

where pk is the known target of drug d. Equation (5) denotes that

the TS between d and dj can be described as the linear

combination of closeness between drug d and all the targets

belonging to drug dj. bd and adpk can be interpreted as some

constants.

Then, we define the similarity vector between drug d and all n

drugs as TSd = {TSdd1, TSdd2 …TSddn} and the closeness vector

between protein p and n drugs as Wp = {Qpd1, Qpd2 …Qpdn}, and

expand equation (5) to

TSd~bdz
X

pk[T dð Þ
adpk

Wpk
: ð6Þ

The concordance score between drug d and protein p in

Figure 5. Data sources and the ATC classification system. A). The constitution of the reference set. B). The sketch of the hierarchical structure
of the ATC classification system and ATC codes. The leaf nodes represent the ATC codes.
doi:10.1371/journal.pone.0011764.g005
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drugCIPHER-TS is defined as

rT
pd~

cov TSd ,Wp

� �
s TSdð Þs Wp

� � : ð7Þ

This concordance score describes the degree of contribution of pro-

tein p to the TS vector of drug d in equation (6), therefore it is viewed

as the potential likelihood of protein p being targeted by drug d.

DrugCIPHER-CS
In this model, we believe the closeness between drug d and

protein p can be explained by the drug chemical similarity (CS),

and formulize such a consideration as follows:

Qpd~b0pz
X

dj[B pð Þ
a0pdj

CSdjd , ð8Þ

where dj is the known drug binding to the given protein p.

Equation (8) suggests the closeness between drug d and protein p

can be described as a linear combination of the chemical

similarities between d and all the drugs binding to p. This equation

also echoes the Similarity Ensemble Approach (SEA) principle

[13,14]. Similarly, b9p and a9pdj can be treated as some constants.

Correspondingly, we define the similarity vector CSd for drug d

as {CSdd1, CSdd2 …CSddn}, and extend equation (8) into

Wp~b0pz
X

dj[B pð Þ
a0pdj

CSdj
: ð9Þ

We define the concordance score in drugCIPHER-CS as

rC
pd~

cov CSd ,Wp

� �
s CSdð Þs Wp

� � : ð10Þ

This concordance score describes the degree of the contribution of

drug d to the closeness vector Wp of protein p in equation (9),

therefore it is treated as the likelihood of drug d targeting protein p.

DrugCIPHER-MS
In this model, we integrate TS and CS and propose a multiple-

similarity based regression model. Given protein p, we consider

both equations (6) and (9) and assume:

Wp~
X

dj[B pð Þ
apdj

TSdj
z

X
dj[B pð Þ

bpdj
CSdj

zcp, ð11Þ

where apdj, bpdj and cp are some constants. To simplify equation

(11), we generally believe drug d will mostly contribute to (11)

when it maximally fits the following equation:

Wp~a0pd
:TSdzb0pd

:CSdzc0p: ð12Þ

We first estimate a9pd and b9pd by least-square solutions, âapd and b̂bpd ,

and then define the concordance score in drugCIPHER-MS as

rM
pd~

s TSdð Þ
Db̂bpd D

:rC
pdz

s CSdð Þ
Dâapd D

:rT
pd

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 TSdð Þ

b̂b2
pd

z
s2 CSdð Þ

âa2
pd

s : ð13Þ

This concordance score describes the degree of fitness of drug d for the

closeness vector of protein p (Wp) considering both TS and CS. The

larger the concordance score is, the more important role p plays in the

biological activity of d, and the more likely it is that p is the target of d.

Validation procedure
In leave-one-out cross-validation, for each drug-target interac-

tion, 19 negative control proteins and the positive target composed

the validation set. The negative control proteins were randomly

chosen from the whole PPI network with equal probability. To

simulate the prediction of unknown targets, we equated this

process to remove all targets except the positive one. According to

equation (3), the closeness between the proteins in the validation

set and the drug therefore must be modified. Here, we subtracted

the closeness of these proteins to the removed targets from the

closeness of the proteins to this drug, which was equivalent to

recalculate the drug-protein closeness by taking these removed

targets as unknown targets.
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