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Abstract

Background: The human exogenous gammaretrovirus XMRV is thought to be implicated in prostate cancer and chronic
fatigue syndrome. Besides pressing epidemiologic questions, the elucidation of the tissue and cell tropism of the virus, as
well as its sensitivity to retroviral restriction factors is of fundamental importance. The Apobec3 (A3) proteins, a family of
cytidine deaminases, are one important group of host proteins that control primary infection and efficient viral spread.

Methodology/Principal Findings: Here we demonstrate that XMRV is resistant to human Apobec 3B, 3C and 3F, while
being highly susceptible to the human A3G protein, a factor which is known to confer antiviral activity against most
retroviruses. We show that XMRV as well as MoMLV virions package Apobec proteins independent of their specific
restriction activity. hA3G was found to be a potent inhibitor of XMRV as well as of MoMLV infectivity. In contrast to MoMLV,
XMRV infection can also be partially reduced by low concentrations of mA3. Interestingly, established prostate cancer cell
lines, which are highly susceptible to XMRV infection, do not or only weakly express hA3G.

Conclusions: Our findings confirm and extend recently published data that show restriction of XMRV infection by hA3G. The
results will be of value to explore which cells are infected with XMRV and efficiently support viral spread in vivo.
Furthermore, the observation that XMRV infection can be reduced by mA3 is of interest with regard to the current natural
reservoir of XMRV infection.
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Introduction

XMRV is the first gammaretrovirus identified in a bonafide

human infection [1]. The virus is associated with up to 23% of all

prostate cancers [2] and was recently found in 67% of PBMCs

isolated from patients with chronic fatigue syndrome (CFS) [3].

The frequency of XMRV detection varies from 0–23% in the case

of prostate cancer [1,2,4–6] and 0–67% in PBMCs from CFS

patients [3,7–9], putative explanations for the observed discre-

pancies are geographical localization of the virus or (more likely)

detection methods used. Whether or not XMRV infection plays a

causative role in the aetiology of these two diseases is presently

unclear.

XMRV shares a high degree of sequence identity (,94%

overall, 87% in the gag p62 region, 66% in the env gp75 region)

with known endogenous and exogenous murine leukaemia viruses

(MLVs) [1]. Like all members of the gammaretrovirus family, it is

a simple retrovirus which encodes only gag, pol and env, but no

accessory proteins. To date, comprehensive and conclusive

epidemiological data about the prevalence of XMRV in the

general population, its natural reservoir and route of transmission

is lacking. Recently, we have demonstrated that XMRV displays a

xenotropic host range in vitro and efficiently infects different cell

types as well as cell lines from different species [10]. However, in

vivo, the virus so far has been identified only in stromal fibroblasts

and epithelial cells in prostate cancer tissue, or in PBMCs from

CFS patients [1–3]. Additionally, we and others have recently

shown that viral restriction can not be fully explained by receptor

distribution or LTR-activity, although the latter is significantly

increased in cells of prostate tissue origin [10–12]. This

observation, suggests that other cellular factors, e.g. host restriction

factors, are likely to be implicated in the control of viral infection

in vivo.

Retroviral restriction factors such as the Apobec 3 family play

an important role in species tropism, establishment of a viral

infection in vivo and successful spread of the virus. The family of

the Apobec3 proteins consists of 7 members (hA3A, hA3B, hA3C;

hA3DE; hA3F; hA3G and hA3H) in humans and primates [13].

hA3G displays retroviral activity against a variety of retroviruses

(HIV; SIV; HTLV; MLV) [14], LTR retrotransposons and non-

LTR retrotransposons [15–20]. In addition, hA3G and hA3F

interfere with the HBV life cycle in cell lines [21,22]. In contrast

to the various Apobec3 proteins expressed in humans and

primates, the mouse genome contains only one gene encoding

mA3. Besides of the full length protein, alternative splicing and

exon skippping also produce a more broadly expressed, shorter

isoform of mA3 (mA3DExon5) [23]. The principal ability of the

mouse Apobec 3 protein to efficiently restrict virus infection has
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been demonstrated for the betaretroviruses Mason-Pfizer Monkey

Virus (MPMV) [24] and Mouse Mammary Tumor Virus

(MMTV) [25] as well as for friend murine leukaemia virus

(FrLV) [26]. In contrast, its activity against Moloney murine

leukaemia virus (MoMLV) has been reported to be much weaker

[23,27–29].

Apobec3 proteins are cytidine deaminases which, when

incorporated in viral particles, may enzymatically alter the nascent

retroviral DNA via deamination of cytidine to uridine in the DNA

minus strand during reverse transcription, hence leading to G-to-A

hypermutation. In addition, there are as of yet incompletely

understood antiretroviral mechanisms which appear to be

independent of the deaminase activity [14].

How the human immunodeficiency virus (HIV) encoded vif

protein counteracts hA3G restriction has been the focus of several

studies in the past [13,30,31]. Vif accelerates proteasomal

degradation of the hA3G protein and additionally hinders hA3G

mRNA translation [32]. The Retroviruses HTLV or MLV do not

encode vif-like proteins and have evolved other strategies to evade

Apobec restriction. In the case of HTLV, a peptide motif within

the NC (nucleocapsid) region inhibits hA3G encapsidation into the

virion [33]. This motif is highly conserved among primate T-cell

leukaemia viruses; however, it is not present in other retroviral

nucleocapsid sequences [34]. Nevertheless, virion exclusion has

been suggested as a common strategy of vif-deficient retroviruses

to circumvent Apobec restriction, and exclusion of mA3 from

MLV virions has been demonstrated by some groups [35]

although not by others [23,29,36]. In contrast, hA3G is efficiently

packaged in MLV virions, significantly reduces their infectivity

and leads to hypermutation of the viral genome [29]. MLV may

be protected from mA3 due to the inability of the protein to bind

to the MLV gag NC region [35,37]. Another study suggested that

MLV employs two distinct mechanisms; viral RNA blocks mA3

binding to the Gag protein and viral protease cleaves and

subsequently inactivates the mA3 protein after maturation of

virions [38].

Since human Apobec proteins have been demonstrated to

restrict gammaretroviral infection we sought to determine whether

XMRV infection can be reduced by the human Apobec proteins

A3B, A3C, A3F and A3G. In addition, since XMRV is the first

xenotropic MLV identified in a human infection, we were

interested in significant differences between MLV and XMRV

with regard to sensitivity against human and mouse Apobec 3

proteins. Our results show that XMRV infection is highly

restricted only by hA3G, whereas hA3B and hA3F do not

significantly reduce XMRV or MLV infection, and that XMRV

infection is significantly reduced at low mA3 expression levels,

whereas MLV infection is not.

While our manuscript was being prepared and revised, two

reports addressing the restriction of XMRV infection by known

retroviral restriction factors were published [11,39]. In the first

study, Groom and coworkers comprehensively analyzed XMRV

restriction to the major blocks in retroviral life cycle, entry

(receptor usage), release of the nucleocapid into the cytoplasm

(TRIM5a, Fv1), reverse transcription (Apobec protein family) as

well as virion release from the host cell (Tetherin). In the second

study, Paprotka et al. investigated inhibition of viral infection as

well as the degree of hypermutation imposed upon XMRV

genomes by the Apobec3 proteins hA3G, hA3B and mA3. Both

studies conclude that XMRV infection can be significantly

restricted by the human Apobec 3G protein, whereas the mouse

Apobec 3 protein only slightly reduces XMRV infection. In

addition, the study by Groom et al. shows that XMRV is

restrictive against all TRIM5a proteins tested and highly sensitive

against restriction by the mouse Fv1 gene product as well as the

human tetherin protein. Furthermore, Paprotka and co-workers

could show that hA3G mRNA is nearly undetectable in

established prostate cancer epithelial cell lines and XMRV viral

genomes from prostate cancer cell lines do not or only rarely

contain hypermutations. This, together with the low genetic

diversity of XMRV genomes observed so far, suggests that XMRV

replication in vivo most likely takes place in cells which not, or only

weakly, express hA3G.

Our findings are in overall good agreement with above studies,

confirming that XMRV infection is highly restricted only by

hA3G [11,39], whereas hA3B and hA3F do not significantly

reduce XMRV or MLV infection. Our results are furthermore

supportive of the observation by Groom et al. [11] that XMRV is

partially restricted by mA3. We show that XMRV infection, but

not infection by MLV, is significantly reduced at low mA3

expression levels.

We have also analyzed mRNA expression levels of hA3B, C, F

and G in cell lines as well as primary cells from the prostate and

lymphoid compartments, i.e. those cell types which have been

reported to support XMRV infection in vivo. Lymphoid cells were

found to express high levels of hA3G, whereas (in accord with

Paprotka et al. 2010) hA3G expression levels in established

prostate cancer cell lines were undetectable. However, primary

stromal cell lines from different prostate cancer patients display

variable hA3G expression levels which range from the undetec-

table to levels which are comparable to those found in cells from

the haematopoietic compartment.

Materials and Methods

Cell culture
The human cell lines TE 671 (ATCC #CCL-136), DU145

(ATCC #HTB-81), 293T (ATCC# CRL-11268), A549 (ATCC#
CCL-185), HeLa (ATCC# CCL-2) and 293T cells chronically

infected with XMRV (293TX) were cultured in DMEM

(Invitrogen) supplemented with 10% FCS and grown at 37uC,

5% CO2 and 100% relative humidity. LNCaP (ATCC #CRL-

1740), 22Rv1 (ATCC #CRL-2505), Raji (ATCC #CCL-86),

Jijoye (ATCC #CCL-87), Reh cells (ATCC #CRL-8286) and

U937 cells (ATCC #CRL-1593.2) were grown in RPMI

(Invitrogen) supplemented with 10% FCS and L-glutamin (37uC,

5% CO2 and 100% relative humidity). Primary stromal fibroblast

cell lines were established as described previously [10].

Plasmids
XMRV env expression plasmid pHCMV-XMRVenv as well as

XMRV proviral clone have been described previously [10].

Plasmids used in pseudotyping experiments pSF91-I-eGFP-PRE

and pSV-MoMLVGag-pol have been described [40,41]. pM5-

LTR-Luc was cloned by replacing the LacZ reporter gene within

the pM5-LacZ-neo plasmid with the firefly luciferase gene. pM5-

LacZ-neo was originally constructed by inserting the LacZ gene

cassette using the SacII and NotI sites within p5O-M-X-neo [42].

pSV-XMRVgag1940 expression plasmid has been cloned by

replacing nt 2612-4946 of the pSV-Mo-MLVgagpol expression

plasmid with the corresponding gag sequence of XMRV using

XhoI restriction site at position 604 (GI: 88765817) and SacI at

position 2544 (GI: 88765817).

Expression plasmids encoding hA3B, hA3C, hA3F and hA3G

[43] were obtained by the NIH AIDS Research and Reference

Reagent Program. The plasmid expressing the mouse Apobec

protein has been described before [44].

XMRV Restriction
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hA3 mRNA expression levels determined by quantitative
PCR

Total RNA from cell lines as well as from PBMCs of different

patients was isolated using the RNeasy extraction kit (Qiagen,

CatNo.74104) according to manufacturer’s instructions. 100ng

total RNA was DNaseI digested and subjected to RT-PCR with a

random hexamer primer and the SuperScriptTM Reverse

Transcriptase (Invitrogen, CatNo 18064-014). cDNA levels were

quantified using a Qiagen Rotorgene Q 5plex instrument and

Rotorgene 1.7 software. Reactions were performed in microtubes

containing 5ml 26 SyBr Green mastermix (Fermentas), 3.8ml

H2O, 0.1ml primer and 1ml cDNA (1:5 diluted). Reactions were

incubated at 95C for 10min, then 40cycles of 95C for 10s, 58C for

40s, then 72C for 15s. The following primer pairs were used:

hA3G: 59-TGGGGGAGATTCTCAGACAC- and 39- TTC-

CAAAAGGGAATCACGTC-; hA3B: 59-GGTCAGCAATTC-

ATGCCTTGGTAC- and 39-CCCTGTAGATCTGGGCCGG-

GTCC-; hA3C: 59-CCCCTCCACCCTGGACCC- and 39-CGC-

AGGCTGGAGGAACGGGGTCTGT-; hA3F: 59-GGCCAGG-

TGCCCAGGTCTTTC- and 39-TGCACCAAGACATGAG-

CTTCCC-. PCR efficiency of each primer set was determined

based on standard curves of serial 10fold dilutions of cDNA from

Raji or U937 cells. Ct values (determined by using the Rotorgene

Software version 1.7) were plotted against the log10 value of

template concentration. The slope (M) determines the reaction

efficiency according to (1021/M)21 = 1 (supplementary figure S1).

Relative expression levels were calculated using the Rotorgene

Software version 1.7, which also calculates PCR efficiency. Two

independent qPCR reactions were performed from two indepen-

dently extracted RNA samples. Relative mRNA levels (sample of

interest and U937 RNA sample) were normalized to three

different housekeeping genes: the TATA-box binding protein

(TBP), the ribosomal protein RPL13A and the hypoxanthine-

guanine phosphoribosyltransferase (HPRT), using the following

primer pairs: TBP: 59-CCCATGACTCCCATGACC- and 39 –

TTTACAACCAAGATTCACTGTGG-; RPL13A: 59 –CTGG-

ACCGTCTCAAGGTGTT- and 39 –GCCCCAGATAGGCA-

AACTT-; GAPDH: 59: -GAAGGTGAAGGTCGGAGTC-and

39 –GAAGATGGTGATGGGATTTC- [1,45].

Immunoblotting and antibodies
Western blots of cell lysates and virion pellets were probed with

anti-V5 (Invitrogen, R690-25) or anti-HA (Roche, 11867423001)

antibodies for detection of the Apobec proteins. For the

quantification of XMRVgag or MoMLVgag levels on western

blots, we used an anti-gag monoclonal antibody derived from the

hybridoma cell line CRL1912; for the detection of env protein a

polyclonal goat serum (gift from Carol Stocking, Heinrich Pette

Institute, Germany) was used. Equal protein loading was verified

by incubation of the blots with anti-actin Ab (Chemicon

Cat.No.1501).

Transient production of retrovirus vector pseudotypes
and infection protocol

Replication incompetent Gag pseudotyped retroviral particles

were produced by transient transfection of 293T cells. 56106 cells

were seeded in a 10cm dish 12hrs prior transfection. 5mg pSF91-I-

eGFP-PRE [41] or pM5-LTR-LUC, 10mg pSV-Mo-MLVgagpol

[40] or pSV-XMRVgag1940 and 5mg of pHCMV-XMRVenv

were transfected using the CaPO4-HBS technique according to

manufacturer’s instructions (Profection mammalian transfection

system, Promega CatNo. E1200). 6hrs after transfection medium

was replaced with 6ml DMEM/FCS containing 20mM HEPES.

Supernatant was collected after 48hrs, passaged through a 0.2mm

pore size filter, aliquoted and frozen at 280C.

For western blot analysis, pseudotype or replication competent

supernatants were filtered and centrifuged at 110.006g 1h at 4uC
(Beckman SW60Ti). The pellet of 1ml supernatant was resus-

pended in 10ml PBS and analysed by immunoblotting.

Luciferase assay
XMRV pseudotyped particles (730ng LTR-Luc reporter) were

generated in the presence of transiently expressed Apobec proteins

(1000ng, 500ng, 125ng, 75ng and 25ng) in a 35mm dish.

Supernatants were collected as described before [10]. Briefly,

200ml viral supernatant was used to infect 56104 TE671 cells. 48h

post infection cells were lysed, and luciferase activity was measured

with the Infinite M200 microplate reader (Tecan) after incubating

20ml of the cell lysate with 100ml Luciferase assay substrate

(Promega, E1500).

Results

mA3 protein as well as hA3B, hA3G and hA3F are
efficiently packaged in XMRV virions

Previously, contradictory findings about the mechanism of

Apobec 3 restriction in MLV infection, in particular with regard to

virion exclusion as the basis of gammaretroviruses Apobec 3

escape, have been reported [23,35,37]. We therefore examined

packaging of mA3 protein and the human Apobec proteins hA3B,

hA3C, hA3F and hA3G into XMRV virions. 293T cells

chronically infected with XMRV (293TX) were transiently

transfected with different Apobec 3 expression plasmids. All

Apobec 3 proteins included in this study were expressed at similar

levels in 293TX cell lysates 48hrs post transfection (Figure 1A).

Supernatants containing XMRV virions were ultracentrifuged and

incorporation of the hA3B, hA3C, hA3F, hA3G as well as the

murine A3 into XMRV virions was investigated by immunoblot-

ting. Compared to hA3F and hA3B, mA3 and hA3G exhibited

much higher protein levels in the virion-associated fraction relative

to the total protein amounts in the cell lysate. Surprisingly, the

hA3C protein, although highly expressed in 293TX cells, was only

marginally detected within XMRV virions (Figure 1).

Previously, it was reported that mA3 is cleaved by the viral

protease inside the MLV particles, a putative mechanism

explaining the escape of MLV from mA3 restriction [38]. We

did not observe proteolysis of any of the Apobec 3 proteins

incorporated into XMRV particles (Figure 1A), even after longer

exposures (data not shown).

Development of a gag-pseudotyped single round
infection assay to study XMRV restriction

The gagNC region has been suggested as a domain that is

responsible for efficient packaging of the Apobec proteins into

virions. To develop a single round infection assay with increased

virion titers and efficient packaging of the reporter construct, we

replaced the gag region within the gag-pro-pol open reading frame

of pSV-Mo-MLVgagpol with the XMRV gag region correspond-

ing to nt 604 to nt 2544 (GI: 88765817) (pSV-XMRVgag1940).

Each gag- encoding plasmid was transfected together with LTR-

luc and pHCMV-XMRVenv into 293T cells in the presence or

absence of transiently expressed Apobec proteins. Virion-contain-

ing supernatants were harvested 48hrs after transfection, filtered,

ultracentrifuged and Apobec protein in viral particles was detected

by immunoblotting (Figure 1B). For all Apobec proteins analyzed,

we observed similar packaging efficacy between the XMRVgag

XMRV Restriction
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Figure 1. Incorporation of human Apobec 3 and mouse Apobec 3 proteins into virions. (A) Incorporation of hA3 and mA3 into XMRV
virions. Virus particles were produced by transiently transfecting chronically XMRV infected 293T cells (293TX) with 150ng hA3B, hA3C, hA3F, hA3G or
mA3 or control plasmid(-). Virus particles were assayed for Apobec 3 protein incorporation by immunoblotting of virus-containing pellets. Anti-HA Ab
was used to detect mA3 protein and anti-V5 Ab to visualize human Apobec proteins. Loading of equal amounts of virus particles was verified by
probing with a CA (p30) specific antibody (lower panel). Additionally, cell lysates of transiently transfected 293T cells were analyzed for successful
Apobec protein expression (upper panel). (B) Incorporation of hA3 and mA3 protein in XMRVGag and MoMLVGag pseudotyped virus particles. 293T
cells were transiently transfected with the following plasmids: XMRVgag (left panels) or MoMLVgag (right panels), LTR-Luc and pHCMV-VP62 env
plasmids in the presence of 150ng hA3B, hA3C, hA3F, hA3G or mA3 or control plasmid(-).
doi:10.1371/journal.pone.0011738.g001
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pseudotyped virions and XMRV replication competent virion

particles (Figure 1A and Figure 1B, left panel).

XMRVgag pseudotyped virions were subsequently compared to

MoMLVgag pseudotyped virions with regard to Apobec packag-

ing, as well as proteolytic cleavage of the Apobec proteins within

the virion. Figure 1B demonstrates that no significant differences

in incorporation of the human Apobecs B, C, F, or G as well as

mouse Apobec 3 between these two gammaretroviruses were

found. In accordance with previous studies [27,29], mA3 as well as

hA3G can be efficiently incorporated into MLV particles.

Likewise, hA3B and hA3F are packaged by both viruses with

similar efficiency. However, although hA3C is strongly expressed,

we detected hardly any incorporation of the protein into either

XMRV or MoMLV particles. This is in contrast to earlier reports

showing efficient packaging of hA3C into MLV virions [46].

Inhibition of XMRV infection by human A3 proteins
hA3G has been shown to be a potent suppressor of MLV

infection in several studies [11,27,29,35,38,47]. To examine the

effect of human A3 proteins on XMRV and MoMLV infection,

we tested several human Apobec 3 proteins and the mouse Apobec

protein in our single round infection assay, using a constant

amount of 150ng expression plasmid delivered by transient

transfection. The expression of hA3G significantly ($90%)

reduced the infection of XMRVgag pseudotyped virions

(Figure 2). All other tested Apobec proteins showed no statistically

significant impact on the relative infection efficiency, as judged by

determination of the relative luciferase activity using the empty

APOBEC expression vector as control. Similar results were

observed using MoMLVgag pseudotyped virions. These findings

($95% reduction) are comparable to previous studies showing

highly efficient inhibition of MLV infection by hA3G, whereas

mA3G expression only marginally reduces MoMLV infectivity

[27,29,47].

Contradictory observations have been made with regard to

human Apobec 3B: while restriction of MoMLV infection has

been observed by some groups [35], others did not see any effect

on infection or only minor reduction of MoMLV infectivity [47].

We were unable to detect any MoMLV restriction by the h3B

protein (Figure 2A); in the case of XMRV infection, a minor

reduction could be observed, although the magnitude of the effect

was statistically not significant when hA3B or hA3F was

coexpressed (Figure 2B).

Differences between mA3 dependent restriction of XMRV
and MoMLV infectivity

We consistently detected small but reproducible differences

between XMRV and MoMLV restriction by mA3. On average,

the reduction of XMRV infectivity by mA3 expression was

approximately 10% more efficient that that seen for MoMLV

(Figure 2). To investigate the effects of mA3 and hA3G on XMRV

as well as MoMLV infection in more detail, we transiently

transfected 293T cells in the presence of MoMLVgag or

XMRVgag together with LTR-luc, pHCMV-XMRVenv and

increasing amounts of Apobec expression plasmids in the range

from 25ng to 1mg. Supernatants were harvested 48hrs post-

transfection and indicator cells (TE671 cells) were incubated with

different amounts of viral supernatant. Luciferase activity was

determined at 48hrs post-.infection. As expected, we observed that

hA3G was a potent inhibitor of XMRV and MoMLV infection. In

both cases, amounts as low as 25ng of cotransfected hA3G plasmid

significantly reduced infectivity to approx. 50–60% and 125ng of

the plasmid further reduced viral infectivity to ,10–40%

(Figure 3A). In comparison, mouse A3 protein is a relatively weak

inhibitor of XMRV and MoMLV infection, and expression of

125ng mA3 reduced XMRV infectivity to only 70% (Figure 3B).

Interestingly, in accord with our previous results at low levels of

the cotransfected plasmid XMRV was consistently more sensitive

to mA3 restriction when compared to MoMLV. 75ng of the mA3

expression plasmid reproducibly resulted in a observed reduction

of XMRV infection to approximately 75%, whereas no significant

effect on MoMLV infectivity was observed.

Human APOBEC 3G expression patterns in different

established human cell lines and primary cells. In vivo,

XMRV infection in familial cases of prostate cancer has been

originally found to be confined to a low percentage of the stromal

fibroblasts within the tumor tissue [1]. A more recent study using

immunohistochemistry additionally detected viral protein

expression within malignant epithelial cells of the prostate, but

only rarely in stromal fibroblasts [2]. Furthermore, XMRV was

Figure 2. hA3G is a potent inhibitor of XMRV and MoMLV infection. 293T cells were transiently transfected with viral plasmids, a LTR-luc
plasmid in the presence of 150ng Apobec or control plasmid. At 48hrs posttransfection viral supernatants were harvested, filtered and added to 293T
cells. 48hrs past infection cells were lysed and luciferase activity was quantified. The level of MoMLV (left graph) or XMRV (right graph) infectivity
observed in the presence of empty expression plasmid was set to 100. The indicated data represent three independent experiments performed in
triplicate.
doi:10.1371/journal.pone.0011738.g002

XMRV Restriction

PLoS ONE | www.plosone.org 5 July 2010 | Volume 5 | Issue 7 | e11738



recently reported to be present in PBMCs of 67% of CFS patients

as well as up to 4% of healthy controls [3]. In vitro, we and others

previously demonstrated that XMRV displays a xenotropic host

range in vitro and efficiently infects established human cell lines as

well as primary cells independent of their tissue origin [10,12,48].

While the XMRV promotor is more active in cells from the

prostate compartment [10,12], in vivo restriction of XMRV

infection can not solely be explained by LTR-activity. We hence

suspected that known retroviral restriction factors most likely play

a major role in primary infection and viral spread. To investigate

this hypothesis, we used quantitative RT-PCR to determine

mRNA expression levels of hA3B, 3C, 3F and 3G in established

human cell lines (hematopoietic cell lines: Raji, Jijoye, Reh, U937;

prostate cancer cell lines 22Rv1, Du145 and LNCaP and other

human cell lines: HeLa, TE671, 293T and A549 cells) (Figure 4).

Relative mRNA expression levels in the various cell lines were

determined by comparing Apobec 3 mRNA expression to U937

cells. Most of the tested established cell lines showed moderate to

high expression levels of hA3B, 3C and 3F, whereas hA3G mRNA

expression levels were more variable. All hematopoietic cell lines

as well as the TE671 cells express moderate to high levels of

hA3G. In contrast, hA3G was absent or expressed only at very low

levels in 293T, HeLa, A549 and all of the tested prostate cancer

cell lines.

In addition to established cell lines, we tested primary prostate

stromal fibroblasts from different donors as well as PBMCs from

different patients for their hA3G mRNA expression levels

(Figure 4). In accord with the observations made with cell lines

of hematopoietic origin, PBMCs showed the expected moderate to

high hA3G expression [45,49] levels. However, stromal fibroblasts

isolated from prostate cancer tissue of different donors differed in

their hA3G expression ranging from undetectable to moderate

hA3G expression levels. Taken together, our results suggest that

prostate epithelial cells or populations of hA3G-negative prostate

stromal fibroblasts could be an important reservoir of XMRV

infection in vivo.

Figure 3. Sensitivity of XMRV and MoMLV to mA3 and hA3G restriction. LTR-Luc containing XMRV or MoMLV gag pseudotyped particles
were produced in 293T cells in the presence of increasing amounts (25ng, 75ng, 150ng, 500ng, 1mg) of hA3G (A) or mA3 (B) expression plasmids, or
equivalent amounts of an empty vector control (observed infectivity was set to 100). Virus titers were determined 48hrs after infection of indicator
cells with 200ml viral supernatant by measuring luciferase activity. Whole cell lysates were immunoblotted to ensure increasing amounts of Apobec
proteins transfected using anti V5 (hA3G) or anti-HA (mA3) antibodies. Protein loading was controlled by anti-actin staining.
doi:10.1371/journal.pone.0011738.g003
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Discussion

XMRV is the first MLV-related gammaretrovirus identified in

human infections [1]. In vivo, current evidence suggests that

XMRV infection is restricted to specific compartments: 1–1.5% of

stromal fibroblasts in the prostate have been identified to carry

XMRV [1], focal infections of prostate epithelium cells in prostate

cancer patients have been described [2] and recently virus

transmission from activated PBMCs of CFS patients to an

indicator cell line has been reported [3]. However, in vitro

XMRV displays an extended cell tropism and cells from different

tissue origin as well as from different species can be efficiently

infected. Previously, we demonstrated that the receptor of XMRV,

Xpr1 is widely expressed and although LTR-activity is dependent

on the cell type [10,12], it can not fully account for the observed in

vivo restriction.

One mechanism which controls species restriction and tissue

tropism of retroviruses are retroviral restriction factors, a family of

proteins which form part of the host’s innate immune defense

repertoire. Members of the APOBEC family of cytidine

deaminases are potent inhibitors of HIV1 infection as well as

other retroviruses. Not surprisingly, retroviruses on the other side

have evolved strategies to evade cellular restriction factors, such as

post-transcriptional regulation of hA3G levels by the HIV-

encoded vif protein. Since simple retroviruses (e.g. MLV, MMTV,

FrMLV and XMRV) do not encode for vif homologues, the ant-

restriction strategies employed by these viruses have been the

subject of several studies in the past. To date, there is considerable

Figure 4. mRNA expression of hA3B, hA3C, hA3G and hA3F in human cell lines, PBMCs and primary prostatic stromal fibroblasts.
(A) Relative mRNA expression levels of hA3B, (B) hA3C, (D) hA3G and (E) hA3F. Results are plotted as the mean of three different experiments relative
to mRNA expression levels in U937 cells and normalized against three different housekeeping genes. Hematopoietic cell lines as well as PBMCs from
different donors are indicated as light gray bars, prostate cancer cell lines and primary prostatic stromal fibroblasts (PrSc) are represented as dark grey
bars and other human cell lines are shown as white bars.
doi:10.1371/journal.pone.0011738.g004
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controversy about the mechanisms by which MLV evades Apobec

restriction. Virion exclusion of the Apobec proteins has been

proposed as one possible mechanism [23,35,37], proteolytic

cleavage of the virion incorporated Apobec proteins was suggested

as another [38], whereas a recent publications come to the

conclusion that neither mechanism is likely to account for the

evasion [29].

Here, we have analyzed the effect of different human A3

proteins as well as mouse A3 on XMRV infection in a direct

comparison to the closely related MoMLV. We observed that both

XMRV and MoMLV can efficiently package hA3B, hA3F, hA3G

and mA3. In contrast, hA3C, although efficiently expressed, can

hardly be detected within virion preparations. Of all Apobec

protein members which are found in the virion only hA3G

strongly reduces XMRV or MoMLV infectivity; mA3 only

partially reduces infectivity also at higher Apobec protein

concentrations. Our findings are in agreement with recent reports

demonstrating efficient packaging of both hA3G and mA3 protein

into MoMLV virions, although only hA3G displays significant

restriction against MoMLV infection. These results suggest that

virion exclusion is not the mechanism by which MoMLV evades

Apobec restriction. Additionally, we do not observe any

proteolytic cleavage of mA3 within the virions of MoMLV or

XMRV, although cleavage has been recently reported for

MoMLV by others [27]. Recently, sensitivity of XMRV against

the human retroviral restriction factors hA3G [11,39] and tetherin

was reported, whereas human TRIM5a was found to have no

effect on infectivity. Additionally, the non-human factors Fv1,

mA3 and primate tetherin also decreased XMRV infectivity to

different extend [11]. Our results are in overall good agreement

with the findings of two recent reports [11] in terms of hA3G being

a potent inhibitor of XMRV infection. All reports unequivocally

identify XMRV replication being highly sensitive to hA3G,

whereas mA3 only partially reduces XMRV infection. Further-

more, all studies observe efficient packaging of mA3 protein into

XMRV virions, and thus virion exclusion is unlikely to be the

mechanism by which XMRV evades mA3 restriction. Differences

observed between the current study and the recently published

studies with regard to sensitivity against hA3B and hA3F are most

likely due to different amounts of transiently expressed Apobec

proteins used in the infectivity assays.

Interestingly, we observed differences between XMRV and

MoMLV with regard to mA3 restriction sensitivity (Figure 3).

Titration of the amount of transiently transfected mA3 expression

levels revealed, that lower mA3 concentrations partially reduce

XMRV infectivity but do not interfere with MoMLV infection.

The increased sensitivity of XMRV against mA3 may suggest that,

although XMRV originally originated from the mouse, it is

circulating already for an evolutionary significant period of time in

the human population. Thus, our findings would argue that, at

least for the XMRV isolate investigated here, humans represent

the current reservoir of infection.

What are the in vivo consequences of the fact that hA3G is a

potent inhibitor of XMRV? So far, XMRV has been described to

be present in PBMCs (67% of CFS patients as 4% of healthy

controls) as well as in cells of prostate cancer tissue [1–3]. hA3G is

widely expressed in hematopoietic cells (T-cells, B-cells and

myeloid cells) and tissues with high prevalence of B- and T-cells

[49]. Likewise, we detect moderate to high hA3G mRNA levels in

hematopoietic cell lines as well as PBMCs. Hence, XMRV is likely

to have evolved additional strategies to evade hA3G restriction in

the hematopoietic compartment, which may not be detectable by

the experimental in vitro procedures employed by us and others.

Interestingly, hA3G mRNA expression can not be observed in

the prostate cancer cell line 22Rv1 (which has multiple copies of

integrated XMRV genomes and sheds significant amount of

infectious XMRV virions), LNCaP (a line which supports XMRV

replication to produce high titers when infected in vitro) or DU145

cells. These findings are in line with the recent observation of

Paprotka and coworkers [39], that XMRV genomes recovered

from prostate cancer cell lines are hypermutated only at low

frequency. In contrast, primary prostatic stromal fibroblasts

isolated from different donors (patients undergoing prostatectomy)

displayed variable levels of hA3G expression, ranging from being

undetectable to moderate. Prostate epithelial cells or a population

of prostatic stromal fibroblasts with low A3G expression could be

one important reservoir for XMRV replication in vivo.

Supporting Information

Supplementary Figure S1 qPCR amplification ranges and

efficiencies of each individual primer set used in the study.

Found at: doi:10.1371/journal.pone.0011738.s001 (0.23 MB TIF)
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