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Abstract

Identifying DNA polymorphisms that affect molecular processes like transcription, splicing, or translation typically requires
genotyping and experimentally characterizing tissue from large numbers of individuals, which remains expensive and time
consuming. Here we introduce an alternative strategy: a ‘‘synthetic association study’’ in which we computationally predict
molecular phenotypes on artificial genomes containing randomly sampled combinations of polymorphic alleles, and
perform a classical association study to identify genotypes underlying variation in these computationally predicted
annotations. We applied this method to characterize the effects on gene structure of 32,792 single-nucleotide
polymorphisms between two strains of the antibiotic producing fungus Penicilium chrysogenum. Although these SNPs
represent only 0.1 percent of the nucleotides in the genome, they collectively altered 1.8 percent of predicted gene models
between these strains. To determine which SNPs or combinations of SNPs were responsible for this variation, we predicted
protein-coding genes in 500 intermediate genomes, each identical except for randomly chosen alleles at each SNP position.
Of 30,468 gene models in the genome, 557 varied across these 500 genomes. 226 of these polymorphic gene models (40%)
were perfectly correlated with individual SNPs, all of which were within or immediately proximal to the affected gene. The
genetic architectures of the other 321 were more complex, with several examples of SNP epistasis that would have been
difficult to predict a priori. We expect that many of the SNPs that affect computational gene structure reflect a biologically
unrealistic sensitivity of the gene prediction algorithm to sequence changes, and we propose that genome annotation
algorithms could be improved by minimizing their sensitivity to natural polymorphisms. However, many of the SNPs we
identified are likely to affect transcript structure in vivo, and the synthetic association study approach can be easily
generalized to any computed genome annotation to uncover relationships between genotype and important molecular
phenotypes.
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Introduction

As the cost of DNA sequencing plummets it is increasingly

possible to sequence multiple genomes from a single species to

identify naturally occurring polymorphisms. However, character-

izing the phenotypic consequences of specific variants remains a

significant challenge.

A crucial first step in this process is to understand how

polymorphisms alter molecular phenotypes, such as protein-

coding gene location, structure, and expression pattern. While

the effects of some sequence changes, such as the gain or loss of a

stop codon, are predictable, the overall relationship between

sequence changes and gene structure remains unresolved.

Genome-wide association studies (GWAS), which have been

highly effective at identifying polymorphisms that have an effect

on disease and other organism level phenotypes [1,2,3], are

increasingly being used to link polymorphisms to molecular

phenotypes [4,5]. But the expense and time required to generate

data for such molecular GWAS studies limit their widespread

use.

Here we present a strategy that associates naturally occurring

polymorphisms with variation in inferred molecular phenotypes –

in this case computationally predicted protein-coding genes. This

approach has several clear advantages. Most significantly, it does

not require experimental analysis of hundreds or thousands of

samples. Furthermore, the use of a computed phenotype allows us

to circumvent the need for a large population of genotyped or

sequenced individuals. Instead, we computationally phenotype a

large population of ‘‘intermediate’’ genomes, each containing a

random sample of alleles from a set of polymorphisms identified

from a natural population. This design allows us to get strong

statistical power to detect associations by arbitrarily increasing the

number of intermediate genomes analyzed.

Because collections of predicted transcripts only partially

capture the complexity of real transcriptomes, we expect many

of the variable gene models and associated polymorphisms not to

be relevant in vivo. However, gene prediction programs and other

tools for computational annotation are becoming increasingly

accurate, and thus our synthetic association study is likely to

identify many polymorphisms that are good candidates for
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experimental investigation. We also believe that probing the

sensitivity of gene prediction programs to naturally occurring

polymorphism will help improve these and other computational

annotation algorithms that are becoming increasingly important in

biology.

Results

Identifying gene model changes
Penicillium chrysogenum, the fungus originally identified by

Alexander Fleming as the source of penicillin, remains an

important commercial source of this antibiotic. During the past

60 years, industrial strains of P. chrysogenum have undergone many

rounds of mutagenesis and selection in order to improve drug

production [6]. Two genomes of P. chrysogenum have been

sequenced: one from an industrial strain, here termed ‘‘vdB’’

[7], and one from a natural isolate of the fungus that we sequenced

as part of a graduate class on genome sequencing at UC Berkeley,

here termed ‘‘UCB’’.

While assemblies were available for both strains, we wanted to

compare gene predictions between the two genomes without

anomalies arising from chromosomal rearrangements or assembly

errors. We therefore identified 32,792 well-supported SNPs

between the two strains by aligning reads from UCB against the

vdB assembly. We used these SNPs to generate a new genome

sequence, vdB*, which was identical to vdB except that all of the

SNP positions were mutated to the UCB allele.

To determine the effects of these SNPs on gene predictions, we

ran the gene prediction program SNAP [8] with identical

parameters on the vdB and vdB* genomes. Even though vdB

and vdB* differed at only 0.1% of bases, 688 of the exon

predictions (1.8%) were variable between the two genomes. These

included 234 ‘‘shifts’’, in which the 59 and/or 39 boundaries of

exons were altered; 59 ‘‘intron gain/losses’’, in which two exons in

one genome were predicted to be a single, large exon in the other

genome; and 395 ‘‘exon gain/losses’’, in which an exon predicted

in one genome was absent in the other genome (Figure 1A).

Variable exons had lower SNAP scores (23633) than non-

variable exons (44660) (p = 10238 by two-tailed t-test). This

suggests that exons that are less confidently determined by SNAP

may be more prone to vary in response to SNPs. However, given

the high degree of overlap between the SNAP score distributions

of variable and non-variable exons, it is not possible to predict a

priori whether an individual SNAP gene model is sensitive to

sequence polymorphisms.

Random sequence differences affect gene models more
than naturally occurring polymorphisms

We were initially surprised to observe that such a high

percentage of exons (1.8%) vary between vdB and vdB*. To

determine how this compared to what might be expected by

chance, we generated 100 versions of the vdB genome with

randomly positioned mutations. The same number and types of

base pair changes were made in these randomized genomes as

between the vdB and vdB* genomes.

There were over twice as many gene model changes between

vdB and the randomized genomes (mean = 2651, std. dev. = 93)

as between vdB and vdB* (1032) (Figure 1B). Thus, although

there are many exon changes between vdB and vdB*, there are

many fewer changes than would be expected from random

mutations, suggesting that purifying selection has acted to remove

many mutations that would alter gene models. This result also

suggests that SNAP predictions are sensitive not just to the

particular polymorphisms between vdB and vdB*, but to SNPs in

general.

Between the vdB and vdB* genomes, we were unable to

distinguish between an exon gain and an exon loss (or intron gain

versus intron loss) without an outgroup to determine the ancestral

SNP allele. However, for the defined mutations of the randomized

genomes, we found that there were more exon losses than exon

gains (259+/219 exon losses versus 154+/216 exon gains) and

more intron gains than intron losses (309+/216 intron gains

versus 37+/26 intron losses). Therefore, at least with random

mutations, it is more common to lose exons and gain introns.

A synthetic association study
We next wanted to investigate the mechanism by which SNPs

were affecting gene predictions. To do this, we first needed to

identify which SNPs were affecting which SNAP predictions. This

proved difficult because: 1) it was unknown if a gene prediction

was affected by a single SNP or multiple SNPs; 2) there were often

many SNPs close to and within the altered gene model; and 3)

many of the altered gene predictions did not have SNPs in

obviously functional sites (e.g. a stop codon).

To overcome these difficulties, we set out to use an ‘‘in silico

genetics’’ approach, in which we computationally mutated

genomes and examined the resulting SNAP phenotypes. One

possible approach would be to generate all 32,792 possible single-

mutant genomes, each identical to vdB except at a single SNP, to

see if one of the single mutants phenocopied vdB* at a specific

locus. However, running SNAP on this many genomes would take

an inordinate amount of computational time. Moreover, in order

to find cases where 2, 3, or more SNPs together influenced a single

gene, one would additionally need to generate double, triple, etc.

mutant genomes.

As a more effective and tractable alternative, we devised a

strategy that we refer to as a synthetic association study. A typical

association study examines the relationship between genotype

and phenotype within a population of individuals whose genomes

have been shuffled by an extended period of meiotic recombi-

nation. In our synthetic association study, we computationally

shuffled the SNP genotypes of vdB and vdB*, simulating 500

genomes that were intermediate in genotype to vdB and vdB*.

Specifically, at every SNP position, each intermediate genome

had a 50% chance of incorporating either the vdB or UCB allele.

For each of these 500 intermediate genomes, we ran SNAP to

generate the gene prediction phenotype and then looked for

associations between specific SNP genotypes and gene model

phenotypes (Figure 2).

Figure 1. Naturally occurring SNPs cause fewer gene model
differences than randomly placed SNPs. A) Gene model differ-
ences between vdB and vdB*, where all base pair changes were made
at naturally occurring SNP positions between UCB and vdB. B) Average
gene model differences between vdB and 100 genomes in which SNPs
were randomly relocated. Area in circle is proportional to the number of
changes observed.
doi:10.1371/journal.pone.0011645.g001

Synthetic Association
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Gene model phenotypes with perfectly associated SNPs
As multiple exons often changed in a coordinated manner, we

grouped 2 or more polymorphic exons into an ‘‘event’’ when they

co-occurred 100% of the time in the intermediate genomes. For

example, in Figure 2B four variable exons are grouped into an

event because they occur in a completely correlated pattern in the

intermediate genomes. We found 557 total events. We then looked

for associations between events and SNP alleles. We observed

many cases in which a single SNP allele co-occurred with an event

phenotype in all 500 intermediate genomes. We interpreted this

association to mean that this single SNP was responsible for the

altered gene prediction phenotype. We performed a genome-wide

search for such cases by looking for correlations between the

occurrence of each event and each SNP allele in the 500

intermediate genomes. We found 226 events that completely

correlated with the presence of a particular polymorphic allele

(Figure 3). Each of these event-SNP associations was highly

significant (false discovery rate = 102103). Encouragingly, all of the

perfectly correlating SNPs were local to their associated events.

Most SNPs were located within the boundaries of the event (89%),

while the remaining SNPs were external to the event but nearby

(median of 11 bp away). As hidden markov model (HMM) gene

predictions are expected to be sensitive primarily to local

perturbations, these results lend confidence to the synthetic

association study method.

To better understand how these perfectly correlating SNPs

affected gene models, we examined the positions of the SNPs

relative to their associated events. The SNPs were often located in

‘‘influential sites’’ in a gene, defined here as the start codons, stop

codons, splice donor, and splice acceptor sequences (Table 1). 92

out of 226 (41%) perfectly associated SNPs were in influential sites

in at least one of the two genomes. In the remaining cases, the

perfectly associated SNP was not in an influential site in either

genome. These SNPs were found in exons (n = 73, e.g. Figure 4B)

or introns (n = 59) of vdB or vdB*, and occasionally they were

located in intergenic regions in both genomes (n = 2, e.g.

Figure 4C). The mechanisms by which SNPs in non-influential

sites affect gene models remain unclear.

Gene model phenotypes affected by modifier SNPs
In addition to the 226 perfect correlations between events and

SNPs, there were also many cases of SNPs and events that were

highly, but not perfectly, correlated. We interpret these correla-

tions to mean that there are modifier SNPs that affect but are not

completely responsible for the phenotype of that event.

To determine which of these SNP-event correlations were

significant, we compared the distribution of correlations to a

theoretical model in which all SNPs and events were unassociated.

Unassociated SNPs and events are predicted to have a distribution

of observed correlations that peaks at zero and extends as a

binomial distribution. The distribution of event-SNP correlations

in the association study fit this binomial curve for correlations

between 0 and 0.2, but diverged for higher correlation values

(Figure 3A). After we set a false discovery rate cutoff of 5%, all

correlation values above 0.244 were significant. This analysis

identified 438 significant, non-perfect SNP-event correlations in

addition to the 226 perfect correlations. All of these SNPs were

also near their associated event. Overall, we were able to detect an

average of 1.2 significant SNPs per event.

We next asked if the exon model variation was due to a small

number of genotypic changes (some with a large effect) or many

changes (each with a small effect). 226/557 (41%) events were

completely controlled by a single SNP (Figure 3B). 243 events

(44%) were associated with multiple SNPs of intermediate effect, at

least one of which had a large enough correlation value to be

significantly detected in this study. In contrast, 88 events (15%)

had no significant SNP correlations, suggesting that these events

were influenced by many SNPs, each with a small effect below the

significance cutoff. Thus, the overall phenotypic difference

between vdB and vdB* was due to a combination of large,

intermediate, and small-effect SNPs.

Complex traits and SNP epistasis
Of the events associated with multiple SNPs, we observed

several cases in which an event could be ‘‘completely explained’’

by 2, 3, or 4 SNPs, meaning that the genotype at only the 2, 3, or 4

SNPs was relevant for predicting the gene model phenotype

Figure 2. Using intermediate genomes to identify correlations between SNPs and gene model events. Comparison of exon models from
vdB (red), vdB* (yellow), and intermediate (orange) genomes. All SNPs in the region are shown, with the SNP that perfectly correlates with the event
in bold. A) A ‘‘shift’’ event. A SNP in a TGA stop codon in vdB* is associated with a shift in exon length on contig 16: 3577500–3576100. B) Two ‘‘shift’’
events. A novel splice donor in vdB* affects the length of its exon and a neighboring exon on contig 20: 2945150–2945750. C) An ‘‘intron gain/loss’’
event. An intronic SNP affects the presence/absence of an intron on contig 12: 69800–70950.
doi:10.1371/journal.pone.0011645.g002
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Figure 3. Most events are significantly correlated with one or more SNPs. A) Histogram of the correlation between every pair-wise event-
SNP combination. A correlation of 1.0 (diamond marker) indicates perfect agreement between the SNP genotype and event phenotype in all
intermediate genomes. The black line shows a theoretical binomial distribution of correlations between independent events and SNPs. B) Histogram
showing the largest SNP-event correlation for each event. C) The event phenotype frequency, the fraction of intermediate genomes containing the
less common phenotype of each event, binned as in B. For all graphs, the significance cutoff is shown by the red line.
doi:10.1371/journal.pone.0011645.g003
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(Figure 4D–F). We performed a systematic search for such events

and identified events that could be completely explained by 2

SNPs (n = 37), 3 SNPs (n = 17), and 4 SNPs (n = 1). Some of these

are clear examples of complex SNP epistasis. For example, in

Figure 4F, an intron is always present when the second bolded

SNP is A, but when the second SNP is G, an intron may be

present or absent depending on the other SNP alleles. This variety

of genetic architectures highlights the complexity and unpredict-

ability of SNAP.

Overall, we found all of the SNPs that control an event for only

50% (n = 280) of the events (n = 226 one SNP events, n = 37 two

SNP events, n = 16 three SNP events, n = 1 four SNP event). Thus,

it is common for events to have one (or more) small, modifier SNPs

that are below the significance cutoff of 0.244, where we are

unable to detect them (Figure 4G).

Traditional association studies have trouble identifying causa-

tive alleles when the phenotype of interest is examined in a small

number of individuals, or when the alleles that influence the

phenotype are of small effect [9]. Analogously, we observed that

for many of the incompletely explained events, one event

phenotype was much more common in the intermediate genomes,

and the other version appeared only rarely (Figure 3C). Com-

pletely explained events had an average phenotype frequency of

48.2%, appearing in 241 out of 500 intermediate genomes. In

contrast, the events that had no significantly correlated SNPs had

an average phenotype frequency of 7.6%, corresponding to only

36 out of 500 intermediate genomes, which was too few to find

significant associations. Thus, it appears that our synthetic

association study falls victim to some of the same weaknesses as

traditional association studies. However, these difficulties can be

overcome by increasing the number of individuals analyzed. While

traditional association studies are often limited by the time and

cost required to collect individuals from the wild and to assess their

genotypes and phenotypes, the number of individuals in synthetic

association studies is limited only by computational power.

Discussion

The utility of synthetic association studies
Computational methods play an important role in genome

annotation. To the extent that these methods accurately capture

biological reality, they provide a powerful means to understand the

molecular consequences of sequence variation within and between

species. However, as these methods have grown more accurate,

they have also grown more complex, to the point where it is no

longer possible to predict their behavior.

To study the unpredictable behaviors of these complex models –

and hopefully the biology they represent – we have co-opted

techniques developed to study complex organisms. Association

studies analyze a population of individuals to understand the ways

in which genes influence phenotypes. Here, we present the

concept of a synthetic association study for analyzing the behaviors

of complex genomic programs. Since the phenotype we examined

was strictly computational, we could easily phenotype an

arbitrarily large synthetic population of intermediate genomes to

understand how sequence polymorphisms produce variable gene

predictions. (Strictly speaking, our approach is analogous to an

association study with zero linkage between neighboring SNPs,

allowing us to precisely identify the specific SNP or SNPs that

affect a gene model.)

The synthetic association study is not limited to gene prediction

programs, and could be extended to understand any complex

biological phenomenon that is modeled by a complex program.

We discovered at least one SNP that was significantly associated

with 85% of variable gene predictions. Additionally, we identified

many cases in which 2, 3, 4, or more SNPs were responsible for

the gene model phenotype, demonstrating that SNPs can affect

gene predictions in a complex and combinatorial manner.

How biologically accurate are SNAP responses to SNPs?
Of the 226 SNPs that were perfectly correlated with a variable

gene model, 92 (41%) were located in obviously influential sites

within a gene (e.g. start and stop codons, splice sites). To the extent

that the affected genes exist, which we believe most do, these SNPs

are likely to affect their structure in vivo.

The remaining 134 SNPs were found in the middle of exons,

introns, or intergenic regions. While sequence motifs inside exons

and introns are known to influence gene boundaries through the

action of splicing regulators that bind these sites, these effects were

not explicitly modeled in the HMM used in SNAP [8,10].

However, SNAP does consider the composition of each sequence

element in computing the likelihood of particular gene models,

and sequence changes within these elements may affect the

likelihood of alternative gene models or states (e.g. no gene)

enough to alter SNAP’s predictions. Since SNAP is trained to

recognize real genes, some of this behavior may be real. But some

behaviors of SNAP that we observed are unlikely to accurately

reflect biological differences between the strains. For instance, we

observed 2 cases where a single SNP caused the SNAP prediction

to ‘‘flip’’ from one strand to the other (Figure 4C). Overall, 269 of

the 557 (48.3%) polymorphic events are influenced by at least one

SNP located in a non-influential site. These events (representing

1.1% of the gene predictions in the genome) are the most likely to

be erroneous.

Assessing gene predictions without validated gene sets
Any improper sensitivity of SNAP to polymorphisms should be

of serious concern to those who wish to use gene predictions for

Table 1. Locations of SNPs that perfectly associate with gene models.

Intron gain/loss (n = 28) Exon gain/loss (n = 122) Shift (n = 116) Total (n = 226)

Start codon 0 11 14 19

Stop codon 18 17 22 54

Splice donor 1 5 9 14

Splice acceptor 1 2 2 5

Other 8 87 69 134

Note that as each event can belong to one or more category (Intron gain/loss, Exon gain/loss, and/or Shift), the Total is not necessarily equal to the sum of the three
categories.
doi:10.1371/journal.pone.0011645.t001
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Figure 4. A variety of SNP genetic architectures affect exon model phenotypes. A–C) Diverse gene model phenotypes associated with a
single SNP. A) A SNP is part of a start codon in vdB* and a splice acceptor in vdB on contig 21: 133200–133500 B). An entire five-exon gene is
predicted in vdB but not vdB* on contig 24: 56700–57500. C) A rare example in which an intergenic SNP causes a gene to flip strands on contig 22:
2627100–2627839. D–F) Examples of events that are completely explained by multiple SNPs. All possible SNP combinations and associated
phenotypes are shown in green. D) One SNP is part of a splice donor and a second SNP is part of a splice acceptor. Both must be present for the

Synthetic Association
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subsequent experiments or genome analyses, especially given that

SNAP was additionally sensitive to random polymorphisms that

could result from random mutation or sequencing error. We

therefore suggest that inappropriate sensitivity to polymorphism

should be a key criterion of gene model program assessment.

Currently, analyses of the accuracy of gene prediction programs

rely heavily on comparisons between gene predictions and

experimentally validated gene sets in model organisms [8,11–16].

These approaches are not always available to evaluate gene

predictions in non-model organisms, as validated gene sets are

often non-existent. In these situations, gene prediction programs are

evaluated by comparing the outputs of different programs to each

other [17], but this process is at risk of missing shared errors. The

synthetic association study can fill this gap of gene prediction

assessment in non-model genomes by identifying potentially

sensitive, problematic gene predictions. The synthetic association

study could even be used in the process of program optimization,

with the goal of minimizing the number of gene predictions that are

sensitive to natural variation. Although this is admittedly a less

reliable procedure than using validated gene sets, the rate of

sequencing new genomes is far outpacing the rate of developing new

validated gene sets. We will need assessment methods, such as the

synthetic association study, that can pinpoint specific defects in

gene models (or other bioinformatic outputs) in the absence of

experimental validation.

Methods

SNP identification
SNPs were identified using MosaikAligner [18] to map the UCB

raw sequencing reads to the vdB genome. SNP calls were made in

regions of 56 or more read coverage when the UCB reads

contained a different single base from the aligned vdB genome.

SNAP parameter training on the P. chrysogenum genome
Beginning with the C. elegans SNAP parameters, we ran SNAP

on the vdB FASTA file to create a .zff training data file. We took

the output of this run to use as the input parameters for another

SNAP training run on the vdB FASTA file. This cycle was

repeated for 25 training rounds to optimize the SNAP parameters

for P. chrysogenum.

Generating the vdB* genome
Beginning with the vdB FASTA file, we altered every SNP

position to contain the UCB instead of the vdB allele. Thus, the

vdB* genome has the vdB genome as a backbone, and is different

at only 32,792 bases (0.1% of the genome).

Creating intermediate genomes and gene models
Intermediate genomes also have the vdB genome as a backbone.

At every SNP position, we randomly incorporated (with a 50%

chance) either the UCB allele or the vdB allele. Thus, SNP alleles

are independent and there is no linkage.

Subsequently, SNAP was run on all intermediate genomes using

the previously described parameters (see ‘SNAP parameter

training’). We then determined the presence or absence of every

exon model that was predicted in any of the SNAP runs. This

allowed for the possibility of observing exons in intermediate

genomes that were not predicted in either the vdB or vdB*

genomes. Exon models were defined by their contig, type (e.g.

initial exon, terminal exon), start position, stop position, and

strand.

Defining and characterizing events
Exon changes that were completely correlated or completely

anti-correlated in their patterns of presence and absence in the

vdB, vdB*, and the 500 intermediate genomes were grouped

together into an ‘‘event.’’

As we were interested in understanding the variation between

vdB and vdB*, we only considered events which were polymorphic

between these two genomes. 99.8% of these events contained

grouped exons that were all on the same contig (557/558); the

single event that grouped exons from multiple contigs was

removed from the analysis.

In cases where multiple exons in the same genome were

grouped into a single event, 90% of the grouped exons were in the

same gene, and 10% were in neighboring genes, demonstrating

that grouped exons tended to be local.

Searching for and characterizing associations between
SNPs and event phenotypes

We searched for correlations between the patterns of event

presence/absence and the occurrence patterns of every SNP.

Some SNPs-event pairs (n = 226) perfectly co-occured, while many

were more weakly correlated, as seen in Figure 3. Non-correlated

SNP-event pairs form a distribution that mirrors a theoretical

calculation generated using a binomial distribution.

We converted the number of times a SNP allele co-occurred

with an event into a ‘‘correlation’’, defined as:

Correlation~abs #co-occurrences-250ð Þ=250½ �

This formula is a linear conversion that converts a SNP-event

agreement frequency of 500 into a correlation of 1, and a SNP-

event agreement frequency of 250 into a correlation of 0.

Categorizing events
Using the start and stop positions of each exon, we determined

the overlap between pairs of exons in vdB and vdB*. Exon gain/

loss changes were defined as single exons that overlapped no exons

in the other genome. Intron gain/loss changes were defined as

single exons that overlapped 2 or more exons in the other genome.

Shift exon changes were defined as a single pair of overlapping

exons that had different start and/or stop sites. Finally, ‘‘flip’’ exon

changes were defined as any case where exons in the same event

were positioned on opposite strands. More extreme changes were

considered to be hierarchically more important than other

changes; for example flip events were not further analyzed for

the other categories of change, and an exon change that could be

analyzed as both a join/split event and a shift was considered to be

a join/split change, because this was the more extreme change.

Individual events could consist of multiple changes, for example, a

additional exon to be predicted. Contig 19: 82900–82200. E) Three exonic SNPs affect the presence of the first exon and the length of the middle
exon. Contig 24: 503000–504500. F) Four intronic SNPs explain the presence/absence of an intron. Contig 22: 2204700–2204850. G) An example of an
event that is not completely explained. The two SNPs in bold are significantly correlated with the event, but examining those SNPs alone does not
fully explain the phenotype. We also observe a gene model that contains a third phenotype with a longer second exon, unobserved in either vdB or
vdB*. Contig 20: 3227900–3228500.
doi:10.1371/journal.pone.0011645.g004
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single event could have both a ‘‘shift’’ change and an ‘‘exon gain/

loss’’ change involving different exons.

Generating a genome with randomized SNP locations
We began by assessing the number of SNP polymorphisms of

each type (e.g. number of ART transitions) and by counting the

number of As, Ts, Cs, and Gs in the vdB genome that had at least

56coverage by the UCB reads. We then mutated the vdB genome

such that at every base there was a small probability of mutation,

based on how many mutations we had already made and how

much of the genome remained un-mutated. For example, at every

A in the vdB genome, the probability of mutating to a G was:

# of remaining A?G transitionsð Þ=

# of remaining As in genomeð Þ

Similar probabilities were calculated for all other possible

mutations in the genome, based on the number of base changes

observed in the SNP calls. This procedure allowed us to generate a

genome based on the vdB genome that was altered to a similar

extent as vdB* strain, but with the mutation positions randomized.

We created 100 of these genomes and compared the SNAP

predictions from these genomes with the gene models for vdB.

To categorize gene model changes in a randomized genome, we

identified all gene model predictions that were different between

the vdB genome and the randomized genome. We next

determined which exons in one genome overlapped which other

exons in the second genome. If an exon in one genome overlapped

no exons in the other genome, we classified this situation as an

‘‘exon gain/loss.’’ If an exon from each genome overlapped each

other and only each other, we classified this situation as a ‘‘shifted

exon.’’ Finally, if two exons in one genome overlapped a single

exon in the other genome, we classified this situation as an ‘‘intron

gain/loss.’’ This analysis was a similar classification system as that

used for events, but used a distinct method. This method did not

rely on any grouping of exons into events.

Defining SNP positions relative to exons
If a SNP was within the first or last 3 base pairs of a gene, it was

classified as being in the start or stop sites, respectively. If a SNP

was located in an intron but within 5 base pairs of the beginning or

the end of the intron, is was classified as being in a splice donor or

splice acceptor site, respectively. Otherwise, a SNP was classified

as intronic, exonic, or intergenic, depending on its location.

A SNP was defined relative to a pair of genomes based on a

hierarchy of functional locations. For example, a SNP that was

located in a start codon in vdB genome and in an intron in vdB*

was classified as a start codon SNP, because its position in the start

codon was considered more likely to reflect a functional role. The

hierarchy of SNP positions was defined as follows: start,

stop.splice donor, splice acceptor.exon.intron.intergenic.

Searching for events completely explained by multiple
SNPs

An event was considered ‘‘completely explained’’ if each

combination of SNP alleles was always associated with a single

event phenotype. For example, in Figure 4D, every time the SNPs

in bold were AT, AA, or GT, the vdB* gene model phenotype

resulted. Every time there was GA, the vdB gene model was

predicted. Incompletely explained events, as in Figure 4G, had a

single combination of SNP alleles (e.g. GG) co-occurring with

multiple different gene model phenotypes. We performed a

systematic search for any events that could be explained by 2, 3,

4, or 5 SNPs by looking for combinations of significant SNPs that

were always associated with a single phenotype. Only significantly

correlated SNPs (correlation.0.244) were tested.

Calculating the event phenotype frequency
The event phenotype frequency was defined as the percentage

of the intermediate genomes that contained the less common

version of the event. Thus, events that had each version occur

250/500 times had a frequency of 0.50 and events that had one

version occur either 0 or 500 times had a frequency of 0.00.
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