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Abstract

To prevent progression to AIDS, persons infected with human immunodeficiency virus type 1 (HIV-1) must remain on highly
active antiretroviral therapy (HAART) indefinitely since this modality does not eradicate the virus. The mechanisms involved
in viral persistence during HAART are poorly understood, but an animal model of HAART could help elucidate these
mechanisms and enable studies of HIV-1 eradication strategies. Due to the specificity of non-nucleoside reverse
transcriptase (RT) inhibitors (NNRTIs) for HIV-1, we have used RT-SHIV, a chimeric virus of simian immunodeficiency virus
with RT from HIV-1. This virus is susceptible to NNRTIs and causes an AIDS-like disease in rhesus macaques. In this study, two
groups of HAART-treated, RT-SHIV-infected macaques were analyzed to determine viral decay kinetics. In the first group,
viral loads were monitored with a standard TaqMan RT-PCR assay with a limit of detection of 50 viral RNA copies per mL.
Upon initiation of HAART, viremia decayed in a bi-phasic manner with half-lives of 1.7 and 8.5 days, respectively. A third
phase was observed with little further decay. In the second group, the macaques were followed longitudinally with a more
sensitive assay utilizing ultracentrifugation to concentrate virus from plasma. Bi-phasic decay of viral RNA was also observed
in these animals with half-lives of 1.8 and 5.8 days. Viral loads in these animals during a third phase ranged from 2–58 RNA
copies/mL, with little decay over time. The viral decay kinetics observed in these macaques are similar to those reported for
HIV-1 infected humans. These results demonstrate that low-level viremia persists in RT-SHIV-infected macaques despite a
HAART regimen commonly used in humans.
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Introduction

Highly active antiretroviral therapy (HAART) is a combination

of drugs, usually three or more from two or more classes, which

serves as a means to long-term control of replication of the

lentivirus, human immunodeficiency virus type 1 (HIV-1) [1,2,3].

Effective HAART can reduce viremia to below the detectable

limits of conventional clinical assays in many persons able to

adhere to the treatment regimen, drastically reducing their

progression to acquired immune deficiency syndrome (AIDS)

and extending life. However, the development of more sensitive

assays has demonstrated that continued low-level viremia persists

in most subjects despite many years of viral suppression by

HAART [4,5,6,7]. Additionally, viremia rebounds when treat-

ment stops [8,9]. HIV-1 is not eradicated with current drug

regimens, and thus infected persons must remain on HAART

indefinitely.

Several hypotheses have been proposed recently to explain the

persistence of HIV-1 despite suppressive HAART [10,11]. These

hypotheses are not mutually exclusive, and the mechanisms of

persistence might vary between individuals [12,13]. Because

current HAART is only capable of blocking new rounds of

infection, this treatment modality is unable to eliminate cells

containing an integrated viral genome. Upon initiation of

HAART, viremia decays in a bi-phasic manner to low levels

[4,14,15,16,17]. The phases of decay of viremia represent both the

turnover of virions in plasma as well as the turnover of infected

cells. A recent publication has identified a slow, third phase of

decay followed by a fourth phase with no apparent further decay

[6]. Infected resting memory CD4+ T cells and macrophages are

examples of stable reservoirs that occur early in infection and

persist for years despite suppressive HAART [18,19,20,21,22,23].

The generally low cellular activation state of these cells could

prevent the virus from completing its replication cycle. Occasional

immune activation of these cells might allow for complete viral

transcription and lead to assembly and release of virus, accounting

for the observed low-level viremia. There may be additional stable,

long-lived cells that are infected and release virus continuously

[5,22]. Also, tissues or cell types with restricted drug access might

exist within a person, allowing for low-level residual replication

[12,13,24,25]. The observed residual viremia might continue to

reseed reservoirs thereby prohibiting their decay.
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Attempts to address mechanisms of viral persistence have been

limited partly because extensive tissue samples during suppressive

HAART are not available for analysis. Even if possible, HIV-1

eradication will not be proven until infected individuals can be

removed from HAART without viral rebound [26]. However,

ethical concerns surround structured treatment interruptions

[8,27]. A well developed animal model for HAART will enable

extensive tissue analysis to identify the source of residual viremia.

This approach could lead to a better understanding of viral

persistence during suppressive therapy. An appropriate animal

model would also lend itself to evaluation of higher risk treatment

regimens that are not feasible in human studies, including the use

of viral rebound as an endpoint.

Another lentivirus, simian immunodeficiency virus (SIV), causes

AIDS in macaques and is sensitive to many of the approved

nucleoside analog reverse transcriptase (RT) inhibitors (NRTIs)

and protease inhibitors (PIs) used in current HAART regimens

[28,29,30]. SIV has been used as a model of HIV-1 to study

pathogenesis, immune responses, vaccines, and therapy

[29,31,32]. Recently, SIV was used to study viral reservoirs in

pig-tailed macaques during treatment with a HAART regimen

[33].

A major limitation of using SIV infection of macaques to model

HAART is that the non-nucleoside reverse transcriptase inhibitors

(NNRTIs) are not effective against the SIV RT. The NNRTI

efavirenz is a component of a combination currently recommend-

ed as an initial HAART regimen [34]. Accordingly, NNRTIs

should be an option in an animal model attempting to address

viral persistence during HAART.

Non-human primate models that can utilize NNRTIs have been

developed [35,36,37,38]. One of the rhesus macaque models uses

virus consisting of the backbone of the pathogenic molecular clone

SIVmac239 with the HIV-1 RT from clone HXBc2 (RT-SHIV)

[38]. RT-SHIV, which causes simian AIDS in rhesus macaques, is

sensitive to several NRTIs, PIs, and NNRTIs [28,38,39,40,41].

We recently demonstrated that RT-SHIV-infected rhesus ma-

caques treated with an efavirenz-based HAART regimen (which

included lamivudine and tenofovir) models treatment of HIV-1

infection in humans [37]. Plasma virus loads (VLs) in treated

animals drop to below the level of detection (50 copies of viral

RNA per mL) during HAART, and VLs rebound when treatment

is terminated [37].

We hypothesized that low-level viremia persists in RT-SHIV-

infected rhesus macaques despite suppressive HAART, and that

this viremia could be detected using a more sensitive assay.

Herein, we report for the first time the VL kinetics of rhesus

macaques infected with RT-SHIV and treated with HAART. VLs

were analyzed both at necropsy and longitudinally. The results

demonstrated that despite suppressive HAART, detectable low-

level viremia persisted in the animals. These data also suggest that

the RT-SHIV/rhesus macaque model will enable critical studies

of mechanisms of viral persistence during HAART.

Materials and Methods

Ethics Statement
All animals were from the retrovirus-free colony of the

California National Primate Research Center (CNPRC), which

operates according to the Guide for the Care and Use of

Laboratory Animals prepared by the Committee on Care and Use

of Laboratory Animals of the Institute of Laboratory Animal

Resources, National Research Council. The studies were ap-

proved by University of California, Davis Institutional Animal

Care and Use Committee (IACUC). This institution is accredited

by the Association for Assessment and Accreditation of Laboratory

Animal Care, International (AAALAC). This institution has an

Animal Welfare Assurance on file with the Office of Laboratory

Animal Welfare (OLAW). All possible efforts were made to

minimize animal pain and discomfort. Analgesics were adminis-

tered at the discretion of the CNPRC veterinary staff. When

necessary, animals were immobilized with ketamine-HCl (Parke-

Davis, Morris Plains, NJ, USA), 10 mg/kg body weight, injected

intramuscularly. At necropsy, macaques were sedated with

ketamine-HCl and then humanely euthanized with a barbiturate

overdose and peripheral blood was collected.

Virus and cells
RT-SHIV stocks were prepared by transfecting CEMx174 cells

as described previously [28,41]. The 59-half clone encoding the

RT of HIV-1 clone HXBc2 [38] was provided by J. Sodroski,

Harvard Medical School, Boston, Mass. The 39-half clone encodes

a full-length nef open reading frame as described [42]. CEMx174

cells were grown as previously described [37]. Virus stocks were

prepared as previously described [37] and had the T-to-C

substitution at position 8 of the SIV tRNA primer binding site,

which is necessary for rapid replication of RT-SHIV [43].

Feline leukemia virus (FeLV) was used to aid in pelleting of RT-

SHIV during the ultracentrifugation virus load assay (UVLA) as

described below. Stocks of FeLV were collected from the media

supernatant of the chronically infected feline lymphoblastoid cell

line FL74 [44]. Cell culture supernatants containing FeLV were

frozen in aliquots at 280uC.

Preparation and administration of drug
Two groups of 12 juvenile rhesus macaques (Macaca mulatta)

weighing approximately 2 to 4 kg were infected intravenously with

approximately 105 50% tissue culture infectious doses of RT-

SHIV grown in CEMx174 cells. Six weeks post-infection, nine of

the animals in each group began a HAART regimen consisting of

tenofovir (PMPA), emtricitabine (FTC), and efavirenz (EFV;

Sustiva). The remaining three animals in each group served as

untreated control animals. FTC and PMPA were provided by

Gilead Sciences (Foster City, CA, USA). EFV was provided by

Bristol-Myers Squibb (Wallingford, CT, USA) for the first group of

animals, and was purchased from a pharmacy for the second

group. EFV was fed at 200 mg per day by mixing the contents of a

200 mg Sustiva capsule into food such as peanut butter

sandwiches. Stock solutions of FTC were prepared in phosphate

buffered saline (pH 7.4). PMPA was suspended in distilled water

with NaOH added to a final pH of 7.0. FTC and PMPA stocks

were filter-sterilized and stored at 4uC. These NRTIs were

administered subcutaneously at a regimen of 16 mg per kg body

weight once daily for FTC and 30 mg per kg body weight once

daily for PMPA. Drug dosages were adjusted weekly according to

body weight. The dose of PMPA was reduced to 15 mg/kg per

day after 15 weeks of treatment to reduce the risk of renal toxicity

[45].

Sample collection
EDTA-anticoagulated blood samples were taken regularly and

plasma was stored at 280uC until RNA extraction and

quantification. In the group of animals analyzed at necropsy,

1 mL samples were drawn weekly for the first 10 weeks followed

by bi-monthly with occasional weekly sampling until necropsy,

when larger volumes were collected. In the animals analyzed

longitudinally, 1 mL samples were taken weekly for 10 weeks post-

infection, then larger samples were taken every two weeks through

week 16, and then every four weeks through week 34.

RT-SHIV Decay in Macaques
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Isolation of RNA from plasma
Plasma samples archived at 280uC were analyzed for viral

loads using a method similar to previously published assays for

HIV-1 and SIV [7,46]. In preliminary experiments, plasma was

thawed from 280uC, followed by ultracentrifugation to concen-

trate the virus, and then RNA was quantified by TaqMan RT-

PCR as described below. In many of the samples a flocculent,

waxy substance was present in the tubes after RNA isolation. The

substance was not soluble in water and interfered with the

TaqMan RT-PCR step. This problem was resolved by including

an initial, low-speed centrifugation of the recently thawed plasma

at 1,1006g for 10 min. After this first low-speed centrifugation,

plasma supernatants were transferred to fresh 15 mL tubes. For

the standard virus load assay (SVLA), viral RNA was isolated from

140 mL of the clarified plasma using the Qiagen viral RNA kit

(Valencia, CA, USA) according to the manufacturer’s protocol.

RNA was eluted from the columns with 40 mL of molecular grade

water. The remaining plasma sample was analyzed using the

UVLA by diluting the plasma (ranging from 1.9 to 6.0 mL) with

tris-buffered saline pH 7.0 (TBS) to a final volume of 6 mL. To aid

in pelleting during ultracentrifugation, FeLV stock was added to

each sample at 16106 RNA copies in 500 mL of TBS. Each

sample was transferred to a 13.2 mL Beckman polyallomer

ultracentrifuge tube (Brea, CA, USA) and centrifuged in a

Beckman Optima LE-80K ultracentrifuge at 170,0006g for

35 min at 4uC in a Beckman SW41 Ti rotor. After ultracentri-

fugation, the supernatant was removed and the pelleted virions

were re-suspended in 100 mL of 5 mM Tris-HCl (pH 8.0)

containing 200 mg of Proteinase K (Sigma Aldrich, St. Louis,

MO, USA) followed by a 30 min incubation at 55uC. Virions were

lysed by the addition of 400 mL of 5.8 M guanidinium

isothiocyanate (Sigma Aldrich, St. Louis, MO, USA) containing

200 mg of glycogen (Sigma Aldrich) and each sample was

transferred to a 1.5 mL tube. The samples were then pulse-

vortexed for 15 sec followed by incubation for 10 min at room

temperature. RNA was precipitated by adding 500 mL of 100%

isopropanol followed by inverting the tubes several times and then

15 sec pulse vortexing. These samples were incubated on ice for

40–60 min before centrifugation at 21,0006g for 25 min at 4uC to

pellet RNA. The supernatant was removed and the pellet was

washed with 900 mL of 70% ethanol followed by centrifugation at

21,0006g for 15 min at 4uC. The supernatant was removed and

discarded and the RNA was allowed to air dry for several minutes

before re-suspension in 55 mL of molecular grade water. All

reagents were molecular grade and certified RNase/DNase free.

TaqMan RT-PCR
RT-SHIV RNA was quantified using TaqMan RT-PCR as

previously described [47]. Control reactions in the absence of RT

were included for each sample. Occasional samples had a

detectable level of DNA. In these samples, viral DNA copies per

mL were calculated and subtracted from the reactions containing

reverse transcriptase to determine viral RNA copies per mL. In

preliminary experiments, DNase treatments interfered with

subsequent TaqMan reactions. As a result, they were not

performed on the reported samples.

FeLV RNA was also quantified in the samples after ultracen-

trifugation in order to assess recovery of virus. Duplicate 25 mL

TaqMan RT-PCR reactions containing 5 mL of RNA sample

were performed using the primer-probe set targeting the unique

region (U3) of the FeLV long terminal repeat described by

Tandon, et al. [48] with the same reaction conditions used for RT-

SHIV quantification.

Efavirenz quantification
After methanol extraction from plasma, EFV was separated by

high-performance liquid chromatography on a Hypersil-GOLD-

C18 column using a gradient of water and acetonitrile and

detected by electrospray ionisation/tandem mass spectrometry in

the negative mode (m/z 314. m/z 69).

Statistical analysis
Statistical analyses were performed using GraphPad Prism

version 5.01 for Windows, GraphPad Software (San Diego, CA,

USA) www.graphpad.com. The viral load decay analyses were

performed using Joinpoint Regression Program Version 3.4.1.

September 2009; Statistical Research and Applications Branch,

National Cancer Institute (Bethesda, MD, USA). Graphs were

reproduced in Microsoft Office Excel 2003 for formatting

standards.

Results

Analysis of viremia at necropsy
In the first study, VLs were monitored throughout treatment

using the SVLA. Upon initiation of HAART, the average VL

decayed to the limit of detection of the SVLA (Fig. 1). The value of

50 RNA copies/mL was used to calculate the average when RNA

was not detected using the SVLA. All nine treated animals

eventually achieved a VL below the limit of detection of the

SVLA, with occasional positive samples. Linear regression analysis

of the average VL over the duration of HAART was performed

(Fig.1). The best fit model divided the average VL upon initiation

of HAART (6 through 33 weeks post-infection) into three distinct

phases represented by lines with slopes of 20.40 (95% Confidence

Interval, CI, 20.30 to 20.50), 20.082 (95% CI 20.06 to 20.11),

and 20.004 (95% CI 20.0009 to 20.009; p = 0.02). Due to the

exponential nature of the viral decay, as described by Ho et al. for

HIV-1 [14], the viral half-lives based upon these slopes were

estimated to be 1.7 (95% CI 1.4 to 2.3), 8.5 (95% CI 6.3 to 11.6),

and 170 (95% CI 77 to 170) days, respectively (Table 1). These

data demonstrate that upon initiation of HAART, viremia decays

in a bi-phasic manner to the limit of detection of the SVLA.

However, the third phase of viral decay is only an estimate because

most of the samples during the third phase were below the limit of

detection of the SVLA and were assigned the value of 50 RNA

copies/mL for the purpose of calculations.

The animals continued on HAART through week 33 post-

infection when five of the animals were necropsied and plasma was

collected (macaques: 35339, 35342, 35343, 35349, and 35389).

HAART was stopped in the remaining 4 of the treated animals to

allow for viral rebound and subsequent necropsy (macaques:

35685, 35913, 35940, and 36098).

To determine the level of residual viremia in HAART-treated,

RT-SHIV-infected macaques, the HIV-1 single copy assay [7] was

adapted for detection of RT-SHIV RNA. The reproducibility of

this adapted assay was determined by measuring RNA in three

separate aliquots of archived plasma and comparing the results

with those obtained using the SVLA. These samples were taken

from plasma collected at necropsy from macaque 35940 on week

47 post-infection, 14 weeks after stopping HAART (Fig. 2A). This

animal had a moderate VL with an average determined using the

SVLA and the UVLA of 5,300 and 5,700 RNA copies per mL,

respectively (Fig. 2A). These values were within the 95% CI, and

an unpaired two-tailed t test determined no statistical difference

between the mean VLs measured by the two assays (Fig. 2A).

These data demonstrate that the UVLA is reproducible and that

RT-SHIV Decay in Macaques
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the two virus load assays are comparable in the detection of RT-

SHIV viremia in rhesus macaques that have moderate VLs.

VLs from the five HAART-treated monkeys that were

necropsied during treatment were analyzed using both assays

(Fig. 2B). None of these macaques had a VL detectable using the

SVLA, but RNA was detected in all five using the UVLA (Fig. 2B).

The average VLs at necropsy ranged from 11–28 RNA copies per

mL (Fig. 2B). A one-way ANOVA indicated no significant

difference between the average VLs (p = 0.54). Occasionally, a

sample was undetectable even with the UVLA. Not all samples

contained the same plasma volume, so the UVLA limit of

detection of each sample was determined based upon the volume

of plasma and the previously published line equation for TaqMan

RT-PCR [47]. The average VLs were calculated by including the

limit of detection values for the TaqMan RT-PCR replicates that

were not detected using the UVLA. As a result, Figure 2B might

slightly over-estimate the average VLs. However, these data

demonstrate detectable viremia at necropsy despite 26 weeks of

effective HAART in RT-SHIV-infected rhesus macaques.

To aid in pelleting of RT-SHIV from plasma during the

ultracentrifugation step, 106 RNA copies of FeLV stock were

added to each plasma sample. Subsequently, FeLV RNA was

quantified in the isolated RNA sample in order to monitor for

recovery of viral RNA, serving as an internal standard (Fig. 2C).

The average FeLV cycle threshold (Ct) for these samples was 25.8

with a standard deviation of 0.64 Ct. All of the samples were

within 2 standard deviations of this mean FeLV Ct except for 1

plasma sample from macaque 35389 which was high, indicating a

poor recovery of virus (average FeLV Ct of 33.4); this sample was

excluded from analysis.

Longitudinal analysis of viremia
Based on the observation that low-level viremia is detectable at

necropsy in RT-SHIV-infected, HAART-treated macaques, a

second study was conducted to analyze viremia longitudinally in

macaques. This experiment utilized more frequent sampling from

an additional nine HAART-treated macaques infected with RT-

SHIV. The HAART regimen remained the same. Larger blood

draws taken regularly post-infection allowed for the longitudinal

analysis of VLs using both virus load assays over the course of the

study.

Plasma VLs were measured over a 34 week period using the

SVLA when the VLs were more than 50 RNA copies per mL, and

the UVLA for samples less than 50 RNA copies per mL (Fig. 3A).

By week 12 post-infection, after six weeks of HAART, four of the

nine treated macaques had a VL below the detection limit of the

SVLA (Fig. 3A; dashed line). All of the treated animals were below

50 RNA copies per mL by week 14 post-infection (Fig. 3A).

Due to the small size of the macaques, most blood draws were

limited to about 5 mL, resulting in plasma volumes ranging from

2–4 mL, which in turn restricted the sensitivity of the UVLA.

Although most samples contained detectable levels of RNA by the

UVLA, some were below the limit of detection. Based upon the

plasma volume used in each assay, the theoretical limit of

detection was calculated for each sample that was negative by

TaqMan RT-PCR. This theoretical limit of detection was used to

assign a value to the VLs, perhaps giving a slight over-estimate.

Occasional 10 mL blood draws, in addition to the larger volumes

of blood that were collected at necropsy, allowed for the recovery

of more plasma, resulting in a more sensitive UVLA that was

Table 1. Comparison of decay of viral RNA in plasmaa.

Phase RT-SHIV SIV HIV-1

1 1.7 (1.4 to 2.3)b 1.8 (1.6 to 2.3)c 1.33d 2.1e 1.22f 1.5g

2 8.5 (6.3 to 11.6)b 5.8 (5.0 to 6.9)c 18.5d 24.9f 28g

3 273g

4 Infiniteg

aComparison of viral RNA half-lives in days from the indicated phases of RT-
SHIV, SIV, or HIV-1 decay during HAART.

bGroup one macaques with 95% CI.
cGroup two macaques with 95% CI.
dDinoso et al. [33].
eHo et al. [14].
fHavlir et al. [4].
gPalmer et al. [6].
doi:10.1371/journal.pone.0011640.t001

Figure 1. RT-SHIV viral decay kinetics of HAART-treated macaques. The average plasma virus load of 9 RT-SHIV-infected, HAART-treated
macaques using the standard virus load assay (SVLA). Colored lines indicate linear regression analysis. Error bars indicate standard error of the mean.
The dashed line indicates the limit of detection of the SVLA (50 RNA copies/mL).
doi:10.1371/journal.pone.0011640.g001

RT-SHIV Decay in Macaques
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capable of detecting two RNA copies per mL (macaque 36544, 20

weeks post-infection).

One sample from macaque 36160 at 16 weeks post-infection

showed one TaqMan replicate value of 2,020 RNA copies per mL

while the other two replicates were below the limit of detection of

the UVLA. The VL was also below the limit of detection in two

separate SVLAs. The value of 2,020 RNA copies per mL was

treated as an outlier and was excluded from the analysis. This

example emphasizes the importance of performing multiple

TaqMan replicates on the samples.

The average VL for all of the HAART-treated macaques over

the 34 weeks of treatment was determined and linear regression

analysis was performed (Fig. 3B). The best fit model of the average

virus load upon initiation of HAART was characterized by three

distinct phases with the following slopes: 20.37 (95% CI 20.30 to

20.43), 20.12 (95% CI 20.10 to 20.14), and 0.001 (95% CI

20.003 to 0.006; p = 0.0009). Half-lives calculated from the first

two lines were: 1.8 (95% CI 1.6 to 2.3) and 5.8 (95% CI 5.0 to 6.9)

days, respectively (Table 1). The third regression line (slope 0.001)

indicated that the VL had reached a near steady state level, with

little further decay in the average viral load over the final 20 weeks

of this study.

The VLs of each macaque from weeks 14 through 34, when

viremia was suppressed below the detection limit of the SVLA,

were also analyzed (Fig. 4A). A one-way ANOVA determined that

the average VLs between the animals were not statistically

different (p = 0.16). However, Bartlett’s test for equal variances

indicated that the standard deviations for the mean VLs of each

animal were significantly different (p,0.0001). This result was

most apparent with macaque 36348, which more consistently

maintained VL suppression during HAART, with many of its

plasma samples showing viral RNA levels below the detection limit

of even the UVLA (Fig. 4B).

Discussion

The results presented in this study demonstrate that low-level

viremia persists in RT-SHIV-infected macaques despite treatment

with a first-line HAART regimen for 28 weeks. These results

further the development of the RT-SHIV/rhesus macaque model

of HAART previously described by our group [37,49]. The limit

of detection of the SVLA was one of the limitations of that study;

upon initiation of HAART, the VLs in the animals dropped to

below the limit of detection of the assay (i.e., 50 copies of viral

RNA per mL of plasma). Intermittent positive VL assays and viral

rebound upon cessation of treatment suggested that viremia

persists despite effective treatment, but a more sensitive virus load

assay was not available.

Development of a more sensitive VL assay allowed for analysis

of low-level viremia in the macaques. The data in this report

demonstrated that RT-SHIV persisted at necropsy (34 weeks post-

infection, 28 weeks of HAART) as well as during HAART in all of

the treated animals. Their individual VLs during the live-phase,

including the period of viral rebound upon cessation of HAART in

several animals, has been reported recently by our group [49]. A

study in pig-tailed macaques infected with another RT-SHIV

(RT-SHIVmne) demonstrated that HAART reduced viremia in

treated animals [35]. That study utilized a VL assay with a

reported limit of detection of 15 RNA copies per mL [35,46]. The

UVLA that we present here is similar to the assay used in this

previous study; however, our study utilized larger plasma samples,

resulting in a lower limit of detection for plasma viral load. We

demonstrate that low-level viremia persists below the previous

limit of detection. In addition, all treated animals in our study

maintained VL suppression, and no treatment failure was

observed.

This is the first report of viral decay kinetics in the HAART-

treated rhesus macaque model of AIDS using an RT-SHIV. These

Figure 2. Establishment of the UVLA and analysis of plasma
virus loads in macaques at necropsy. (A) Comparison of RT-SHIV
RNA loads determined using the standard virus load assay (SVLA) or the
ultracentrifugation virus load assay (UVLA) from macaque 35940, a
macaque that was taken off HAART to allow for viral rebound. Triplicate
assays with triplicate TaqMan RT-PCR for UVLA, single TaqMan RT-PCR
for the SVLA. Mean with 95% confidence intervals and the results of an
unpaired t test. (B) Plasma RT-SHIV RNA analysis at necropsy of 5
HAART-treated macaques. Assays were done in duplicate with triplicate
TaqMan RT-PCR except macaque 35342 which was sampled in triplicate
with triplicate TaqMan RT-PCR. Mean with 95% confidence intervals. (C)
FeLV RNA analysis of the samples displayed in Figure 2B. Cycle
threshold (Ct) obtained from TaqMan RT-PCR for FeLV analyzed in
duplicate. Mean with SD.
doi:10.1371/journal.pone.0011640.g002
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data demonstrate that upon initiation of HAART, viremia decays

in a bi-phasic manner to reach a stable level that persists despite

continued treatment. The viral half-lives that we estimated in the

RT-SHIV-infected macaques were very similar to the values that

were reported for HIV-1-infected persons on HAART (Table 1)

[6,14,16]. However, the second phase of decay that we observed

was faster than the previously reported estimates. A recent, long-

term HIV-1 study that monitored virus loads for seven years found

a third phase of decay with an estimated half-life of 39 weeks

followed by a fourth phase with no apparent decay [6]. Our study

monitored the animals through 33–34 weeks post-infection. As a

result, we did not observe the third and fourth phases that were

previously reported. It will be interesting to perform a long-term

treatment study in RT-SHIV-infected macaques.

The macaque model allows frequent sampling and is well

controlled in terms of the viral innoculum, as well as the nature of

and adherence to the HAART regimen. As a result, the model

might enable tracking of viral evolution during the various phases

of viral decay during HAART. These viral sequences could also be

compared with viral sequences obtained from tissues collected at

necropsy. Monitoring changes in viral genotype during treatment

could lead to an understanding of the location and extent of any

residual replication during treatment.

An unpaired t test demonstrated that the average VLs from the

two groups were statistically different (p = 0.0007): 20 RNA copies

per mL in the five macaques analyzed at necropsy compared to 10

RNA copies per mL in the nine HAART-treated animals in the

longitudinal study from 14–34 weeks post-infection. The animals

from these two groups were both infected with RT-SHIV

administered by the I.V. route, and both received the same

HAART regimen initiated 6 weeks post-infection. It is possible

that sampling variation contributes to some of the difference,

because a single blood draw was analyzed from each of five

animals at necropsy, whereas the longitudinal group involved nine

animals monitored over many weeks. In a previous study, we

reported that oral delivery of efavirenz had been a concern,

evidenced by transient spikes in virus loads [37]. This problem was

addressed by changing the food used to deliver the drug. The

animal handlers did not report a delivery concern in either of the

current groups. Nevertheless, we quantified drug levels by LC-MS-

MS in several of the remaining plasma samples in an attempt to

address the possibility that efavirenz was not being delivered

Figure 3. Longitudinal analysis of plasma virus loads of nine RT-SHIV-infected, HAART-treated macaques. (A) The longitudinal analysis
of RT-SHIV RNA from each individual HAART-treated macaque. The dashed line indicates the limit of detection of the standard virus load assay (SVLA;
50 RNA copies/mL). (B) Linear regression analysis of the average RT-SHIV virus load for all 9 HAART-treated macaques. Error bars indicate standard
error of the mean.
doi:10.1371/journal.pone.0011640.g003
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adequately. Trough levels of efavirenz in the samples tested were

at least 25 times the 50% effective antiviral concentration (data not

shown).

The average VLs for each macaque over the final 18 weeks of

HAART in the longitudinal study were not statistically different.

However, Bartlett’s test for equal variance indicated that the

standard deviations of those VLs were different. These results

demonstrate that HAART suppresses viremia to low levels in all

treated macaques, but some macaques are more consistent in the

maintenance of suppression than others (particularly macaques

36348 and 36353). This suggests that studies attempting to

determine whether enhancing HAART with additional antiretro-

Figure 4. Analysis of suppressed RT-SHIV virus loads during HAART. (A) Comparison of variation in RT-SHIV plasma RNA loads during
HAART from weeks 14–34 post-infection of the longitudinal study. Solid circles indicate RT-SHIV RNA copies/mL. Open circles indicate that the sample
was below the level of detection of the ultracentrifugation virus load assay (UVLA). Median with the range. (B) Individual data from the nine HAART-
treated macaques in the longitudinal study. Plasma samples were analyzed for levels of RT-SHIV RNA using the UVLA from 14–34 weeks post-
infection. Solid circles indicate that RNA was detected in the assay. Open circles indicate that RNA levels were below the limit of detection of the
UVLA. Mean plus standard error of the mean of single plasma samples analyzed by triplicate TaqMan RT-PCR. Some standard errors were too small to
display on the graphs.
doi:10.1371/journal.pone.0011640.g004
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virals can reduce low-level viremia should not rely strictly on

average virus load as a parameter. Determining whether the

enhanced treatment regimen has a detectable effect might require

longitudinal studies and involve analysis such as variation around

the mean and number of samples below the limit of detection.

There is support for incomplete suppression of HIV-1 replication

during HAART [12,50,51]; however, some studies have conclud-

ed that the low-level viremia is a result of the intermittent

activation of latent virus [52,53]. Resolving this issue will be

critical for attempts to eradicate the virus. It is important to note

that any amount of residual replication, whether it is in a drug

privileged site or in major compartments of viral replication, may

enable the virus to reseed reservoirs and extend the observed viral

decay half-lives. Extensive analysis of virus in tissues from these

macaques is ongoing in our laboratory, and might help to

elucidate the extent and sites of residual replication during

HAART.

As with HIV-1 in humans, residual viremia is present in RT-

SHIV-infected macaques despite treatment with a first-line

HAART-regimen consisting of EFV, FTC and PMPA. This

nonhuman primate model will enable future studies aimed to

identify and purge viral reservoirs, including enhancing HAART

to achieve maximum virus load suppression in all animals as well

as strategies to reactivate latent virus.
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