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Abstract

MYH9 was recently identified as renal susceptibility gene (OR 3–8, p,1028) for major forms of kidney disease
disproportionately affecting individuals of African descent. The risk haplotype (E-1) occurs at much higher frequencies in
African Americans ($60%) than in European Americans (,4%), revealing a genetic basis for a major health disparity. The
population distributions of MYH9 risk alleles and the E-1 risk haplotype and the demographic and selective forces acting on
the MYH9 region are not well explored. We reconstructed MYH9 haplotypes from 4 tagging single nucleotide
polymorphisms (SNPs) spanning introns 12–23 using available data from HapMap Phase II, and by genotyping 938 DNAs
from the Human Genome Diversity Panel (HGDP). The E-1 risk haplotype followed a cline, being most frequent within sub-
Saharan African populations (range 50–80%), less frequent in populations from the Middle East (9–27%) and Europe (0–9%),
and rare or absent in Asia, the Americas, and Oceania. The fixation indexes (FST) for pairwise comparisons between the risk
haplotypes for continental populations were calculated for MYH9 haplotypes; FST ranged from 0.27–0.40 for Africa
compared to other continental populations, possibly due to selection. Uniquely in Africa, the Yoruba population showed
high frequency extended haplotype length around the core risk allele (C) compared to the alternative allele (T) at the same
locus (rs4821481, iHs = 2.67), as well as high population differentiation (FST(CEU vs. YRI) = 0.51) in HapMap Phase II data, also
observable only in the Yoruba population from HGDP (FST = 0.49), pointing to an instance of recent selection in the genomic
region. The population-specific divergence in MYH9 risk allele frequencies among the world’s populations may prove
important in risk assessment and public health policies to mitigate the burden of kidney disease in vulnerable populations.
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Introduction

A genome wide admixture linkage scan followed by fine

mapping recently identified MYH9, encoding non-muscle myosin

heavy chain IIA, as a major susceptibility locus for focal segmental

glomerulosclerosis (FSGS), HIV-associated collapsing glomerulo-

sclerosis, also called HIV-associated nephropathy (HIVAN), and

end stage kidney disease (ESKD) attributed to hypertension [1,2].

A series of subsequent studies have confirmed and extended the

initial findings for non-diabetic ESKD to a possible role in diabetic

ESKD —the leading cause of kidney failure [3]. It has long been

noted that African ancestry populations (e.g., African Americans)

are more likely to develop kidney disease and have a poorer

prognosis than their European descent counterparts. Family

clustering of disparate etiologies of kidney diseases has also been

reported in African American families [4]. In the United States,

African Americans have approximately 3–4-fold higher rates of

ESKD compared to European Americans [5]. The risk of HIVAN

is 18-fold or greater in African Americans compared to non-

African descent populations and it is estimated that the life-time

risk of HIVAN among African Americans with HIV-1 disease, in

the absence of anti-retroviral therapy, is 10% [6]. MYH9 provides

a plausible genetic explanation for much of this disparity as the

MYH9 alleles and the haplotype most strongly associated with

kidney disease are highly frequent in African Americans (allele

frequencies <60%) and infrequent in European Americans

(#4%)[1]. These studies did not address global distribution of

MYH9 risk alleles, and the historical reasons for this health

disparity remained elusive.

Although many MYH9 SNPs were found to significantly

associate with HIVAN and FSGS, any of the three highly

correlated SNPs, rs4821480, rs2032487, and rs4821481 in intron

23 plus rs3752462 in intron 13, defined an extended (E) haplotype

that was more informative than any single SNP for association

with kidney disease [1,7]. The MYH9 E-1 haplotype was

associated with HIVAN, FSGS, and non-diabetic ESKD
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(OR = 2.8, 5, 7, p,1028) [1]. The extended haplotype spans

14.9 kb, extending across two haplotype blocks that encompass

introns 12–23. All of the MYH9 single nucleotide polymorphisms

(SNPs) most strongly associated with kidney disease fall within this

extended block [1]. The MYH9 E-1 haplotype explains nearly all

of the excess burden of major forms of kidney disease in African

Americans; for example, the attributable risks are 100% and 70%

for HIVAN and FSGS, respectively. The association of MYH9 risk

alleles with HIVAN is particularly worrisome for sub-Sahara

Africa where risk alleles are predicted to be at high frequency and

more than 22 million adults and children are infected with HIV-1.

In this study, we present an analysis of the E haplotype block

and tagging SNPs in a worldwide population survey of major

continental populations using a compilation of data from the

International HapMap Project and the Human Genome Diversity

Panel (HGDP). We analyzed SNPs using data available from

HapMap Phase II [8] and HGDP population [9,10], and

genotyped additional SNPs in the HGDP. We used the combined

information to reconstruct E haplotypes associated with kidney

disease to determine the worldwide distribution and frequencies of

risk and protective haplotypes to assess public health implications,

especially in settings of high HIV prevalence. A secondary goal

was to determine if highly divergent allele frequencies were

generated by selection on MYH9 or by neutral mechanisms. We

discussed the observed diversity in the context of local adaptation

and population histories.

Results and Discussion

To determine the worldwide distribution and evolutionary

history of non-muscle myosin IIA heavy chain gene (MYH9) alleles

and the E haplotypes associated with kidney disease in the African

American population [1,2], we obtained genotypes for the Human

Genome Diversity Panel comprising DNA from 938 individuals

representing 51 unique populations for the three SNPs defining

the E haplotype block: SNP rs4821481 (T/c) was available from

the CEPH database [8,9], and SNPs rs4821480 (T/g), and

rs3752462 (C/t) were genotyped in-house. SNP rs2032487 which

is in near absolute LD with both rs482180 and rs48321481 was

not included. To reconstruct the worldwide distribution of the E

haplotypes, the haplotypes were inferred using three E haplotype-

defining SNPs separately in the 51 distinct ethnic groups from

HGDP with 95–100% accuracy.

As shown in Table 1, African populations display the highest

heterozygosity compared to all other worldwide populations. Of

the three SNPs, rs3752462 is the most variable, particularly in

populations outside of Africa that showed the widest range in

heterozygosity. The two other SNPs are variable among African

populations, and are often fixed in populations east from the

Fertile Crescent: Central and East Asia, Oceania, and the

Americas (Table 1). The populations in Europe and the Middle

East also show high variation at these loci (heterozygosity between

0.1–0.4). These populations show divergence from other African

populations for many genetic markers in HGDP [11]. Low

heterozygosity values in Yoruba compared to other African

populations may be a consequence of selection, but should only

be interpreted in conjunction with other indicators of selective

sweep [12].

We found substantial differentiation in the frequencies of

rs4821481, as indicated by the increased FST in the HapMap

samples (FST(CEU vs. YRI) = 0.51)[13], and the HGDP (FST =

0.49)[11](Figure 1, Table S1, Table S2, Table S3). This single

allele can serve as a proxy for the risk haplotype (E-1), since the C

allele is present in over 99% of the risk E-1 haplotype (Table 2);

the only other haplotype carrying the C allele at rs4821481 is the

rare E-5, which was observed in only two of the HGDP

populations, with frequencies of 0.02 (Mandenka) amd 0.01

(Palestinian). The reported value of divergence for this allele is

considered highly significant and lays within the top 5% of FST

among all SNPs genotyped in the HapMap project [8,14–16]. For

instance, the pairwise continental FSTs range from CEU vs.

CHB+JPT, with the lowest level of differentiation (average

FST = 0.07), to YRI vs. CHB+JPT with the highest (average

FST = 0.12)[17], while the differences in the where pair-wise

comparisons between France, Palestine, Han and Yoruba in the

Human Diversity Panel all show FST ,0.15 [11,18].

Although the divergence between the two groups is suggestive of

selection, FST values alone are insufficient for determining if a

locus is the target of selection, because high individual values of

FST could also result from genetic drift or demographic events

[12]. We expanded the comparison to the inferred E haplotypes

for pairwise FST scores between continental populations (Table 3).

Most of these calculations yield statistically significant values

.0.25 (except Europe vs. South-Central Asia), but FST values for

haplotypes are markedly lower than those calculated from

individual SNPs. The largest population differences were observed

between African population and non-African populations

(FST = 0.27–0.4, Table 3); the difference in frequencies between

European and East Asian populations was also elevated

(FST = 0.23, Table 3). Within continents, most population

comparisons do not yield large differentiation estimates (Table

S1, Table S2, Table S3). Indeed, only one of these comparisons

was noteworthy (Yoruba vs. Bantu from South Africa (BANTU-

SA), FST = 0.37)(Table S1). MYH9 harbors SNPs with some of the

highest FST values on chromosome 22: FST (CEU vs. YRI) = 0.5–

0.65 in MYH9 (expected chromosome-wide FST = 0.29)[13]. The

existence of high values for multilocus or haplotype Fst values

across regions can still be considered as a starting point in

identifying selective targets [1,19].

As shown in Figure 1, the E-1 risk haplotype is prominent in

Sub-Saharan Africa, especially in Yoruba, while the majority of

individuals from Europe and the Middle Eastern populations

feature the E-2 haplotype (Figure 1) previously reported to be

protective against kidney disease (Kopp et al. 2008). The same

shift can be observed in the major populations from the

International HapMap Project (Figure 2) as well as in the HGDP

(Figure 1). The E-2 haplotype remains frequent in South and

Central Asia, but the populations in South and East Asia as well as

Oceania are dominated by neutral haplotypes (E-3). In Amer-

indian populations, especially in Central America, the E-2

haplotype has frequencies similar to those in South and Central

Asia (Figure 1). There is a decreasing north/south cline in eastern

and central Asia, with higher frequencies of the protective alleles in

the north compared to the south, and this may explain in part the

relatively high frequencies of the protective alleles among

Amerindian populations who derive from north Asian populations.

The risk E-1 haplotype decreases in frequency in a cline away

from Africa and is apparently extinct in East Asia, Oceania, and

the Americas. It is the most common haplotype in sub-Saharan

Africa; for example, estimates from HapMap or the HGDS panel

indicate E-1 haplotype frequencies in the range of 69 to 80%,

where the highest value is found in Yoruba. However, the

prevalence of E-1 among populations in Africa is not uniformly

high, with the lowest prevalence in the Mbuti and Sun populations

(50%–64%). We also found substantial differentiation in frequen-

cies of risk and protective haplotypes among human populations,

as indicated by the elevated FST values between Africa and the rest

of the world (FST = 0.27–0.4, Table 3 and Figure 1).

Selection of the MYH9 Alleles
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Table 1. Observed heterozygosity (Het) and the Ancestral Allele Frequency (PANC)1 of SNPs included in the risk and protective
MYH9 haplotypes.

Human Genome Diversity Panel rs4821480 rs4821481 rs3752462

(HGDP) (t/G) (t/C) (C/t)

Region Population Het PANC Het PANC Het PANC Total

Africa Bantu-Kenya 0.333 0.667 0.333 0.667 0 0.167 12

Bantu-Sa 0.375 0.687 0.5 0.625 0.375 0.188 8

Biaka 0.265 0.779 0.375 0.75 0.265 0.162 36

Mandenka 0.318 0.795 0.458 0.729 0.25 0.125 24

Mbuti 0.267 0.533 0.333 0.5 0.4 0.2 15

San 0.714 0.643 0.714 0.643 0.286 0.143 7

Yoruba 0.167 0.875 0.24 0.8 0.12 0.1 25

Total 0.295 0.746 0.382 0.703 0.232 0.148 127

America Colombian 0 0 0 0 0.769 0.538 13

Karitiana 0 0 . . 0.435 0.217 24

Maya 0.045 0.023 0 0 0.32 0.64 25

Pima 0 0 0 0 0.32 0.76 25

Surui 0 0 . . 0.45 0.225 20

Total 0.01 0.005 0 0 0.425 0.486 107

South-Central Asia Balochi 0.2 0.14 0.2 0.167 0.48 0.36 25

Brahui 0.12 0.06 . . 0.56 0.52 25

Burusho 0 0 0 0 0.542 0.479 25

Dai 0 0 . . 0.222 0.111 10

Hazara 0.043 0.022 . . 0.565 0.326 25

Kalash 0.083 0.042 0.056 0.028 0.44 0.46 25

Makrani 0.16 0.08 . . 0.52 0.54 25

Pathan 0.08 0.04 . . 0.625 0.521 25

Sindhi 0.125 0.062 . . 0.6 0.38 25

Uygur 0 0 0 0 0.333 0.5 10

Total 0.093 0.051 0.08 0.06 0.519 0.437 220

East Asia Cambodian 0 0 0 0 0.364 0.182 11

Chinese 0 0 . . 0.356 0.222 45

Daur 0 0 0 0 0.4 0.2 10

Hezhen 0 0 . . 0.3 0.35 10

Japanese 0 0 . . 0.448 0.259 31

Lahu 0 0 0 0 0.333 0.167 10

Miaozu 0 0 . . 0.3 0.15 10

Mongolian 0 0 0 0 0.625 0.313 10

Naxi 0 0 . . 0.3 0.15 10

Oroqen 0 0 . . 0.111 0.167 10

She 0 0 . . 0.556 0.278 10

Tu 0 0 . . 0.3 0.25 10

Tujia 0 0 . . 0.4 0.2 10

Xibo 0 0 . . 0.111 0.056 9

Yakut 0 0 0 0 0.52 0.34 25

Yizu 0 0 0 0 0.444 0.222 10

Total (East Asia) 0 0 0 0 0.381 0.231 230

Europe Adyghei 0.063 0.031 0.071 0.036 0.412 0.559 17

Basque 0.136 0.068 0.083 0.042 0.381 0.714 24

French 0.107 0.054 . . 0.552 0.655 29

Italian 0.154 0.077 . . 0.538 0.5 14

Selection of the MYH9 Alleles
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To determine the phylogenetic history of the MYH9, we used

the HGDP genotype data to infer haplotypes for 26 SNPs between

the transcription initiation and transcription termination site of the

MYH9 gene and individually matched them to the 3-SNP E block

haplotypes (see Materials and Methods). The phylogenetic history

of these extended haplotypes was examined using a haplotype

network [20], since network approaches account for the

persistence of ancestral haplotypes, the existence of multiple

descendant haplotypes, recombination, and low levels of sequence

variation [21]. At the same time, we also constructed a parsimony

tree in MEGA 4.0.2 [22,23] to provide an overall reference of

similarity between extended haplotypes matched to the risk

Figure 1. The distribution of MYH9 haplotypes in the world populations from the HGDP. The haplotype proportions represented by the
pie charts can also be found in Table 2.
doi:10.1371/journal.pone.0011474.g001

Human Genome Diversity Panel rs4821480 rs4821481 rs3752462

(HGDP) (t/G) (t/C) (C/t)

Region Population Het PANC Het PANC Het PANC Total

Orcadian 0.188 0.094 . . 0.533 0.667 16

Russian 0.091 0.045 0.077 0.038 0.4 0.64 25

Sardinian 0.143 0.071 . . 0.259 0.611 28

Tuscan 0 0 . . 0.25 0.75 8

Total 0.123 0.061 0.075 0.037 0.414 0.627 161

The Middle East Bedouin 0.277 0.245 0.277 0.266 0.292 0.417 49

Druze 0.146 0.094 0.163 0.105 0.479 0.615 48

Mozabite 0.241 0.19 0.267 0.2 0.5 0.517 30

Palestinian 0.235 0.137 0.346 0.212 0.5 0.55 51

Total 0.223 0.163 0.253 0.195 0.438 0.526 178

Oceania Melanesian 0 0 0 0 0.045 0.023 22

Papuan 0 0 0 0 0 0 17

Total 0 0 0 0 0.026 0.013 39

1The ancestral allele is indicated in capital letters, the allele with .50% in Europeans (major allele) is the first one of the pair.
doi:10.1371/journal.pone.0011474.t001

Table 1. Cont.

Selection of the MYH9 Alleles
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Table 2. Worldwide distribution of MYH9 risk haplotypes in the HGDP samples.

Regions/Populations
E-1{

(GcCT)
E-2
(TtTC)

E-3
(TtTT)

E-4
(GtTC) E-5 (GcTC) other{ count

Africa 0.69 0.09 0.15 0.05 . 0.01 253.8

Bantu-Kenya 0.67 0.17 0.17 . . . 24

Bantu-Sa 0.56 0.13 0.13 0.06 . 0.13 16

Biaka 0.74 0.10 0.11 0.06 . . 72

Mandenka 0.71 0.06 0.17 0.04 0.02 . 48

Mbuti 0.50 0.17 0.30 0.03 . . 30

San 0.64 0.14 0.21 . . . 14

Yoruba 0.80 0.02 0.10 0.08 . . 49.8

America . 0.49 0.51 . . . 212

Colombian . 0.54 0.46 . . . 26

Karitiana . 0.21 0.79 . . . 48

Maya . 0.67 0.33 . . . 48

Pima . 0.76 0.24 . . . 50

Surui . 0.23 0.78 . . . 40

South Central Asia 0.05 0.44 0.51 . . . 435.7

Balochi 0.14 0.36 0.50 . . . 50

Brahui 0.06 0.52 0.42 . . . 50

Burusho . 0.48 0.52 . . . 50

Dai . 0.10 0.90 . . . 20

Hazara 0.02 0.33 0.65 . . . 46

Kalash 0.04 0.46 0.50 . . . 50

Makrani 0.08 0.54 0.38 . . . 50

Pathan 0.04 0.52 0.44 . . . 50

Sindhi 0.06 0.38 0.55 . . 0.01 49.8

Uygur . 0.50 0.50 . . . 20

East Asia . 0.23 0.77 . . . 455.9

Cambodian . 0.18 0.82 . . . 22

Chinese . 0.22 0.78 . . . 90

Daur . 0.20 0.80 . . . 20

Hezhen . 0.35 0.65 . . . 20

Japanese . 0.26 0.74 . . . 58

Lahu . 0.15 0.85 . . . 20

Miaozu . 0.15 0.85 . . . 20

Mongolian . 0.30 0.70 . . . 20

Naxi . 0.15 0.85 . . . 19.9

Oroqen . 0.20 0.80 . . . 20

She . 0.28 0.72 . . . 18

Tu . 0.25 0.75 . . . 20

Tujia . 0.20 0.80 . . . 20

Xibo . 0.06 0.94 . . . 18

Yakut . 0.34 0.66 . . . 50

Yizu . 0.20 0.80 . . . 20

Europe 0.06 0.62 0.31 . . . 325.5

Adyghei 0.03 0.56 0.41 . . . 34

Basque 0.08 0.69 0.23 . . . 47.9

French 0.05 0.66 0.29 . . . 57.9

Italian 0.08 0.51 0.41 . . . 27.8

Orcadian 0.09 0.66 0.25 . . . 32

Russian 0.04 0.64 0.32 . . . 50

Selection of the MYH9 Alleles
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categories. The tree and two major continental haplotype

networks (Europe+Middle East and Africa) are shown side by

side in Figure 3.

The shapes of phylogenetic trees and networks suggest that the

protective E-2 haplotypes (Figure 3 and Table S4, green)

originated only once: they group on a single branch of the tree.

This branch is scarcely represented in Africa, but diversified

outside of Africa, especially in Europe and the Middle East. On

the other hand, the majority of neutral E-3 haplotypes are found in

Asia (Table S4), where they are often more common than E-2.

However, E-3 haplotypes never cluster together (Figure 3.A and

Table S4, blue): they occur on several terminal branches, always

distal from the basal E-1 haplotypes (Figure 3.A and Table S4,

red). This is a likely consequence of past recombination between

different E-1 sequences. If risk E-1 haplotypes have an adaptive

advantage in certain Sub-Saharan populations, recombination

could be a quick and efficient way to provide novel and neutral

genetic variation to replace previously selected sequences in

populations moving to new environments. Since E-1 carries or is

linked to one or more causal disease allele responsible for renal

disease, when its benefits are lost outside of Africa, neutral variants

generated by recombination would rise in frequency replacing the

costly haplotype, as may be the case in Asian populations. This

would be a likely explanation for the existence of two recombina-

tion hotspots within the gene described earlier [1].

The pattern of LD across MYH9 (Figure S1) reflects a general

decrease in diversity with African populations exhibiting the most

haplotype diversity, intermediate levels in Europe and Asia, and

the least in Oceania and the Americas. The gray areas in the LD

plots, most extensive in the African groups, represent SNP

comparisons where haplotypes could not be inferred robustly

due to high recombination rates. The evolutionary history of

MYH9 is complex. Several recent whole-genome scans indicate

that MYH9 has been the subject of natural selection during

different periods of human evolution, starting from the time of

human-primate divergence, and extending to the more recent

local adaptations in modern populations. MYH9 exhibits a paucity

of amino acid divergence between humans and Pan troglodytes, yet

human MYH9 has moderate to high levels of amino acid

polymorphism. Bustamante et al., [24] suggests that this may

indicate an excess of mildly deleterious variation possibly due to

balancing selection. Among Yoruba samples included in Hap-

map, haplotypes centered on rs4821481 can be observed in the

Happlotter browser [13] to exhibit extended haplotype homo-

zygosity compared to the protective allele (iHs = 2.67), indicating a

possible selection signature (Figure 4.B, red). The same can be

observed in the HGDP selection browser: in Yoruba, the pattern

of extended haplotype homozygosity is markedly different from

that in other African populations such as Mandenka and Biaka,

also from west Africa (Figure 4.C). The most frequent extended

haplotype in this population in CA2 (Figure 2A and C, Table S4)

indicating that this haplotype is under selection. Other related

haplotypes may also be involved (CA3, CA5, CA6 and CA8,

Figure 2.C, Table S4). If confirmed, such evolutionary scenario for

the MYH9 region will be reminiscent of that described for the

candidate genes in the thrifty gene hypothesis where the ‘thrifty’

genotype would have been historically advantageous for the local

Table 3. Geographic differentiation between continental
populations estimated by pairwise FST-s with loci representing
risk and protective MYH9 haplotypes{.

Continent 1 2 3 4 5 6 7

1. Africa + + + + + +

2. Middle East 0.27 + + + + +

3. Europe 0.37 0.01 + + + +

4. East Asia 0.38 0.19 0.23 + + +

5. South-Central
Asia

0.32 0.04 0.05 0.07 — +

6. America 0.39 0.06 0.07 0.08 0.01 +

7. Oceania 0.40 0.29 0.37 0.04 0.18 0.23

{Conventional pairwise FST values were computed directly from haplotype
frequencies in Arlequin [39]. The top triangle in the matrix shows significance
of the given comparison (p,0.05).

doi:10.1371/journal.pone.0011474.t003

Regions/Populations
E-1{

(GcCT)
E-2
(TtTC)

E-3
(TtTT)

E-4
(GtTC) E-5 (GcTC) other{ count

Sardinian 0.07 0.61 0.32 . . . 55.9

She . . 1 . . . 2

Tuscan . 0.75 0.25 . . . 16

The Middle East 0.17 0.52 0.30 . . . 355.7

Bedouin 0.27 0.43 0.30 . . . 97.9

Druze 0.09 0.61 0.29 . . . 96

Mozabite 0.20 0.52 0.28 . . . 60

Palestinian 0.12 0.54 0.33 . 0.01 . 101.8

Oceania . 0.01 0.99 . . . 78

Melanesian . 0.02 0.98 . . . 44

Papuan . . 1 . . . 34

HGDP Total 0.13 0.38 0.48 0.01 ,0.001 ,0.001 2116.7{

{The haplotypes are composed of SNP loci of the MYH9 gene: rs4821480 (T/g), rs4821481 (T/c), rs2032487 (C/t), and rs3752462 (C/t) in that order. We genotyped
rs4821480 and rs2032487, used rs4821481 from the previously published data (HGDP), and always inferred rs2032487 (in the lower case).
{Haplotypes with very low probabilities (P,0.001) have been ignored.
doi:10.1371/journal.pone.0011474.t002

Table 2. Cont.

Selection of the MYH9 Alleles
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population, because it offered protection from disease, or some

other environmental factor, while in the modern times, when the

protective effect is no longer needed, phenotypic effects persist as

health conditions [25,26].

The combination of high frequency extended haplotypes and

high FST values is a possible signal of recent positive selection for

the kidney risk haplotype in the Yoruba. This raises the possibility

that the MYH9 risk haplotype in Africa has hitchhiked along with

a different allele in MYH9 or in one of the neighboring genes, such

as APOL1, encoding apolipoprotein L-I, located only 14 kb away

on chromosome 22, at 34,979,070–34,993,484. Since APOL1 is

involved in the resistance to infection by Trypanosoma brucei, the

cause of African trypanosomiasis or sleeping sickness in sub-

Saharan Africa [27,28], there is a tantalizing possibility that a

MYH9 risk haplotype in Africa has risen in frequency hitchhiking

on the selective sweep of the nearby APOL1 gene. Specifically, we

suggest that there may be a heterozygote advantage to carrying a

single risk chromosome that confers protection against a pathogen

such as malaria or sleeping sickness, and a homozygous

disadvantage that predisposes to kidney disease in carriers of a

single risk allele. This possibility can be addressed by the future

studies involving extended haplotypes around the resistance locus

in APOL1 in the relevant populations in West Africa.

There is also a possibility that MYH9 has been selected by

Plasmodium falciparum, since MYH9 is a negative regulator of platelet

biogenesis [29], and platelets are involved in cerebral malaria and

pathogenesis. The Yoruba MYH9 haplotypes seem to be unique

among other African populations, since the extent of haplotype

homozygosity in this population is greater than in the neighboring

populations from Africa (Figure 4.C)[11]. In the European

population the derived allele (T) tagging the protective haplotypes

features extended LD with the neighboring haplotypes relative to

the alternative allele, but the difference is too small to suggest

recent selection of the E-2 haplotype (iHs = 21.48, Figure 4.B, in

green)[13]. This, however, does not rule out the presence of

selection signature in the recent past, since iHs is sensitive to the

occurrence of multiple equally long adaptive haplotypes, or a more

ancient one that may be detected by other methods [12].

Importantly, while E-1 haplotype is a good approximation, the

causative SNP for the renal disease has not been identified [1,2].

The extended LD in the MYH9 region and the extended

haplotype homozygosity noted in Yoruba confound the identity

of the true causal variation predisposing to increased risk of kidney

disease identified in African Americans who share ancestry with

west Africans represented here by the Yoruba [30].

The public health impact of MYH9 risk haplotypes in sub-

Saharan Africa may be considerable, given the substantial burden

of HIV-1 disease throughout Africa and the high frequency of

MYH9 risk alleles in African populations. Surveys of HIV-

associated kidney disease and chronic kidney disease across sub-

Saharan are sporadic and inconsistent in diagnostic criteria.

However recent estimates of chronic kidney disease among

individuals with HIV-1 disease range from an estimated

prevalence of 6% in South Africa blacks, 38% in Nigeria, and

48% in Uganda [31]. Notably, HIVAN is not reported in East

African Ethiopian Jews with African ancestry [32]. Chronic kidney

Figure 2. Frequencies of risk (E-1), protective (E-2), and neutral MYH9 haplotypes (E-3-E-5) in the HapMap and HGDP. A.
Frequencies of risk (E-1), protective (E-2), and neutral haplotypes in the major populations from the HapMap [8]: European (CEU),
Yoruba (YRI), Japanese (JPT), and Chinese (CHB). Yoruba samples carry the largest proportion of the risk haplotype, while most of the Europeans in
this study carry the protective haplotype (E-2). Asian populations have mainly by the neutral haplotype (E-3). B. Frequencies of risk (E-1),
protective (E-2), and neutral MYH9 haplotypes (E-3-E-5) in the HGDP : overall, and by the continental groups: African, European, Middle
Eastern, South-Central Asian, East Asian, Oceanian, and American. African samples carry the largest proportion of risk haplotype, while most of the
Europeans and the peoples in the Middle East in this study have the protective haplotype (E-2). A large proportion of the South-Central Asian
populations also have the protective haplotype, while the risk haplotype is present at very low levels. East Asian and Oceanian populations are
represented mainly by the neutral haplotype (E-3 and some protective haplotypes, but with the risk haplotype virtually absent.
doi:10.1371/journal.pone.0011474.g002
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disease in the general population is not well studies however,

estimates from the Democratic Republic of Congo report CKD

report rates of 12.4% for all stages of chronic kidney disease

diagnosed by decreased estimated glomerular filtration rates

(,60 ml/min/1.73 m) or proteinuria ($300 mg/day) with a high

prevalence of proteinuria not due to hypertension or diabetes

consistent with glomerulopathies such as FSGS or HIVAN [33].

South Africa also reports high rates of chronic kidney disease;

Figure 3. Evolutionary relationships between the extended MYH9 haplotypes. A. Phylogenetic tree showing relationships between all
known 27 SNP haplotypes from a combined HGDP and HapMap datasets. The colors of the nodes indicate the 4-SNP E1-E5 haplotypes and shown in
the same colors as in Figure 1. Each haplotype has a notation that starts with the name of E1-E5 haplotype and extends to include the name of the
extended haplotype consisting of 26 SNP and encompassing the entire MYH9 gene. Letter codes indicate the allele at rs4821481 locus (C or T), and
the origin of the reconstructed haplotype (E- Europe or Middle East; A - Africa), and the numbers are decreasing from most frequent to the least
frequent in that continental population (ex.: E1-CA1 is an E-1 risk haplotype with allele C at rs4821481 locus reconstructed in Africa). The sequence
and the frequencies of the common extended haplotypes (.1%) in seven continental populations from HGDP are given in Table S4. B, C. The
median joining haplotype networks representing relationships in (B) Europe and the Middle East and (C) Africa. The networks (B and
C, right) are placed opposite to the corresponding branches on the parsimony tree (A, left). The relative frequency of the particular haplotype in a
population is shown by the size of the corresponding circle. Some of the haplotypes on the tree (A) are missing in the networks (B, C) due to their low
frequency (,1%).
doi:10.1371/journal.pone.0011474.g003
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hypertension effects 25% of the adult black population and is the

cause of kidney failure in 21% of patients on dialysis [31].

HIVAN is the third leading cause of ESKD in African

American men between the ages of 20–64 years [34] and end

stage renal disease is 4 times more frequent in the African

American population. In African Americans ESKD attributed to

hypertension is strongly associated with MYH9 region risk alleles

[1–3]. The present study provides insights into the global

distribution of MYH9 risk alleles and haplotypes and may be

useful in forming public health policies to mitigate and reduce the

added burden of kidney disease in vulnerable populations.

In conclusion, our results suggest that the MYH9 risk alleles and

haplotypes are notably differentiated among human populations

that can be attributed to the interplay of geographic, demographic

and evolutionary factors, leading to striking differences between

African and non-African populations in genetic risk for chronic

kidney disease. More research is needed to understand which

factors account for these population differences. Understanding

haplotype structure, evolutionary history and the role of natural

selection in the MYH9 region are crucial next steps that may

reveal the true causal renal susceptibility loci.

Materials and Methods

Ethics Statement
Institutional review boards at National Cancer Institute and

National Institute of Diabetes and Digestive and Kidney Diseases,

National Institutes of Health, approved the study protocols.

Data and Samples Studied
We obtained genotypes from the two primary sources of

genome-wide SNPs: the CEPH Human Genome Diversity Panel

(HGDP) and the International HapMap Project (Phase II). These

two datasets provide the best geographic sampling currently

available [8,9]. The CEPH-HGDP genotype data consists of

640,000 SNPs for 938 individuals representing 51 global

populations reported by Li et al [9]. Phase II of the International

HapMap Project genotyped 210 individuals for over 3 million

SNPs from four populations: Yoruba from Ibadan, Nigeria (YRI);

Chinese Han from Beijing, China (CHB); Japanese from Tokyo,

Japan (JPT); and Utah residents with ancestry from northern and

western Europe (CEU) [8]. A single SNP, rs4821481 in the E

haplotype block was previously genotyped on the HGDP panel

and available for download [9].

Genotyping and Haplotype Reconstruction
TaqMan assays (Applied Biosystems, Foster City CA) were used

to genotype HGDP DNA samples from the Foundation Jean

Dausset-CEPH, Paris, France [9]. Genotypes were obtained for

963 individuals from 51 distinct ethnic groups for rs3752462 and

rs4821480 (previously reported tagging SNPs). E block haplotypes

were inferred from three of the four defining SNPs, omitting

rs2032487; this allowed inferring haplotypes E-1, E-2, E-4, and E-

5 with nearly 100% accuracy and haplotype E-3 with 95%

accuracy. To provide additional information for haplotype

reconstruction and increase the accuracy of inference, SNPs

rs2157257, rs5750250, and rs3830104 were also genotyped.

Since there were missing genotypes for rs4821481 (54%), we

used neighboring SNPs (rs2157257, rs5750250, and rs3830104)

known to be in strong LD with the missing marker to impute the

haplotypes for these samples. Haplotypes were reconstructed using

combined data within each population separately by implementa-

tion of the expectation-maximization (EM) algorithm available in

SAS/Genetics package (SAS 9.1.3, Cary NC). In populations with

many missing genotypes, uncertainty of the estimates increased, so

more than one haplotype was assigned to the same chromosome.

To compensate for this ambiguity, all possible haplotype pairs in

each individual were weighted by their posterior probabilities [35],

then partial probabilities for each haplotype were accounted for;

the inferred haplotype frequencies in each population reflect

uncertainties of the estimates.

Data Analysis
Allele and genotype frequencies, and observed heterozygosities

for alleles and haplotypes were estimated using SAS Genetics (SAS

9.1.3, Cary NC). FST was used to assess population divergence:

high FST indicates that most of the variance in allele frequencies

comes from the difference between populations used in the

comparison [36–37]. Under neutral conditions, FST is determined

by genetic drift affecting all loci across the genome in a similar

way, but selection can cause differences between populations in

the locus and the surrounding genomic region [1,18,19,38]. For

inferred haplotypes, we calculated pairwise conventional FST and

carried out 10,000 permutations for significance using Arlequin

3.1 [39]. Pairwise FST values were calculated between continental

groups, and between the individual populations based on the

continental groupings identified by Rosenberg et al. [10]. We also

used FST values from HGDP selection browser [11] and

Happlotter [13], since these studies used essentially the same

datasets (HGDP and HapMap, respectively).

Since a subset of HGDP samples have been genotyped for 26

SNPs covering the entire span of MYH9 [9,40,41] on the same

samples we were analyzing, we were able to match these extended

haplotypes to the five E haplotype risk categories of MYH9 for

renal disease (E-1 to E-5). The phylogenetic history of the

extended haplotypes was examined using a haplotype network

determined by the Network 4.5 program [20]. Network

approaches have several advantages over traditional phylogenetic

Figure 4. Summary of selection signatures for MYH9. A. Global allele frequencies of rs4821481, an E-1 determining SNP. The
frequency of this SNP is very high in Africa resulting in an extreme FST value. This allele alone can represent risk haplotypes, since the C allele is
present in over 99% of the risk (E-1) haplotype (Table 2). B. Signature of selection in the extended haplotypes around the rs4821481 locus
observed in HapMap populations (Voight et al. 2006). The risk haplotypes are represented in red and the protective haplotypes are in green.
In Yoruba, positive iHs score (iHs = 2.67) indicates that haplotypes based on the ancestral allele are longer compared to derived allele background; iHs
$2 are considered a signature of positive selection (Voight et al. 2006). The negative values of iHs (iHS = 21.48) indicates that European haplotypes
are more likely to carry the derived allele (T) for rs4821481, but the data does not provide sufficient evidence for selection on this allele. C.
Representation of extended haplotype pattern for 300 kb neighborhood around rs4821481 in the HGDP selection browser [11].
Each box represents a single population, and observed haplotypes are shown as horizontal bars. Identical haplotypes have the same color in all of the
graphs, and all haplotypes start from one of the rs4821481 alleles. To summarize the data, most continents are represented by two populations:
Europe (Russian and Basque), The Middle East (Bedouin and Palestinian), South Asia (Hazara and Singhi), America (Maya and Pima). Africa (Mandenka,
Yoruba, and Biaka), and East Easia (Han, Yakut and Japanese) are represented by three populations each, and Oceania is represented by a single
population (Papuan). An unusual pattern in Africa is confined to the Yoruba population (see Figure 4.B). In the West (Europe, Middle East) versus the
East Eurasia (East and South Central Asia), different haplotypes predominate concordantly with our earlier conclusions (see the worldwide map of risk
haplotypes in Figure 1).
doi:10.1371/journal.pone.0011474.g004
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methods such as trees, since they account for the persistence of

ancestral haplotypes, the existence of multiple descendant

haplotypes, recombination and low levels of sequence variation

[21]. The networks were constructed by first connecting

haplotypes that differed by single nucleotide changes and next

adding increasingly more distant haplotypes. The process was

carried on until either all available haplotypes were included, or

the maximum number of mutational steps was reached.

Since we used 26 SNPs to infer risk and protective haplotypes,

each of the reported risk (E-1), protective (E-2) and neutral

haplotypes (E-3–5) include a number of haplotypes defined by

additional SNPs (two SNPS genotyped by us originally and

defining E-1-E-5, rs4821481 and rs3830104 [1], plus 24 additional

SNPs). To provide an overall reference of similarity between

extended haplotypes matched to the risk categories, a parsimony

tree was constructed using MEGA 4.0.2 [22,23]. The phylogeny

was inferred using the Maximum Parsimony method [42]. The

consensus tree inferred from 30 most parsimonious trees was

displayed, and the percentage of parsimonious trees in which the

associated taxa clustered together are shown next to the branches

(Figure 2).

To assess the possibility of a selection signature surround the E

haplotypes, we utilized the Integrated Haplotype Score (iHs)

values from the Haplotter [13] and HGDP selection browser [11].

This measure has been developed to detect evidence of recent

positive selection at a locus and considers differential levels of

linkage disequilibrium (LD) surrounding a putatively selected allele

by comparing it to LD around the alternative allele at the same

position [13]. The iHS statistic is related to the Extended

Haplotype Homozygosity test [43], but is considered to have

more power to detect selection with sweeps that reach inter-

mediate frequencies, rather than complete sweeps leading to

fixation [44]. A positive iHs score (iHs $ 2) indicates that

haplotypes based on the ancestral allele are longer compared to

those extending from the derived allele, while negative values of

the iHs statistics (iHs #22) indicate that the derived allele is under

selection [13].

Supporting Information

Table S1 Pairwise Fst between African populations from HGDP

and HapMap.

Found at: doi:10.1371/journal.pone.0011474.s001 (0.04 MB

DOC)

Table S2 Pairwise Fst between European populations from

HGDP.

Found at: doi:10.1371/journal.pone.0011474.s002 (0.04 MB

DOC)

Table S3 Pairwise Fst between the Middle Eastern populations

from HGDP.

Found at: doi:10.1371/journal.pone.0011474.s003 (0.03 MB

DOC)

Table S4 Representation of extended haplotypes of MYH9 (26

SNP) in seven continental populations from HGDP. The

frequency is given as a percentage of the total individuals in a

population and colored so the darker is the cell, the more common

is the haplotype. Rare haplotypes (,1%) are not shown. The data

was obtained from Pemberton et al. [40].

Found at: doi:10.1371/journal.pone.0011474.s004 (0.14 MB

DOC)

Figure S1 Linkage disequilibrium heat plots for 51 Human

Diversity Panel ethnic groups, showing D’ for 44 MYH9 SNPs

extending from rs2012928 to rs738278, encompassing MYH9 and

about 10 Kb on either side. LD was calculated from haplotype

frequencies; haplotypes were estimated using the EM method.

Haplotype inference was carried out to a length of 14 SNPs, hence

the bottom of the charts is gray (no inference). Gray squares closer

to the top of the chart indicate regions where haplotypes could not

be reliably inferred due to extreme LD. Notably, LD is much

greater in the African groups than other continental groups;

diversity is minimum for the Americas and Oceania.

Found at: doi:10.1371/journal.pone.0011474.s005 (3.31 MB

PDF)
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