
Uncertainty Compensation in Human Attention:
Evidence from Response Times and Fixation Durations
S. Lee Hong1*, Melissa R. Beck2

1 Department of Kinesiology, Indiana University, Bloomington, Indiana, United States of America, 2 Department of Psychology, Louisiana State University, Baton Rouge,

Louisiana, United States of America

Abstract

Background: Uncertainty and predictability have remained at the center of the study of human attention. Yet, studies have
only examined whether response times (RT) or fixations were longer or shorter under levels of stimulus uncertainty. To date,
no study has examined patterns of stimuli and responses through a unifying framework of uncertainty.

Methodology/Principal Findings: We asked 29 college students to generate repeated responses to a continuous series of
visual stimuli presented on a computer monitor. Subjects produced these responses by pressing on a keypad as soon a
target was detected (regardless of position) while the durations of their visual fixations were recorded. We manipulated the
level of stimulus uncertainty in space and time by changing the number of potential stimulus locations and time intervals
between stimulus presentations. To allow the analyses to be conducted using uncertainty as common description of
stimulus and response we calculated the entropy of the RT and fixation durations. We tested the hypothesis of uncertainty
compensation across space and time by fitting the RT and fixation duration entropy values to a quadratic surface. The
quadratic surface accounted for 80% of the variance in the entropy values of both RT and fixation durations. RT entropy
increased as a function of spatial and temporal uncertainty of the stimulus, alongside a symmetric, compensatory decrease
in the entropy of fixation durations as the level of spatial and temporal uncertainty of the stimuli was increased.

Conclusions/Significance: Our results demonstrate that greater uncertainty in the stimulus leads to greater uncertainty in
the response, and that the effects of spatial and temporal uncertainties are compensatory. We also observed compensatory
relationship across the entropies of fixation duration and RT, suggesting that a more predictable visual search strategy leads
to more uncertain response patterns and vice versa.
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Introduction

Responses times (RT) have been a predominant measure of

cognitive processing for over one hundred years [1,2]. RT has often

been used to make inferences regarding the amount of information

processing, i.e., the level of difficulty of cognitive processing that must

occur to process stimuli and make a response [3,4]. For example, in a

simple target detection task requiring subjects to press a button when

a visual stimulus appears, RT is the time between when the stimulus

appears and when the button is pressed. RT increases when the

stimulus appears in an unexpected (i.e., uncued) location suggesting

that the process of allocating attention is more difficult when there is

spatial uncertainty [5,6]. Similarly, Klemmer [7] demonstrated that

RT increased with greater ‘‘temporal uncertainty’’ due to longer pre-

stimulus intervals.

Although uncertainty and predictability have remained at the

center of the study of human attention, uncertainty has been used

only to describe the pattern of the stimulus presentations, and not

the responses. As a result, there has been relatively little work that

has used uncertainty as a description of both stimulus (i.e.,

independent variable) AND response (i.e., dependent variable)

characteristics within a unifying framework of uncertainty.

Therefore, the current study is designed to examine whether

spatial and temporal uncertainty in the stimulus begets greater

uncertainty in the response. Further, we seek to examine whether

stimulus uncertainty has similar effects on the response (RT) and

search (eye movement) components of attention.

The first goal of the current research is to examine the influence

of stimuli uncertainty on the amount of uncertainty in the

distribution of RTs in a target detection task that requires

sustained attention. Contrary to conventional studies of attention

that involve only the measurement of mean RT, the current study

employs measures uncertainty of the response patterns by

analyzing the distribution of RT data. One reason for using the

distribution instead of mean RT is that the key assumptions

needed for the valid use of mean RT are not always met. The key

assumptions for mean RT are: 1) the RTs possess a normal

distribution; 2) their variance is random; and 3) this reflects the

idealized case of situations where only correct responses are

produced. While one can argue that insuring the accuracy of the
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responses is fundamentally necessary, the more recent literature

brings into question the former assumptions. First, rather than

satisfying assumptions of a normal distribution, RTs have been

shown to be the superposition of a normal and exponential

distribution [8]. Although Heathcote et al. [8] have developed the

Ex-Gaussian method specifically for non-normally distributed RT

data, the Ex-Gaussian approach does not provide a direct measure

of uncertainty contained within the RTs. Furthermore, in studies

where repeated responses to stimuli (akin to continuous perfor-

mance tasks) were conducted, it has become evident that the

sequence of RT is not random [9,10]. Thus, a second reason for

using the RT distribution in our current study is that if the

response sequence is not completely random, consisting of a

unique pattern known as the 1/f process [9,10], there is the

potential that the shape of the distribution of RTs in itself has

information to offer. As a result, our first question is to ask whether

the uncertainty contained within the distribution of responses

changes as a function of stimulus uncertainty.

The second goal of the current study is to examine the influence

of different sources of stimulus uncertainty (spatial and temporal)

on the distribution of responses. There is now a significant portion

of the literature showing that lower spatial uncertainty leads to

shorter RT [6,11,12]. In general, providing the subject with pre-

cues of where the target stimulus will appear allows attention to be

allocated to the target location more quickly resulting in shorter

RT. Similarly, RTs are shorter when the uncertainty of the

stimulus onset time is lower [13–17]. As with spatial uncertainty,

reducing temporal uncertainty through pre-cues, for example,

shows that temporal uncertainty alters the manner in which

individuals orient their attention and results in changes to RT.

Whether spatial and temporal stimulus uncertainties have

independent or interactive effects remains an issue of debate.

There is literature based on brain activity to suggest that spatial

and temporal attention activate different brain regions [14,15].

Coull and Nobre [13] on the other hand, have argued for the

interdependence of spatial and temporal stimulus uncertainties

due to similarities in regions of brain activation. Furthermore,

beyond the interactive vs. additive effects of spatial and temporal

uncertainty on RTs, the manner in which it affects the distribution

of RT data remains unknown. This leads to the second research

question that seeks to determine how spatial and temporal stimulus

uncertainties interact to alter the distribution of RT data (i.e.,

response uncertainty).

The third goal of the current study is to examine the effects of

stimulus uncertainty on two different measures of attention, RT

and fixation duration. Stimulus uncertainty may affect not only the

distribution of RT but also the search behavior that occurs while

waiting for the onset of a stimulus. Attention and eye movements

have been tightly linked [18–21] indicating that eye movements

can be used as a measure of the distribution of attention during the

search component of a target detection task. Linking eye

movement distribution patterns to that of RT could provide

insight into the manner in which visual ‘‘input’’ is acquired in the

lead up to the response (or ‘‘output’’). It has been shown that

subjects employing fewer fixations of longer duration during a

visual search task had shorter RTs when compared to those who

used more fixations of shorter duration [22]. This suggests that

conducting a visual search with fixations that are on average

longer and fewer in number lead to quicker responses. However,

the distribution of human eye movements is also not random, and

has been shown to exhibit a similar 1/f distribution [23], much like

RT data [9,10]. The third research question is whether the

distribution of fixation durations follows that of the RTs and is

similarly affected by spatial and temporal stimulus uncertainty.

For this study, we use Information Entropy [24] as a means of

quantifying the distributions of the data, which also is a measure of

uncertainty within a data set [25]. There are three major benefits

to the use of entropy (see [26] for a more in depth discussion),

because entropy: 1) does not make assumptions regarding the data

distribution (e.g., normality, random variance); 2) can be made

conditional upon the satisfaction of certain criteria; and 3) can be

linked theoretically to concepts of information processing and

uncertainty [3,4,27]. Furthermore, entropy has been used

previously to categorize changes in motor patterns as a function

of uncertainty in the informational content from the environment

[28–33].

The literature on human motor control that has involved

entropy as a measure of the level of uncertainty has shown that

muscle force output is lower when there is less information (i.e.,

greater uncertainty) contained in the visual feedback of the force

output. This finding holds for both spatial [29–32] and temporal

[28,29,33] uncertainties in visual feedback. These findings

provided the basis for the uncertainty compensation hypothesis, where

uncertainty is compensated across task, organism, and environ-

ment [26,29,34,35]. As a result, we will conduct a preliminary test

of whether this conceptual framework with uncertainty at its

center can be extended to an attention task, and will be evident in

the distributions of RTs and fixation durations.

While the combined effects of spatial and temporal uncertainty

on RT remain a matter of debate, these uncertainties have been

shown to have a compensatory effect on muscle force output.

Hong et al. [29] have demonstrated that as the likelihood of

obtaining visual feedback in space and time, the uncertainty

contained in the force output decreased, reflective of fewer

corrections being made to the force generated by the muscles. A

majority of the variance in the data could be captured by a

quadratic surface that showed that the muscle force patterns were

similar when the spatial uncertainty of the visual feedback was

high and temporal uncertainty was low and vice versa. It is an

open question as to whether this pattern of change will hold for the

fixation durations or RT.

Specifically, we use a modified version of the continuous

performance task [36] to test the following research questions:

Q1. Does greater stimulus uncertainty lead to greater

uncertainty in the distribution of the RT data?

Q2. How do spatial and temporal stimulus uncertainties affect

the uncertainty contained in the distribution of RTs?

Q3. How do spatial and temporal stimulus uncertainties

affect the uncertainty contained in the distribution of

eye fixation durations?

The continuous performance task required subjects to press a

button as soon as a red square appeared on a blank screen. We

manipulated spatial uncertainty by changing the number of

possible locations where the stimulus could appear (Figure 1).

Temporal uncertainty was manipulated by varying the number of

different inter-trial intervals (ITI) passed between each response

and the onset of the next stimulus. RT was measured as the time

between when a stimulus appeared and when a button was pressed

and fixation durations were recorded using an eye movement

tracker during the ITI.

Using entropy as a common measure of uncertainty contained

in the distribution of RT and fixation durations, we seek to test

whether the uncertainty compensation hypothesis in human motor

control [26] holds in a visual attention task. It has been

demonstrated that attention and eye movements share a common

Uncertainty and Attention
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neural network [37], suggesting that the RT and eye fixation

duration data should at least share some common properties. We

thus employ the quadratic surface used in previous research

[26,34,35,38,39] as a means of capturing the combined effects of

spatial and temporal stimulus uncertainty on RT and fixation

durations during a sustained attention task.

Results

Exemplar entropy results from a single subject in the most

extreme spatial and temporal stimulus uncertainty conditions (0

bits – 0 bits, 0 bits – 2 bits, 2 bits – 0 bits, and 2 bits – 2 bits, in a

clockwise pattern) are provided in Figures 2 (RT) and 3 (Fixation

Duration). In Figure 2, the general increase in entropy of the RT

as a function of spatial and temporal uncertainty can be observed.

This also illustrates of the broadening of the probability

distribution as a function of increasing stimulus uncertainty.

Figure 3 illustrates the changes in the entropy of the fixation

durations as a function of the unpredictability of the stimulus.

Here, the narrowing of the probability distribution can be

observed, as a significant proportion of the data are clustered

around the shorter fixation durations. What is also apparent in

Figure 3 is that the changes in entropy are not necessitated by an

increase in the number of fixations employed during a given trial

block.

Figure 4 shows the entropy values for fixation duration (upper

panel) and RT (lower panel) as quadratic surfaces with parameter

values obtained from the least-squares fit. For the entropy of the

fixation durations, all of the parameters of the regression model

were statistically significant (p,.05), with the exception of the aspace

parameter (see Table 1), and the model was able to account for

80% of the total variance.

Similar to the entropy of the eye fixation durations, the model of

the RT data accounted for 80% of the total variance. For the RT

entropy data, all of the parameters of the regression (see Table 2)

model were statistically significant (p,.05). From both the upper

and lower panels of Figure 4, it can be seen that 2 bits of spatial

uncertainty coupled with 0 bits of temporal uncertainty in the

stimulus led to an approximately similar RT entropy value as 0

bits of spatial uncertainty with 2 bits of temporal uncertainty. The

models in Equations 2 and 3 can then be combined to form a

single surface (Figure 5) that captures the stimulus-response

relationship in terms of bits of uncertainty.

Discussion

The results of this study provide support for the uncertainty

compensation hypothesis [26,29,34,35], extending it to human

attention. Specifically, the entropy of the RT and fixation

durations changed in a compensatory manner to one another,

where: 1) Information Entropy of RT increased as the spatial and

temporal uncertainty of the stimuli increased; and 2) Information

Entropy of the fixation durations decreased as the uncertainty of

the stimuli increased. These results provide the following answers

to the three research questions presented in the introduction.

Q1. Does greater stimulus uncertainty lead to greater

uncertainty in the distribution of the RT data?

Yes, uncertainty in the RTs increased as a nonlinear function of

stimulus uncertainty.

Q2. How do spatial and temporal stimulus uncertainties affect

the uncertainty contained in the distribution of RTs?

The effects of spatial and temporal stimulus uncertainties on the RT

entropies were compensatory.

Q3. How do spatial and temporal stimulus uncertainties

affect the uncertainty contained in the distribution of

eye fixation durations?

There was a compensatory effect of spatial and temporal stimulus

uncertainty on the entropy of eye fixation durations, which decreased as

stimulus uncertainty increased.

Beyond being qualitatively similar to previous research, the

variance accounted by the quadratic surfaces is comparable to the

80% observed in a previous experiment [34]. The entropy of the

RT opposed that of the fixation durations, with entropy increasing

as a function of greater stimulus uncertainty. Interestingly, the

quadratic surface used to describe uncertainty compensation

hypothesis in motor behavior [26,34,35] captured the change in

entropy of the fixation durations as a function of stimulus

uncertainty. By simply reversing the signs of the equation in the

quadratic surface from negative to positive, we were able to also

Figure 1. Illustration of the 3 different spatial uncertainty conditions. When there is no uncertainty, the stimulus always appears in the
center of the screen.
doi:10.1371/journal.pone.0011461.g001
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apply the quadratic surface to the RT data. Thus, the model

suggests that the increases in entropy of the RT as a function of

greater stimulus uncertainty occurred in concert with a nearly

mirror-symmetric decline in the entropy of the fixation durations

(see Tables 1 and 2). This symmetric relation between the

entropies of the RT and fixation durations is evidence of a

potential compensatory relationship between them.

As the uncertainty in stimulus location and ITI increased, so did

the entropy of the RT, suggesting that in terms of RT, stimulus

uncertainty begets response uncertainty. Thus, as the stimulus

presentation became more unpredictable, the breadth of the RT

distribution increased (see Figure 2). The systematic change in RT

entropy across the different conditions suggests that the pattern of

RT variation is not random [9,10] and is consistent with the

proposal that cognitive variability may exist for adaptive purposes

[40]. Results of the quadratic surface for RT entropy suggest

compensatory effects of spatial and temporal stimulus uncertainty

on response uncertainty. This is evident in the similar levels of RT

entropy when spatial uncertainty was high and temporal

uncertainty was low and vice versa (Figure 4 – lower panel).

The compensatory effect of increasing spatial and temporal

uncertainties on the entropy of the fixation durations is

reminiscent of our previous findings of entropy compensation

across motor output and environment [29,34,35]. However, the

lack of significance in atime parameter for the fixation duration

entropy suggests that temporal uncertainty did not significantly

affect the entropy of fixation durations to the level of spatial

uncertainty, despite the relative strength of the model fit overall.

Perhaps, the difference of 500 ms between ITIs was not

sufficiently large to elicit significant changes in the distribution of

fixation durations (Figure 3). Nevertheless, the phenomenon of

increased entropy in fixation durations is interesting, especially

since the entropy of the fixation durations was lowest when

temporal and spatial uncertainties were at their highest.

From a behavioral perspective, our results show that instead of

increasing the breadth of the distribution of their fixation durations in

an attempt to ‘‘search’’ for the stimulus, the subjects resorted to

fixations of generally similar duration (lower entropy, narrower

distribution). Effectively, this points to a situation where the subjects

were taking ‘‘snapshots’’ of their visual environment at more

consistent time intervals. This finding is similar to previous research

that found subjects resorting to increasingly fewer bimanual

coordination patterns [34] and corrections to muscle force output

[29,35] when the availability of visual information is reduced (greater

uncertainty). Perhaps, the greater stimulus uncertainty prompts this

increased regularity in fixation durations as a strategy to minimize the

Figure 2. Exemplar probability distributions of RT data. These data were taken from a single subject under the 4 extreme stimulus uncertainty
conditions. In clockwise order, we present the 0 bits – 0 bits, 0 bits – 2 bits, 2 bits – 0 bits, and 2 bits – 2 bits spatial and temporal uncertainty
conditions, in a clockwise sequence, beginning from the top-left. Error trials denote situations where the subject either generated an anticipatory
response (,100ms) or no response at all (.2000ms). The entropy values have been calculated using Eq. 1.
doi:10.1371/journal.pone.0011461.g002
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likelihood of ‘‘missing’’ the stimulus when it arises. In sum, the results

show that the subjects adapted their visual search behavior to adjust

to the different levels of stimulus uncertainty.

Overall, our data support the hypotheses of interdependencies

between: 1) space and time stimulus uncertainty; and 2) search

(fixations) and response (RT) components of attention. The

interdependencies between space and time are consistent with the

literature for both RT [13] and motor performance [41]. Our results

show that the pattern of change in RT entropy can be modeled as the

symmetric mirror opposite of the entropy of the fixation durations

(see Figure 5), suggesting that the search and response components of

attention are inherently linked. More importantly, it shows that the

uncertainty across search and response possess a compensatory

relationship, where a predictable search pattern leads to a more

uncertain response pattern and vice versa.

At a more theoretical level, our findings support Fitts and

Posner [27] hypothesis of constant channel capacity for a single

task, revealed in relationship between stimulus and response

uncertainty. Beyond increasing RT, we show here that greater

uncertainty in the stimulus leads to greater uncertainty in the

response. Effectively, our results suggest that the amount of

uncertainty in the stimulus (i.e., amount of information to be

processed prior to the response) is reflected in the response

patterns, appearing as a systematic increase in entropy of the RT

with greater stimulus uncertainty. The phenomenon of ‘‘entropy

conservation’’ in stimulus-response patterns has been previously

shown in the brain activity of animal models [42], which may be a

neurobiological link between the current study and what Fitts and

Posner [27] proposed as the fixed information processing channel

capacity based on behavioral data. Overall, our study represents a

promising first step in the application of an uncertainty-based

framework to describe the patterns of stimuli, visual search

strategy, and responses.

Materials and Methods

Subjects
Twenty-nine (6 male, 23 female) undergraduate students with a

mean age of 19.461.4 (SD) years volunteered for this study. All

subjects possessed normal or corrected-to-normal vision and were

free of any neurological or neuromuscular disorders. This study

was conducted according to the principles expressed in the

Declaration of Helsinki. This study was approved by the Louisiana

State University Institutional Review Board and all subjects

provided written informed consent for the collection of samples

and subsequent analysis prior to beginning the study.

Apparatus
An SR EyeLink II eye tracker was used to present the stimuli,

record the key press responses and the eye movement data. The

Figure 3. Exemplar probability distributions of fixation duration data. These data are from the same subject and conditions in Figure 2.
Here, the total number of fixations within each trial block is presented alongside the entropy values, calculated using Eq. 1.
doi:10.1371/journal.pone.0011461.g003
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EyeLink recorded eye movements at a sampling rate of 250 Hz

and a spatial resolution of approximately 0.5u using an infrared

video-based tracking technology to compute the center and size of

the pupils in both eyes. The head was stabilized by means of a chin

rest located 47 cm from the monitor. During each trial, the eye

tracker goes off-line for 188 ms after a response is generated. As a

result, we could not record eye-tracking data could for the first

188 ms of every inter-trial interval (ITI). The eye tracker was re-

calibrated prior to the commencement of each block to account

for subtle changes in head position. The EyeLink system also

provided us with RT data for each trial.

Continuous Performance/Response Task
Subjects were instructed to pay close attention to the computer

monitor and respond as quickly as possible when a target appeared

on-screen. The target was a 20620 pixel red square measuring

0.8 cm and subtending a 0.98u visual angle at a viewing distance of

47 cm. The target was presented on a 19-inch CRT monitor set at

Figure 4. Results of the least-squares regression. Quadratic surfaces generated from the coefficients obtained from the least-squares
regressions (Eq. 2 and 3), where eye fixation duration and RT entropy are presented as a function of the spatial and temporal uncertainty of the visual
stimulus. Upper panel presents the surface obtained from the least squares fit to the eye fixation duration entropy data. Lower panel presents the
results of the least squares fit to the RT entropy data.
doi:10.1371/journal.pone.0011461.g004
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a 10246768 resolution with a 60 Hz refresh rate. Subjects were

instructed to press either the left or right side button on the SR

Eyelink button box (Microsoft Sidewinder gamepad) as soon as the

target appeared on the screen, and were told that either press

would suffice as a response. When a response was provided, ITI

timing for the next target began immediately after the response. If

the subject did not generate a response within two seconds of the

onset of the target, the target was removed and the next ITI

began. Subjects were provided with the opportunity to rest

between trial blocks.

Experimental Design and Instructions
Subjects completed 9 blocks of 112 trials for a total of 1,008

trials. However, the first trial of each block had to be discarded as lag times

at the start of the program were being added by the data collection software to

the RT. Thus, we were left with 111 trials per block. The level of

spatial and temporal uncertainty was set for each block of trials.

There were three levels of uncertainty for each variable (high,

medium and no uncertainty), yielding a 3 (Time)63 (Space) fully

crossed, repeated-measures design (total of 9 different conditions).

These estimates of bits of uncertainty were conducted as per

Hick [3] that is log2 (N), where N is the number of alternatives in

an equal distribution. For the different levels of spatial uncertainty,

the number of possible target locations was varied. There was one

possible spatial location (no uncertainty), two possible spatial

locations (1 bit of uncertainty), or four possible spatial locations (2

bits of uncertainty). In the no uncertainty spatial condition, the

target always appeared in the center of the screen. In the 1 bit of

uncertainty spatial condition, the target could appear at the center

of the left or right side of the screen. Both possible locations were

centered vertically and 6.8 cm (8.3u) to the left or right of the

horizontal center of the screen. As a result, there was a distance of

16.6u visual angle from the center of the target to the center of the

screen. In the spatial condition with 2 bits of uncertainty, the

target could appear in one of the four corners of a

14.5 cm69.2 cm invisible square centered on the screen. From

the center of the target locations, there was a 16.6u horizontal

visual angle and a 10.2u vertical visual angle between target

locations. Each square was 9.7u from the center of the screen.

These spatial conditions are represented in Figure 1. Within each

level of spatial uncertainty, the target appeared in all locations with

equal probability. The order of spatial location for a trial block was

randomly ordered.

For the temporal variable, the ITI between targets varied.

There was one ITI (no uncertainty: 1250 ms), two ITIs (1 bit of

uncertainty: 1000 ms, 1500 ms), or four ITIs (2 bits of uncertainty:

500 ms, 1000 ms, 1500 ms, 2000 ms). Within each level of

temporal uncertainty, all possible ITIs occurred with equal

probability, insuring that the mean ITI for all trial blocks

remained at a constant 1250 ms. The order of ITIs across trials

was presented in a random order for each block.

Preprocessing of data
Eye movement behavior can be categorized primarily as either

fixations or saccades. In general, eye movements and attention

have been shown to be tightly linked [18–21]. A saccade is defined

as an eye movement with acceleration greater than 4000u/s2 and

an angular velocity greater than 22u/s. A fixation is defined

whenever acceleration and velocity are less than the aforemen-

tioned levels, as the eye is considered as being fixated on a given

point in space. This allowed us to determine the duration and

number of fixations during the ITI. If no response was generated

within a 2 second period, the trial was considered an error trial.

Similarly, to prevent the inclusion of potential anticipatory

responses (especially in the low uncertainty conditions), trials

where the RT was below 100 ms were also considered as error

trials. The removal of the responses satisfying the aforementioned

criteria resulted in the loss of only 1.4% of the data, indicating

that, on average, the subjects were able to maintain a 98.6% level

of accuracy. These errors were also observed to be generally

evenly distributed across subjects and conditions.

Estimation of Entropies for RT and Fixation Duration
The most critical aspect of the data analysis is to determine

differences in the ‘‘shape’’ of the distribution that is independent of

size or magnitude of the variance. Furthermore, the entropy

analysis should be conducted so that it is not affected by the mean,

allowing us to tease out the changes in ‘‘structure’’ of the variation

in the RT and eye fixation data.

In the case of the RT data, the error trials have to be removed

in order to prevent a heavy skewing of the data (due to superfast

,100ms responses, and 2000ms non-responses). Here, we employ

a previously used frequency histogram method of obtaining the

probability distribution where pi represents the probability the

occurrence of a data point within the ith bin [34]. The histograms

were bounded between the minimum and maximum RT value for

the block of trials, evenly divided into 50 bins. To maintain

consistency across all conditions, regardless of error, pi were

calculated as the number of data points within a given histogram

bin divided by the total of 111 trials.

A similar approach was taken for the eye fixation duration data.

However, without a one-to-one ratio between eye fixation and

Table 1. Regression results from the least-squares fit of Eq. 2
to the eye fixation duration data.

Source of
Variance df SS MSE F p

Variance
Accounted

Model 2 0.093 0.047 49.44 ,.001 80.5%

Unexplained 6 0.023 0.004

Total 8 0.116

Parameter Parameter Value t p (one-tailed)

keye 4.345 245.423 ,.001

atime_eye 0.001 0.080 .469

aspace_eye 0.060 3.377 .007

doi:10.1371/journal.pone.0011461.t001

Table 2. Regression results from the least-squares fit of Eq. 3
to the RT entropy data.

Source of
Variance df SS MSE F p

Variance
Accounted

Model 2 0.215 0.108 48.68 ,.001 80.2%

Unexplained 6 0.053 0.009

Total 8 0.268

Parameter Parameter Value t p (one-tailed)

kRT 4.000 147.329 ,.001

atime_RT 0.056 2.067 .042

aspace_RT 0.072 2.638 .019

doi:10.1371/journal.pone.0011461.t002
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trials, the number of fixations differed from one block of trials to

another. Thus, the histograms for the fixation durations had to be

bounded between the minimum and maximum fixation duration

value for the block of trials, and then evenly divided into N/10

bins, N being the total number of fixations throughout the block of

111 trials. Similar to the RT data, higher entropy values are

indicative of a broader data distribution, while lower entropy

values indicate a more peaked distribution.

Though minimal, error trials did occur, and we thus calculate

the entropies of the RT as conditional entropy, to control for

accuracy (in keeping with [3,4,43]), while removing the need for

repeating blocks of trials that do not satisfy accuracy demands.

Here, the probability that the task goal is achieved can be

represented as the ratio of the number of correct responses to the

total number of trials, represented as pg, must be introduced into

the equation. The conditional entropy [25] of the eye fixation

durations and RT, H, will then be based on the original

probability distribution weighted by pg:

H~{
X

pgpilog2pi ð1Þ

Effectively, conditional entropies measure how much uncertainty

is contained within the data distribution given that the constraint

of response generation is satisfied.

Based on our previous experiments, we employ a sum of

quadratic functions first presented in Newell, Liu, and Mayer-

Kress [38] and also in our previous research [26,34,35,39] to

generate the least-squares regression. Here, the elevation of the

surface represents the behavior while the horizontal dimensions of

the surface provided a generalized description of the independent

properties of the stimulus, i.e., the spatial and temporal

uncertainty. The quadratic surface is a ‘‘bounded’’ function, i.e.,

converges to peak and minimum, and is thus preferred over the

linear. To prevent ‘‘over-fitting’’ the data, we do not add linear

components of the quadratic function into the fit (which was used

previously [29]), since there are only 9 data points to fit (adding the

linear components would mean that there would be only 5 free

parameters used to capture 9 data points).

The sum of quadratic functions for the entropy of the fixation

durations, Heye, takes the form:

Heye~keye{atime eyeH2
time{aspace eyeH2

space ð2Þ

Three free parameters, keye, atime_eye and aspace_eye will be obtained

from a single least-squares regression. If the RT (cognitive)

entropy, HRT, changes in a compensatory (mirror symmetric)

manner to the entropy of the fixation durations, the signs would

then be reversed, so that the sum of quadratic functions takes the

form:

HRT~kRTzatime RT H2
timezaspace RT H2

space ð3Þ

Htime is the temporal entropy, and Hspace represents the spatial

entropy of the stimulus, and HRT represents the entropy of the

response times. Three free parameters, kRT, atime_RT and aspace_RT

will be obtained from a single least-squares regression. Across both

models, Htime and Hspace, are the independent variables of the

spatial and temporal uncertainties of the stimulus.
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Figure 5. Combined quadratic surfaces for RT and fixation duration. The surfaces represent both cognitive and motor entropy as a function
of spatial and temporal uncertainty of the visual stimulus. The blue surface and data points represent the eye fixation duration entropy data while the
green surface and data points represent the RT entropy data.
doi:10.1371/journal.pone.0011461.g005
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