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Abstract

Progressive sensorineural hearing loss is the most common form of acquired hearing impairment in the human population.
It is also highly prevalent in inbred strains of mice, providing an experimental avenue to systematically map genetic risk
factors and to dissect the molecular pathways that orchestrate hearing in peripheral sensory hair cells. Therefore, we
ascertained hearing function in the inbred long sleep (ILS) and inbred short sleep (ISS) strains. Using auditory-evoked brain
stem response (ABR) and distortion product otoacoustic emission (DPOAE) measurements, we found that ISS mice
developed a high-frequency hearing loss at twelve weeks of age that progressed to lower frequencies by 26 weeks of age in
the presence of normal endocochlear potentials and unremarkable inner ear histology. ILS mice exhibited milder hearing
loss, showing elevated thresholds and reduced DPOAEs at the higher frequencies by 26 weeks of age. To map the genetic
variants that underlie this hearing loss we computed ABR thresholds of 63 recombinant inbred stains derived from the ISS
and ILS founder strains. A single locus was linked to markers associated with ISS alleles on chromosome 10 with a highly
significant logarithm of odds (LOD) score of 15.8. The 2-LOD confidence interval spans ,4 Megabases located at position
54–60 Mb. This locus, termed sensorineural hearing loss 1 (Snhl1), accounts for approximately 82% of the phenotypic
variation. In summary, this study identifies a novel hearing loss locus on chromosome 10 and attests to the prevalence and
genetic heterogeneity of progressive hearing loss in common mouse strains.
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Introduction

Hearing loss is one of the most common sensory impairments, the

causes of which are many fold and varied. For instance, congenital

hearing impairment affects 1 out of 700–1000 newborns [1]. In

addition, approximately 15% of Americans between the ages of 20

and 69 suffer from noise-induced hearing loss (NIHL), primarily due

to occupational and recreational noise exposure. Furthermore 30%

of those between 65 and 74 years of age develop progressive age-

related hearing impairment (ARHI, presbycusis) [2].

The genetics of inherited hearing impairment is rather well

understood; it is heterogeneous, typically monogenic and caused by

rare, highly penetrant, and mostly disabling mutations (http://

webh01.ua.ac.be/hhh/). In contrast, the genetic hallmarks, i.e.

frequency, penetrance, and complexity of risk alleles of acquired

hearing loss are largely unknown. There is little doubt that

susceptibility and resistance to non-Mendelian and environmentally

induced forms of hearing loss such as NIHL, ARHI, and tinnitus are

due to genetic variation [3–5]. For example, several twin studies and

pedigrees have shown a strong heritability coefficient correlated with

presbycusis and a genome-wide association study recently linked a

single nucleotide polymorphism in the metabotropic glutamate

receptor type 7 (GRM7) gene to increased risk of ARHI [6].

The prevalence of sensorineural hearing loss in inbred strains,

as well as the conserved molecular genetics between mouse and

humans, provides a unique experimental avenue to systematically

identify the underlying genetic risk factors of hearing loss [7,8].

The LXS set comprises 63 recombinant inbred (RI) strains that

originated from the parental inbred long sleep (ILS) and inbred

short sleep (ISS) mouse strains. The ILS and ISS founder strains

were derived from a multi-generation cross of eight laboratory

strains [9], which were initiated about 50 years ago. The hearing

status of the founder strains is unknown. However, substrains of

six (A, AKR, BALB, C57BL, and DBA/2) of the eight founder

strains were later shown to have early- or late-onset hearing loss,

while the extant C3H/2 and RIII strains were shown to have

normal hearing, and the hearing status of the ISBI strain is

unknown [10].

We screened this RI panel for auditory function for several

reasons. First, given the genetic origin of the founder lines it is

conceivable that novel and previously unrecognized hearing loss

alleles segregate in this RI set. Second, the panel provides sufficient

statistical power (p,0.05) to identify quantitative trait loci (QTLs)

that account for ,25% of the genetic variation. Third, the panel

incorporates approximately 3600 recombination breakpoints,

providing a resolution of 1–10 cM for the mapping of QTLs
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[11]. Fourth, the entire panel has been genotyped at ,11,000

SNP marker loci greatly facilitating the genetic linkage analysis.

Finally, all genetic and phenotypic data from the LXS RI set are

integrated in a web-based analysis platform that includes software

for one- and two-dimensional genome-wide regression analyses

(www.genenetwork.org). These factors make screening of these

inbred strains ideal for determining the genes and molecular

mechanisms that contribute to hearing loss.

Results

ILS and ISS strains auditory phenotypes
To determine the hearing function of ILS and SS mice, we

measured thresholds and wave I amplitudes of auditory-evoked

brain stem responses. In twelve-week-old ISS mice we found

significantly elevated thresholds at the click (p,0.01) and 32 kHz

stimuli (p,0.001), compared to normal hearing, age-matched

C3HeB/FeJ mice. The mean thresholds at the 8- and 16 kHz

stimuli were not different although the standard deviation (13-

and 23 dB SPL) was significantly higher than in the C3HeB/FeJ

controls (p,0.001) (Fig. 1A, Table 1). At 26 weeks of age,

hearing thresholds in ISS mice were elevated across all tested

stimuli (p,0.001), being highest at the 32 kHz and lowest at the

8 kHz stimuli. ILS mice showed normal hearing thresholds at

twelve weeks of age. However, at 26 weeks there was a

noticeable hearing loss at the high frequency 32 kHz stimulus

with a mean threshold of 7269 dB SPL, which was 22 dB SPL

higher than that of C3HeB/FeJ controls (p,0.001; Fig. 1A,
Table 1).

To determine whether the compound auditory nerve action

potential is affected, we measured the wave I ABR peak-to-peak

amplitude at supra-threshold hearing levels (60 dB SPL at 8- and

16 kHz). In both ILS and ISS mice, we observed a significant

decrease in amplitudes at 8- and 16 kHz compared to C3HeB/FeJ

Figure 1. Auditory characteristics of ILS and ISS mice. A. ABR thresholds at click (c) and pure tone pips at 8-, 16-, and 32 kHz at twelve and 26
weeks (wks) of age. Data are given as mean 6 SD. B. Wave I ABR amplitudes at 8- and 16 kHz stimuli at 60 dB SPL input levels. Data are given as
mean 6 SD. mV, microvolt. C. Latencies of ABR waves I – V at a 16 kHz stimulus of 60 dB SPL. Data are given as mean 6 SD; msec, milliseconds. D.
DPOAE output levels at 2f1-f2 in dB SPL over f2 frequency range 6–56 kHz (left panel). The right panel shows I/O function at f2 = 16 kHz. Data are
given as mean 6 SEM. E. Endocochlear potentials. Data are given as mean 6 SD; mV, milliVolt. For all panels: C3HeB/FeJ (blue), ILS (green) and ISS
(red); **p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0011459.g001
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at 26 weeks of age (p,0.001) (Fig. 1B). For instance, in both ILS

and ISS mice, the amplitude at 8 kHz and 60 dB SPL stimuli

measured 0.260.2 mV (n = 16) and 0.360.2 mV (n = 3), respec-

tively, compared to 1.260.5 mV (n = 6) for C3HeB/FeJ control

mice. To determine whether neural propagation of the ascending

auditory pathway was compromised, we measured the latencies of

ABR waves I through V. In 26-week-old ILS and ISS mice, there

was no significant difference in latencies at the 8- and 16 kHz

stimuli compared to C3HeB/FeJ controls (Fig. 1C).

To differentiate the abnormal compound auditory responses,

we ascertained the function of the sensory outer hair cells directly

by using distortion-product otoacoustic emission (DPOAE) tests.

In 26-week-old ISS mice, we found complete absence of

distortion-products at L1 = 75 dB SPL and f2 = 30–52 kHz. At

f = 18–30 kHz, we measured a significant reduction in emission

levels (p,0.001), while at the lower frequency range (f2 = 6–

16 kHz) DPOAE levels were comparable to control mice

(Fig. 1D). In 26-week-old ILS mice, we measured a significant

reduction in DPOAE levels at f2 = 20–52 kHz, which was most

pronounced at the 45–52 kHz range and progressed from higher

to lower f2 frequencies (Fig. 1D). Emission levels were normal in

the lower frequency range in these animals (f2 = 6–20 kHz). To

test whether a defect in the stria vascularis could account for

the abnormal ABRs and reduced emission levels, we measured

the voltage potential in the scala media at the level of the

round window. We observed endocochlear potentials (EP) of

10466 mV (n = 10) and 10964 mV (n = 4) in 26-week-old ILS

and ISS mice, respectively, which was comparable with the

potentials measured in normal hearing C3HeB/FeJ mice

(9469 mV; n = 5; p.0.05) (Fig. 1E).

Table 1. ABR thresholds in ILS and ISS strains.

click 8 kHz 16 kHz 32 kHz n

wks mean ± SD p mean ± SD p mean ± SD p mean ± SD p

C3H 26 3262.6 2965 2263 50610 6

ILS 12 5064.1 n.s. 39.366.1 n.s. 30612.3 n.s. 59.2617.7 n.s. 7

ISS 12 55626.5 ,0.01 41.3613 n.s. 36.3623.1 n.s. 84.4617.8 ,0.001 8

ILS 26 39.565.9 n.s. 41.666.9 n.s. 31.668.7 n.s. 72.468.7 ,0.001 19

ISS 26 60.8614.9 ,0.001 45620.8 n.s. 53.3621.6 ,0.001 9564.5 ,0.001 6

C3H, C3HeB/FeJ; wks, weeks of age; kHz, kiloHertz; SD, standard deviation; p, ANONVA; n.s., not significant; n, number of animals tested;
doi:10.1371/journal.pone.0011459.t001

Figure 2. Inner ear histology in ILS and ISS mice. Tolouidin blue-stained plastic sections through the cochlear duct in twelve-week-old ILS and
ISS and eight-week-old C3HeB/FeJ (C3H) mice. A,F,K, Cross section through the organ of Corti at the mid-apical region; tm, tectorial membrane; oh,
outer hair cell; ih, inner hair cell; sc, supporting cell; tC, tunnel of Corti; sM, scala media; scale bar = 50 mm. B,G,L, Cross section through the spiral
ligament at the mid-apical region of the cochlear duct. White arrow indicates a fibrocyte. sL, spiral ligament; scale bar = 50 mm. C,H,M, Cross section
through the stria vascularis at the mid-apical region of the cochlear duct. Red arrow, basal cell; white arrow, intermediate cell; green arrow, marginal
cell; sV, stria vascularis; scale bar = 10 mm. D,I,N, Cross section through the spiral ganglion near the base of the cochlear duct. Red arrow points to
areas of degeneration. sG, spiral ganglion; scale bar = 50 mm. E,J,O, Cross section through the spiral ganglion at the mid-apical region of the
cochlear duct. White arrow points to a neuron and the red arrow indicates a Schwann cell. sG, spiral ganglion; scale bar = 50 mm.
doi:10.1371/journal.pone.0011459.g002
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Inner ear histology of ILS and ISS mice
To reveal the inner ear histopathology, we obtained modiolar

sections of twelve-week-old ILS and ISS cochleae. The organ of

Corti (Fig. 2A, F, K) and spiral ligament (Fig. 2B, G, L), which

are commonly affected by progressive hearing loss, were normal in

appearance as was the stria vascularis (Fig. 2C, H, M). Spiral

ganglia at the base showed signs of degeneration in both ILS and

ISS ears, but similar slight degeneration was also observed in

C3HeB/FeJ controls (Fig. 2D, I, N). Neuronal cell counts per

800 mm2 section (n = 6) were not significantly different in ILS

(35610) and ISS (30613) animals compared when to C3HeB/FeJ

controls (46613; p.0.05). Furthermore, cell densities in the

ganglia at mid-apical regions were also indistinguishable among

ILS, ISS and C3HeB/FeJ controls (Fig. 2E, J, O).

Genetic linkage analyses in the LXS RI set
To genetically map the loci underlying the hearing impairment

in the ILS and ISS mice, we measured ABR thresholds in the 63

recombinant inbred strains derived from the ILS and ISS parental

strains. We tested four twelve-week-old mice from each strain

using four stimuli. At the click stimulus, thresholds followed a

normal distribution, with a mean of 55617 dB SPL (n = 63). At

the 16 kHz stimulus, thresholds followed a bimodal distribution,

with means of 28610 dB SPL (n = 33) and 84610 dB SPL

(n = 30). Thresholds at the 8 kHz stimulus showed a similar

bimodal distribution. At the 32 kHz stimulus, threshold values

were also distributed bimodally, but the histogram was shifted

toward higher mean threshold values of 53611 (n = 31) and

9566 dB SPL (n = 32) (Fig. 3A–D). These distributions suggested

the segregation of one major locus with a dynamic phenotype at

twelve weeks of age.

We next performed a genome-wide linkage scan using

WebQTL, which employs a linear regression model to compute

marker/phenotype correlations. We found highly significant

correlations between elevated thresholds at the 8-, 16-, and

32 kHz stimuli and markers on chromosome 10 (rs3682060,

rs13480620; p,0.001). The correlation was highest at the 32 kHz

Figure 3. ABR threshold distribution in the LXS RI set. A–D. Histograms showing threshold distributions at the click (A), 8- (B), 16- (C), and
32 kHz (D) stimuli. The Y-axis represents the number of RI strains, and the X-axis denotes the threshold level. Histograms were fitted with a normal
Gaussian distribution. r2 = goodness-of-fit.
doi:10.1371/journal.pone.0011459.g003

Table 2. Results of genome-wide regression analysis.

Stimulus Marker Chr LOD Allele p 2-LOD interval

click rs3663703 6 2.4 ISS ,0.05 8–40 Mb

rs3682060 10 3.4 ISS ,0.05 48–61 Mb

CEL-
15_58115663

15 2.5 ISS ,0.05 n.d.

8 kHz rs6407520 2 2.6 ILS ,0.05 8–52 Mb

rs3682060 10 5.2 ISS ,0.001 48–64 Mb

rs3724750 11 2.8 ISS ,0.05 60–92 Mb

16 kHz D2Mit81 2 2.5 ILS ,0.05 4–52 Mb

rs13480620 10 11.7 ISS ,0.001 52–62 Mb

rs6335879 12 2.7 ILS ,0.05 58–108 Mb

32 kHz rs3682060 10 15.8 ISS ,0.001 56–60 Mb

rs13482581 15 2.5 ISS ,0.05 28–80 Mb

kHz, kiloHertz; QTL, Quantitative trait locus; Chr, chromosome;
doi:10.1371/journal.pone.0011459.t002
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stimulus with a logarithm of odds (LOD) score of 15.8 and was

associated with ISS-derived alleles. The association between click-

derived thresholds and markers on chromosome 10 was only

marginal, and was below the genome-wide significance level

(p.0.01). Additional spurious linkage was obtained with regions

on chromosomes 2, 6, 11, 12, and 15 (0.05.p.0.01) (Table 2;

Fig. 4A, B). To detect QTLs hidden by the strong locus on

chromosome 10, we performed composite QTL mapping.

However, this did not reveal any additional significant hits.

Interval mapping combined with bootstrap testing and a 2-LOD

cut-off margin localized the QTL confidence interval to a ,4 Mb

region localized at the 54–60 Mb position on chromosome 10

(Fig. 4C). We named this QTL Sensorineural hearing loss 1 (Snhl1).

To detect interacting QTLs, we performed a two-dimensional

genome-wide linkage scan, but no genetic interactions or epistatic

effects were measured. We estimate that the Snhl1 locus accounts

for approximately 82% of the phenotypic variation (Fig. 5).

To determine the strain origin of the Snhl1 locus, we compared

the haplotypes of ISS and ILS mice with the founder strains over a

10 Mb region (chr10: 51,000,000–61,000,000 bp). Within this

haplotype block and among these ten strains, the C-allele at

marker rs3682060 is present in ILS and C3H/HeJ strains only,

whereas the A-allele at rs13480620 is present in the ISS and DBA/

2J strains.

The 2-LOD confidence interval of Snhl1 contains cadherin-23

(Cdh23). A 753G.A polymorphism in Cdh23 (chr10: 59,993,653 bp)

has previously been implicated in age-related hearing loss in C57BL/

6J, DBA/2J, and other inbred strains [12]. To ascertain the genetic

location of Cdh23 relative to Snhl1, we determined the allele status of

Cdh23753 in the parental and the 63 LXS RI strains. Consistent with

Figure 4. Genome-wide linkage scan. Shown are WebQTL plots of genome-wide (A, B) and chromosome-specific (C) regression analyses. A, B.
The X-axis represents the number of chromosome number and the Y-axis gives the LOD score. Red and blue dotted lines indicate the 0.01 and 0.05
genome-wide significance level obtained through permutation testing. Peak LOD scores at chromosome 6, 10 and 15 at the click (A) and
chromosome 10 and 15 at the 32 kHz (B) stimulus are indicated. C. Results of chromosome 10 interval mapping. X-axis indicates the physical position
in Megabases (Mb) and the Y-axis denotes the LOD score for the thresholds at the 32 kHz stimulus. Dotted horizontal lines indicate the genome-wide
significance level. Vertical black dotted line denotes the 2-LOD confidence interval of Snhl1 at chromosome (chr) 10.
doi:10.1371/journal.pone.0011459.g004
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the origin of the haplotype blocks, we found that mice of the ILS

strain carry the Cdh23753G allele and mice of the ISS strain have the

Cdh23753A allele. Among the 63 RI strains, the Cdh23753 polymor-

phism was concordant with marker rs13480620, except for strain

LXS42, which carried the 753G allele in the presence of a profound

hearing loss (Fig. 5).

Discussion

In this study, we defined the auditory hallmarks of hearing

impairment in the ILS and ISS inbred mouse strains and found

delayed-onset sensorineural hearing loss as evidenced by increased

ABR thresholds, reduced ABR wave I amplitudes, and absent

DPOAEs in the presence of normal endocochlear potentials,

unaltered ABR wave latencies and unremarkable inner ear

histology. This hearing loss was more pronounced in the ISS strain.

Sensorineural hearing loss affects the organ of Corti and the

ascending nerve fibers of the 8th cranial nerve with its associated

first order type I and type II neurons. A hallmark of this type of

hearing loss is the increased thresholds at higher frequencies. In

the present study, thresholds were highest at the 32 kHz stimulus

and reduced at the lower frequencies. Furthermore, the ABR

threshold progression in the ILS and ISS strains at twelve and 26

weeks of age followed this pattern, and the same succession was

detected using DPOAE tests, which revealed a systematic decay in

emissions from the higher to the lower frequency spectrum. While

diminished distortion-products can also result from a reduced or

absent voltage potential in the endolymph, the normal EPs found

in ILS and ISS mice argue in favor of a primary defect at the level

of the sensory hair cells. The wave I amplitude is the neuronal

response of the distal portion of the type I and type II afferent

neurons. Approximately 95% of the afferents are type I cells that

make contact with inner hair cells, whereas the remainder contact

outer hair cells. The reduced wave I amplitudes in ILS and ISS

mice may point to a defect in the receptor potential, the size of the

synaptic transmission, or levels of the excitatory post-synaptic

potentials (EPSPs). In contrast, the conduction velocities and time

constants of both EPSPs and synaptic transmission seem to be

intact, as suggested by the normal latency of wave I.

The Snhl1 locus has a strong effect, accounting for 82% of the

trait distribution but it leaves the threshold variation of twelve RI

strains unexplained. To account for these strains, we performed

composite mapping, which masks the Snhl1 QTL, and interrogat-

ed the genome for additional genetic and epistatic interactions.

However, no additional genetic effects were observed. The data

suggests the segregation of a second QTL that may associate with

ILS-derived alleles, which is a reasonable assumption, considering

the presence of a milder form of hearing loss in that strain. This

hypothesis could be tested by analyzing a segregating cross

between ILS and ISS, which would also aid in the fine mapping of

Snhl1. This second locus may be represented in the intervals on

chromosome 2 or 12 that reached only suggestive levels of

genome-wide significance and escaped detection due to the

resolution-limit of the RI set [11].

The 2-LOD Snhl1 confidence interval contains 30 genes

including Cdh23, which is involved in various forms of hearing

loss in both mouse and human. Although it is possible that the

Cdh23753A allele or a new variant of Cdh23 underlies Snhl1, three

sets of experiments seem to argue against it. First, by haplotype

analysis and genotyping of the 63 RI strains at the Cdh23753A/G

polymorphism we identified three RI strains (LXS19, LXS22, and

LXS76) with recombinations that place Snhl1 close to marker

rs3682060, located 3.7 Mb proximal to Cdh23. In addition, RI

strain LXS42 caries a recombination that places Snhl1 outside of

the Cdh23 region and close to rs13480620, located 345 kb

proximal to Cdh23753. Second, we sequenced all but two exons

of Cdh23, but found only one non-synonymous nucleotide change.

This variant, Leu5Pro, is also present in the CAST/Ei strain,

which exhibits a rather robust hearing function excluding it as the

causative variant. Two other variants, also in exon 1, were silent

third-position transitions. Third, recombination events in four RI

strains (LXS3, LXS19, LXS22, and LXS76) localize Snhl1 most

likely to a 3.3 Mb region delimited by markers rs3682060 (chr10:

56,329,258 bp) and rs13480620 (chr10: 59,648,241 bp).

Figure 5. Snhl1 phenotype/genotype correlation. ABR thresholds at the 32 kHz stimulus of each of the 63 RI strains (grey) and the parental ILS
(green) and ISS (red) strains as a function of their genotype at markers rs3682060, rs13480620, and Cdh23753 are shown. ABR thresholds (in dB SPL; Y-
axis) are given as mean 6 SD (n = 4). The grey box denotes the number of strains and threshold range unexplained by Snhl1. The ISS allele is shown in
green (C, cytosine; G, guanine) and the ILS allele is represented in red (T, thymidine; A, adenine) boxes. The number of the RI strain carrying a
recombinant chromosome and the threshold at the 32 kHz is shown below the haplotypes. On the right, the physical location of the marker on
chromosome 10 in base pairs (bp) is given and the most likely location of Snhl1 is indicated.
doi:10.1371/journal.pone.0011459.g005
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We also compared the haplotype structure of the ILS and ISS

strains with the eight founder strains and found that the ISS

haplotype block over the Snhl1 interval is most likely derived from

the DBA strain. As both DBA/1J and DBA/2J show progressive

and complex hearing loss, this suggests that the Snhl1 locus may

represent one of the DBA hearing loss alleles. Alternatively, Snhl1

may constitute a new mutation that occurred during the

development of the ISS strain.

Another QTL underlying progressive hearing loss, progressive

hearing loss 2 (Phl2), was mapped in the 101/H strain [13]. The

QTL association peaked with marker D10Mit115 (chr10:

69,739,444Mb) and the 2-LOD confidence interval, encompassing

approximately 17 Mb, ranges from Cdh23 to D10Mit139

(chr10:60,091,228–77,695,405 Mb). This QTL interval seems to

place Phl2 outside of the Snhl1 interval (Fig. 6). Furthermore, the

101/H strain is closely related to the group of 129 strains [14].

Given the genetic distance between the 129 strains and the eight

founder strains, it seems unlikely that Phl2 and Snhl1 are identical

or represent allelic forms of the same locus.

Progressive sensorineural progressive hearing loss is a common

phenotype in inbred and heterogeneous mouse strains [10,15,16].

Previous genetic linkage studies in a subset of these strains

demonstrated that it is caused by the segregation of a small number

(1–3) of loci per strain that show various types of interaction and

inheritance due to epistatic, additive or co-dominant effects

[13,15,17–20]. The ISS strain seems to fit into this paradigm,

having one major locus and perhaps one minor player underlying

delayed-onset, progressive sensorineural hearing loss.

The molecular physiology of the inner ear, and the genetics of

monogenic hearing loss, are highly conserved between human and

mouse, suggesting that this genetic conservation also holds up at

the level of complex hearing loss, which is thought to underlie the

most common forms of acquired progressive hearing impairment,

ARHI and NIHL [3,7,21]. Under this assumption, the data

presented here together with previous results [19], suggest that

susceptibility to progressive sensorineural hearing loss in the

human population is very heterogeneous, but controlled by a small

number of rare and hypomorphic risk alleles on an individual

basis.

Materials and Methods

Animals
The generation of the LXS panel of RI strains was described

elsewhere [11]. Institutional review boards at the National

Institutes of Health and University of Colorado approved the

animal studies.

Auditory-evoked brain stem response measurements
Hearing function was assessed using auditory-evoked brain stem

response (ABR) measurements controlled by a computer-aided

evoked potential system (Intelligent Hearing System, IHS; Miami,

Florida). The Smart-EP version 10, modified for high frequency

capability and coupled to high frequency transducers was used to

generate specific acoustic stimuli, and to amplify, measure, and

display the evoked brainstem responses of anesthetized mice.

Subdermal needle electrodes were inserted at the vertex (active),

ventrolaterally to the right ear (reference) and the left ear (ground).

Specific acoustic stimuli were delivered to the outer ear canal

through a plastic tube channeled from the high frequency

transducers. Mice were presented with click stimuli and with 8-,

16-, and 32 kHz tone pips at varying intensity, from low to high

(10–100 dB SPL) at a rate of 19.1 times/sec for a total of 350

sweeps. Sound pressure level thresholds were determined for each

stimulus frequency by identifying the lowest intensity producing a

recognizable ABR pattern on the computer screen (at least two

consistent characteristic wave forms). Peak-to-peak amplitudes and

wave latencies were determined using IHS software.

Distortion-product-otoacoustic emission measurements
(DPOAEs)

DPOAEs were measured using National Instruments (NI)

LabView 8.6 software, operating an NI PCI-4461 Dynamic Signal

Analyzer (DSA) sound card, to generate two pure tones, f1 and f2,

at the fixed f2/f1 ratio of 1.3, which were emitted separately by

two Clarion SRU310H high frequency dome tweeters placed in

the outer ear canal at the presentation level of f2 = f1- 10 dB =

50 dB SPL (Sound Pressure Level). The f1 and f2 components

were swept in 1 kHz steps starting from f1 = 5 kHz to 55 kHz

with f2 = f1x1.3. Intensity levels sweeps ranged from 15 dB SPL

up to 75 dB SPL, in 10 dB increments. Sound pressure levels were

measured using an Etymõtic-ER-10B+ microphone. The ampli-

tude of the 2f1- f2 distortion product was plotted in dB SPL against

the f2 frequency where the DP is generated. Clarion speakers and

Etymõtic ER-10B+ microphone were calibrated using a 1/4inch

microphone 7016 (1/4inch pre amp 4016 and microphone power

supply PS9200, AcoPacific). The AcoPacific 1/4inch microphone

7016 was calibrated using a QC-10 Sound Calibrator (Quest

Technologies).

Endocochlear potential measurements
The endocochlear potential (EP) was measured at the round

window. Briefly, the tip of a small glass pipette containing a silver/

chloride electrode bathed in 0.1M KCl was inserted through the

Figure 6. Location of hearing loss QTLs on chromosome 10. Graphic representation of loci involved in hearing function on mouse
chromosome (chr) 10. The markers flanking each QTL (Snhl1, Phl2, and ahl5) are given on the top, the 2-LOD confidence interval defined by the
markers is given in the middle, and the physical scale (Mb, megabases from the centromere) is given on the bottom.
doi:10.1371/journal.pone.0011459.g006
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round window into the endolymph using a remote controlled

motorized micromanipulator (PPM5000, Piezo World Precision

Instrument). The electrode was connected to a Warner Dual

Channel Differential Electrometer (HiZ-223), which amplified and

routed the voltage difference (subdermal 1M KCl reference

electrode) to a PC-controlled data acquisition system (Digidata

1440A, Axon Instruments) using AxoScope software, which

displayed the measured output. Data were sampled at a rate of

10 kHz for 60 sec. The glass electrode was prepared using a Sutter

Instrument (P-97 Flaming/Brown micropipette puller) and

measurements were performed in a bench top faraday cage

(TMC; Technical Manufacturing Corporation).

Histology
For gross morphology on plastic sections, the ear was removed

from the temporal bone and the inner ears were dissected in

phosphate buffered saline (PBS), perfused with 4% paraformalde-

hyde and kept in the same fixative at room temperature for at least

12 hours. Specimen were washed twice in PBS and decalcified in

0.1M EDTA pH 8.0 in PBS for three weeks. The Inner ears were

then dehydrated with a graded series of ethanol, infiltrated with

JB-4 monomer (Polysciences, Inc.), and embedded for mid-

modiolar and saggital sections. Serial sections were cut at 4 mm

thickness using a tungsten carbide disposable blade on a RM2265

microtome (Leica) and mounted on Superfrost Plus glass slides.

Sections were stained with 0.1% Toluidine Blue O, cleared in

xylene, imaged on a DM5000B microscope (Leica) and photo-

graphed with a DFC500 digital camera (Leica). Image levels were

adjusted with Adobe Photoshop software.

Genetic linkage analyses
WebQTL was used for linear regression analyses, composite

and interval mapping and tests for epistatic interactions available

at The GeneNetwork (www.genenetwork.org). Genome-wide

significance levels were determined by permutation testing (1000

permutations). QTL confidence interval was determined by

bootstrap testing.

Statistical analyses
Unless otherwise indicated groups of data were compared using

one-way analysis of variance (ANOVA) followed by Bonferroni

post-hoc test to correct for multiple testing. GraphPad Prism 4.0b

software was used to perform column statistics and compute p

values.
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