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Abstract

Background: Previous studies identified melatonin receptor 1B (MTNR1B), islet-specific glucose 6 phosphatase catalytic
subunit-related protein (G6PC2), glucokinase (GCK) and glucokinase regulatory protein (GCKR) as candidate genes for type 2
diabetes (T2D) acting through elevated fasting plasma glucose (FPG). We examined the associations of the reported
common variants of these genes with T2D and glucose homeostasis in three independent Chinese cohorts.

Methodology/Principal Findings: Five single nucleotide polymorphisms (SNPs), MTNR1B rs10830963, G6PC2 rs16856187
and rs478333, GCK rs1799884 and GCKR rs780094, were genotyped in 1644 controls (583 adults and 1061 adolescents) and
1342 T2D patients. The G-allele of MTNR1B rs10830963 and the C-alleles of both G6PC2 rs16856187 and rs478333 were
associated with higher FPG (0.0034,P,6.661025) in healthy controls. In addition to our previous report for association with
FPG, the A-allele of GCK rs1799884 was also associated with reduced homeostasis model assessment of beta-cell function
(HOMA-B) (P = 0.0015). Together with GCKR rs780094, the risk alleles of these SNPs exhibited dosage effect in their
associations with increased FPG (P = 2.961029) and reduced HOMA-B (P = 1.161023). Meta-analyses strongly supported
additive effects of MTNR1B rs10830963 and G6PC2 rs16856187 on FPG.

Conclusions/Significance: Common variants of MTNR1B, G6PC2 and GCK are associated with elevated FPG and impaired
insulin secretion, both individually and jointly, suggesting that these risk alleles may precipitate or perpetuate
hyperglycemia in predisposed individuals.
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Introduction

Elevated fasting plasma glucose (FPG) level is an important risk

factor contributing to cardiometabolic diseases. Impaired fasting

glucose, defined as FPG from 5.6 to 6.9 mmol/l (ADA criteria) [1] or

6.1 to 6.9 mmol/l (WHO criteria) [2], is associated with increased

risk of diabetes and cardiovascular disease [3,4]. Adequate insulin

secretion and sensitivity is critical in the maintenance of euglycemia

[5]. FPG level is shown to be moderately heritable in twin and family

studies (heritability estimate h2 = 0.20–0.28 [6,7,8]. Recent genome-

wide association studies (GWAS) have uncovered a few loci associated

with FPG, including genes encoded for melatonin receptor 1B

(MTNR1B), glucose-6-phospate catalytic subunit 2 (G6PC2),

glucokinase (GCK) and glucokinase regulatory protein (GCKR)

[9]. Surprisingly, these genes only demonstrated modest or weak

association with type 2 diabetes (T2D) [9,10,11], despite a close

interplay between T2D and high FPG level. Although most T2D

genes are implicated in beta-cell function [12], high FPG level from

other causes can worsen insulin secretion or sensitivity by setting up a

vicious cycle via glucotoxicity [13].

MTNR1B, GCK and G6PC2 proteins are expressed in the

human beta cells [14,15,16]. MTNR1B encodes a high affinity
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receptor for melatonin, a hormone primarily secreted by the

pineal gland to regulate circadian rhythm and sleep cycles [17].

Plasma melatonin follows an opposite circadian rhythm to plasma

insulin and glucose, rising by night and falling by day, which

suggests that melatonin may affect insulin release and glucose level

via its islet-specific receptor [18]. Large scale association studies

[9,10,14] suggested that two common MTNR1B SNPs rs1387153

and rs10830963 (r2 = 0.7 in Europeans) may affect insulin

secretion and glucose homeostasis.

Glucokinase (encoded by GCK) is a glucose-sensing enzyme that

determines the threshold for glucose-stimulated-insulin-secretion

(GSIS) in islets, and controls gluconeogenesis and glycogen

synthesis in hepatocytes [15]. The hepatic activity of GCK is

inhibited by its regulatory protein GCKR in a dose-dependent

manner, which competes with glucose for binding site [19]. Two

GCKR variants rs780094 and rs1260326 (r2 = 0.93 in Europeans)

are associated with HOMA-IR, FPG and triglyceride levels

[20,21]. A functional study showed that this effect was mediated

through reduced repression on GCK [22].

The GCK variant rs1799884 is associated with higher FPG in

Caucasian and Chinese cohorts [23,24,25], and rare GCK

mutations confer a form of maturity-onset diabetes of the young

(MODY 2) characterized by hyperglycemia [26]. Glucose-6-

phospate catalytic subunit 2 (encoded by G6PC2) is proposed to

counteract pancreatic GCK activity by competing for glucose

usage [16]. G6PC2-null mice demonstrated a ,15% reduction in

FPG level [27], and two SNPs rs560887 and rs563694 were

repeatedly associated with hyperglycemia in Europeans

[10,28,29,30]. However, these two variants are nearly monomor-

phic in Asians, so Hu et al. adopted a tagSNP approach and

reported a FPG-associated SNP rs16856187 in Chinese [31].

Based on their common effects on FPG levels and co-presence

in the beta-cell and liver, variants in MTNR1B, GCK, G6PC2 and

GCKR are hypothesized to have interactions or joint effects.

Bouatia-Naji et al. have reported their additive effects on FPG

[9,32], and we have previously shown that a variant in GCKR

modifies the association between GCK and FPG [24]. In this study,

we aimed to validate the reported dosage effects on FPG in a

Chinese cohort, and examined their associations with insulin

secretion and sensitivity as estimated by HOMA-IR and HOMA-

B indices.

Materials and Methods

Subjects
We have previously described the study design, ascertainment,

inclusion criteria and phenotyping procedures of subjects included

in this study [33]. All subjects were of southern Han Chinese

ancestry residing in Hong Kong. The control cohort consists of

1644 subjects with FPG,6.1 mmol/l ascertained from a) 583

hospital staff and volunteers from a community-based health

screening program (mean age 41.4610.5 years, 45% male) and b)

1061 adolescents from a community-based school survey (mean

age 15.461.9 years, 45% male). A subgroup of 420 adult controls

also underwent a 75g oral glucose tolerance test (OGTT). The

case cohort consists of 1342 unrelated T2D patients (mean age

50.5613.7 years, 41% male, mean duration of T2D 6.166.5

years) selected from the Hong Kong Diabetes Registry (HKDR).

T2D was diagnosed according to the 1998 World Health

Organization (WHO) criteria. Patients with classic type 1 diabetes

with acute ketotic presentation or continuous requirement of

insulin within 1 year of diagnosis were excluded. The clinical

characteristics of subjects in the three cohorts are summarized in

Table 1. Written informed consent was obtained from all adult

subjects and parents of the adolescents while the adolescents gave

verbal consent. This study was approved by the Clinical Research

Ethics Committee of the Chinese University of Hong Kong.

Clinical studies
All study subjects were examined in the morning after an

overnight fast. Anthropometric measurements including body

weight and height were documented. Fasting blood samples were

collected for DNA extraction and measurements of FPG and fasting

plasma insulin (FPI). Homeostasis model assessment of insulin

resistance (HOMA-IR) was calculated as (FPI6FPG)722.5, and

homeostasis model assessment of beta-cell function (HOMA-B) was

calculated as FPI6207(FPG - 3.5) [34]. Insulinogenic index was

calculated as (PI during OGTT for 30 min - 0 min)7(PG during

OGTT for 30 min - 0 min) [35]. Data were discarded if PI or PG

level at 0 min were higher than that of 30 min. Insulin sensitivity

index (ISI) was estimated using the formula proposed by Matsuda

and DeFronzo [36]: 10,0007[FPG6FPI6(mean PG during

OGTT)6(mean PI during OGTT)]
1=2 . Insulin disposition index

(IDI) was calculated as ISI6insulinogenic index7100 [36].

Genotyping
We genotyped five SNPs in four genes including MTNR1B

rs10830963, G6PC2 rs16856187 and rs478333, GCK rs1799884

and GCKR rs780094 in all study subjects due to their reported

associations with FPG, beta-cell function and T2D [29,31,32],

except for G6PC2 rs478333. Although G6PC2 rs560887 [28,30]

and G6PC2 rs563694 [29] showed association with FPG in

Caucasian populations, both of their corresponding minor allele

frequencies (MAF) are rare in Chinese population (0.006 and

0.012 in HapMap CHB for rs560887 and rs563694, respectively).

Table 1. Clinical and metabolic characteristics of 1644 healthy Chinese adults and adolescents and 1342 T2D patients.

Characteristics Healthy Adults Healthy Adolescents T2D Patients

N (male/female) 583 (265/318) 1061 (481/580) 1342 (544/798)

Age (years) 41.4610.5 15.461.9 50.5613.7

Age-at-diagnosis (year) – – 44.5613.7

Disease duration (years) – – 6.166.5

Body mass index (kg/m2) 22.963.3 19.963.5 25.064.0

Fasting plasma glucose (mmol/l) 4.860.4 4.760.3 –

Fasting plasma insulin (pmol/l) 40.8 (25.9–58.6) 45.0 (35.4–60.2) –

Data are shown as N, mean 6 SD or median (interquartile range).
doi:10.1371/journal.pone.0011428.t001
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Additionally, Shanghai study [31] found that rs16856187 showed

the strongest signal for both T2D and FPG. To clarify these inter-

ethnic differences, we genotyped rs16856187 and another nearby

SNP rs478333 located in the 39 flanking region, which has

common allele frequencies in both Chinese (0.29 in HapMap

CHB) and Caucasian (0.49 in HapMap CEU) populations. We did

not test for associations for all tagging SNPs of the respective

genes. Genotyping on genomic DNA was performed either at

deCODE Genetics using the Centaurus (Nanogen) platform or at

the McGill University and Genome Quebec Innovation Centre

using the Sequenom MassARRAY platform (San Diego, CA,

USA). The concordance rate for part of the samples genotyped on

both platforms is .99%. All SNPs were in Hardy-Weinberg

equilibrium (P.0.05) in control cohorts using the exact test

implemented in PLINK [37]. The overall genotype call rates were

.96% and the minor allele frequencies (MAF) in normal controls

(MAF of MTNR1B rs10830963 = 0.44 for both adult and

adolescent controls; G6PC2 rs16856187 and rs478333 = 0.30 and

0.35, respectively for both adult and adolescent controls; GCK

rs1799884 = 0.16 and 0.19 in adult and adolescent controls,

respectively) were comparable with the HapMap CHB data (0.48

for MTNR1B rs10830963; 0.28 and 0.29 for G6PC2 rs16856187

and rs478333, respectively; 0.20 for GCK rs1799884), except the

one of GCKR rs780094. MAFs of GCKR rs780094 in our data (0.46

for both adult and adolescent cohorts) were lower than seen in the

HapMap CHB (0.60), but they were similar to the frequency

reported in a group of Han Chinese (0.44) study [21].

Systematic Review
A systematic literature search was performed according to the

MOOSE guidelines [38] for the meta-analysis of observational

studies. The description of studies and details of the literature

search process are outlined in the table (Table S1) and the flow

chart (Figure S1), respectively. We searched the PubMed database

from inception to January 2010 for association studies between

fasting glucose and MTNR1B or G6PC2 genes. The keywords used

were MTNR1B, G6PC2 and fasting glucose. We restricted our

analysis to human studies, and placed no language restriction. We

included studies if they (a) reported the association results for

subjects in case-control or population-based studies; (b) genotyped

MTNR1B rs10830963, G6PC2 rs560887 or rs16856187 and

measured fasting glucose levels for the studied subjects; (c)

presented results as mean 6 SD with sample size stratified by

genotypes with or without adjustment for covariate. We excluded

studies if they (a) were reviews or abstract; (b) were duplicate

reports on previously published studies; (c) did not provide

sufficient information for computation of a quantitative effect

estimate of the relationship between FPG and genetic variants.

Statistical analysis
All data are presented as percentage, mean 6 SD or median

(interquartile range), as appropriate. Insulinogenic index, FPI,

HOMA-IR, HOMA-B, ISI and IDI were logarithmically

transformed due to skewed distributions. Each trait was winsorized

separately in adult and adolescent cohorts by replacing extreme

values with 4 standard deviations from the mean. Less than 0.2%

of data were replaced.

Within each control cohort, associations between genotypes and

phenotypic traits were tested by multivariate linear regression

adjusted for sex, age, and BMI (where appropriate) under the

additive genetic model. In the combined analysis, an additional

dummy variable ‘‘study cohort’’ coded as 0 for adult controls and

1 for adolescent controls was included in the regression model.

Multiple testing of phenotypic traits and SNPs were corrected by

controlling the false discovery rate (FDR) using the Benjamini-

Hochberg approach [39]. An alternative method for controlling

multiple testing is developed by Conneely and Boehnke [40],

which accounts for correlation both among SNPs and among

phenotypes and is less conservative than FDR. To assess gene-

gene interaction effects on phenotypic traits, linear regression

analyses including the main and pairwise interaction effects of

SNPs under an additive genetic model were applied. The joint

effects of the SNPs was assessed by calculating the estimated

marginal mean with 95% confidence intervals (CIs) in a general

linear model (including sex, age, BMI and study cohort as

covariates), categorized by the number of risk alleles assuming an

additive genetic model. Risk alleles were defined as alleles that

increased fasting plasma glucose described either in literature or in

the present study. The significance of the trend was tested by linear

regression using the number of risk alleles carried as an

independent variable.

Frequencies of genotypes and number of risk alleles between

T2D cases and healthy controls were compared using logistic

regression adjusted for age, sex and BMI. Odd ratios (ORs) with

95% CIs were presented.

Meta-analyses for the association of FPG were calculated based

on the Hedges g statistic which was used to calculate the

standardized mean difference (SMD) across studies under the

fixed effects model. To account for heterogeneity of SMDs across

studies (Cochran’s Q statistic P,0.1), the overall effect size (SMD)

under the random effects model was reported, in which both

random variations within and between different studies were

incorporated [41].

We estimated study power using genetic power calculator [42].

Assuming an additive model with the frequencies of 0.41 [43] for

the G-allele of MTNR1B rs10830963, 0.30 [31] for the C-alleles of

G6PC2 rs16856187, 0.17 [24] for the A-allele of GCK rs1799884

and 0.54 [24] for the C-allele GCKR rs780094 in a Chinese

population, our sample size has .90% power to detect a T2D risk

under the prevalence of 0.1 with an odds ratio of 1.16 [43], 1.19

[31], 1.22 [25] and 1.18 [21] respectively, and a per-allele effect of

increasing FPG by .0.068 (total QTL variance = 0.012) and

.0.067 (total QTL variance = 0.012) mmol/l [31,43] for

rs10830963 and rs16856187 respectively, at the a level of 0.05.

All statistical analyses were performed using SAS v.9.1 (SAS

Institute, Cary, NC, USA) or SPSS for Windows v.15 (SPSS,

Chicago, IL, USA) unless specified otherwise. Two-tailed P values

,0.05 were considered statistically significant.

Results

Associations with FPG, beta cell function and T2D
We have previously shown that the minor A-allele of GCK

rs1799884 was associated with higher FPG, nevertheless, no

association was detected for GCKR rs780049. In this study, we

further observed consistent and significant association of the minor

G-allele of MTNR1B rs10830963 (Beta6S.E. = 0.03760.012 and

P = 0.0034 in combined analysis) as well as the C-alleles of both

G6PC2 rs16856187 (Beta6S.E. = 0.05960.015 and P = 6.661025

in combined analysis) and rs478333 (Beta6S.E. = 0.05060.013

and P = 0.0002 in combined analysis) with increased FPG after

adjustment for age, gender, BMI and/or study cohorts (Table 2

and 3).

In addition, association with reduced beta-cell function as

assessed by HOMA-B was also observed for the A-allele of GCK

rs1799884 (Beta6S.E. = 20.08160.026 and P = 0.0015), as well

as trend for associations with the G-allele of MTNR1B rs10830963

(Beta6S.E. = 20.03760.019 and P = 0.0532) and the C-allele of

Chinese Fasting Glucose Genes
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G6PC2 rs478333 (Beta6S.E. = 20.03960.021 and P = 0.0623) in

the combined control samples (Tables 2, 3, 4).

The associations of FPG with MTNR1B rs10830963

(P = 0.0162), G6PC2 rs16856187 (P = 0.0013) and rs478333

(P = 0.0019), as well as GCK rs1799884 with HOMA-B

(P = 0.0095) in the combined control samples remained signifi-

cant after controlling for FDR. None of the SNPs revealed

association with T2D (Table S2), BMI, FPI or insulin sensitivity,

as measured by HOMA-IR (Tables 2, 3, 4) or OGTT-based traits

(Table S3).

Table 2. Associations of MTNR1B rs10830963 with type 2 diabetes related traits in Chinese control subjects.

Study Genotypes n BMI (kg/m2) FPG (mmol/l) FPI (pmol/l) HOMA-IR HOMA-B

Adults CC 181 2363.4 4.7960.42 36.0 (23.2–55.9) 1.3 (0.9–2.0) 96.7 (61.6–161.7)

CG 286 2363.2 4.8460.41 44.8 (29.9–60.9) 1.6 (1.0–2.2) 111.8 (75.8–170.9)

GG 116 22.363.2 4.9160.42 37.3 (24.1–55.8) 1.4 (0.9–2.0) 88.0 (56.8–130.3)

P 0.1268 0.0069 0.2271 0.1234 0.8931

Adolescents CC 342 19.963.5 4.7060.35 47.8 (35.5–64.1) 1.6 (1.2–2.3) 140.1 (100.4–191.3)

CG 503 19.863.4 4.7660.33 43.9 (35.0–58.7) 1.6 (1.2–2.1) 124 (94.0–162.6)

GG 216 20.263.7 4.7460.33 44.9 (36.1–59.5) 1.6 (1.2–2.1) 124.7 (99.1–168.1)

P 0.4961 0.0475 0.2251 0.4303 0.0042

Combined P 0.8903 0.0034 0.9901 0.6471 0.0532

Adjusted P 0.9901 0.0162 0.9901 0.8785 0.1685

Data are expressed as N, mean 6 SD or median (interquartile range). P values were calculated from linear regression adjusted for sex, age and BMI (where appropriate)
assuming an additive genetic model. In the combined analysis, calculated P values were also adjusted for study cohorts (adult or adolescent). Adjusted P values refer to
the P values controlled for false discovery rate in combined analysis. BMI, body mass index; FPG, fasting plasma glucose; FPI, fasting plasma insulin; HOMA-IR, HOMA of
insulin sensitivity; HOMA-B, HOMA of beta- cell function.
doi:10.1371/journal.pone.0011428.t002

Table 3. Associations of G6PC2 rs16856187 and rs478333 with type 2 diabetes related traits in Chinese control subjects.

Study Genotypes n BMI (kg/m2) FPG (mmol/l) FPI (pmol/l) HOMA-IR HOMA-B

rs16856187

Adults AA 262 22.963.4 4.8060.41 41.0 (25.9–56.7) 1.5 (0.9–2.0) 104.4 (70.3–162.2)

AC 245 22.763.0 4.8860.43 40.5 (26.4–58.9) 1.5 (1.0–2.1) 104.7 (62.9–161.7)

CC 45 23.663.7 4.9160.35 43.0 (25.9–65.2) 1.5 (0.9–2.4) 110.0 (71.8–184.9)

P 0.9415 0.0428 0.3096 0.2079 0.9689

Adolescents AA 454 20.063.7 4.6960.33 45.1 (35.0–62.3) 1.6 (1.2–2.2) 133.4 (100.2–178.8)

AC 414 19.963.3 4.7760.35 44.8 (35.7–59.7) 1.6 (1.2–2.1) 125.5 (92.4–164.2)

CC 75 19.863.6 4.7860.30 47.5 (35.7–60.0) 1.7 (1.3–2.1) 125.2 (95.1–168.8)

P 0.5112 8.561025 0.7023 0.2428 0.0252

Combined P 0.6473 6.661025 0.4416 0.1720 0.1336

Adjusted P 0.8785 0.0013 0.7997 0.1685 0.3173

rs478333

Adults TT 238 22.963.3 4.7960.40 41.2 (25.4–60.3) 1.5 (0.9–2.1) 111.3 (67.7–173.7)

TC 260 22.863.1 4.8860.43 40.0 (25.9–56.8) 1.5 (1.0–2.1) 103.5 (62.5–151.0)

CC 71 23.063.7 4.8760.42 40.7 (27.2–60.7) 1.5 (0.9–2.2) 100.2 (72.3–160.1)

P 0.9930 0.0561 0.5608 0.4078 0.8290

Adolescents TT 437 19.963.5 4.7060.33 44.5 (35.2–63.6) 1.5 (1.2–2.2) 134.2 (102.0–182)

TC 477 20.063.4 4.7560.34 46.3 (35.7–59.5) 1.6 (1.2–2.1) 127.5 (93.9–168.1)

CC 123 19.863.3 4.8060.33 44.7 (35.2–57.5) 1.6 (1.2–2.0) 114.6 (94.2–158.7)

P 0.9054 0.0008 0.7888 0.7341 0.0068

Combined P 0.9845 0.0002 0.9287 0.5535 0.0623

Adjusted P 0.9901 0.0019 0.9901 0.8764 0.1691

Data are expressed as N, mean 6 SD or median (interquartile range). P values were calculated from linear regression adjusted for sex, age and BMI (where appropriate)
assuming an additive genetic model. In the combined analysis, calculated P values were also adjusted for study cohorts (adult or adolescent). Adjusted P values refer to
the P values controlled for false discovery rate in combined analysis. BMI, body mass index; FPG, fasting plasma glucose; FPI, fasting plasma insulin; HOMA-IR, HOMA of
insulin sensitivity; HOMA-B, HOMA of beta- cell function.
doi:10.1371/journal.pone.0011428.t003
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Interaction and joint effect of genes on FPG, beta-cell
function and T2D

We did not detect any novel pairwise interaction between genes on

FPG level or beta-cell function in the combined healthy controls (data

not shown), apart from the one previously reported between GCK

rs1799884 and GCKR rs780094. We then examined the joint effects of

selected SNPs from GCK, GCKR, MTNR1B, G6PC2 genes on FPG and

beta-cell function, assuming that all risk alleles have similar effect sizes.

Due to the relatively high linkage disequilibrium between G6PC2

rs16856187 and G6PC2 rs478333 (r2 = 0.62 in both HapMap CHB

data and the present study), only the most significant SNP was included

for the joint analysis of FPG or beta-cell function, respectively. We

tested for the independence between loci by using all four

corresponding loci in the regression models. All loci were independent

(P,0.05) except for GCKR rs780094. Subjects with increasing number

of risk alleles showed higher FPG concentration (P = 2.961029) and

lower value of HOMA-B (P = 1.161023) (Figure 1A–B) in a dose-

dependent manner. In addition, we did not find any association

between T2D and combined gene variants (Table S2).

Meta-analyses of MTNR1B rs10830963 and G6PC2
rs16856187 with FPG

In our previous study, we have confirmed the association of

GCK rs1799884 with FPG in a meta-analysis including both

Europeans and Chinese populations. In the present study, meta-

analysis of association of MTNR1B (rs10830963) in Europeans

showed increases of 0.15 (0.11–0.19) and 0.29 (0.25–0.34) in

(SMD) of FPG for CG and GG genotypes, respectively, when

compared to the CC reference genotype (Figure S2). However,

weaker and dominance effect was found in Chinese, with increases

of 0.20 (0.11–0.28) and 0.23 (0.12–0.34) in SMD of FPG for CG

and GG genotypes, respectively (Figure S2). In the combined

meta-analysis for all European and Chinese cohorts, we confirmed

the additive effect of the G-allele in MTNR1B rs10830963 with

FPG. Furthermore, an additive trend of 0.15 (0.03–0.27) and 0.31

(0.19–0.44) increases in SMD of FPG for AC and CC genotypes,

respectively, when compared to the AA reference genotype, was

also observed for G6PC2 rs16856187 in Chinese populations

(Figure S3). Due to significant heterogeneity amongst the study

cohorts (P,0.1), the combined SMDs were calculated based on

the random effect models, only using the fixed effect models for the

association of MTNR1B rs10830963 in all Chinese cohorts (P.0.1)

(Figure S3).

Discussion

Here we reported the association of rs10830963 in MTNR1B,

rs16856187 and rs478333 in G6PC2, and rs1799884 in GCK with

higher FPG and lower HOMA-B levels. Further analyses of the

risk alleles (G-allele of rs10830963, C-alleles of both rs16856187

and rs478333, A-allele of rs1799884 and C-allele of GCKR

rs780094) confirmed their joint effects on FPG and beta-cell

function. These consistent findings from three independent

cohorts strongly support the risk effects of these variants on GSIS

to predispose hyperglycemia in Chinese.

Consistent with previous studies [9,10,28,30,32,44,45,46,47],

we observed the individual and joint effects of risk alleles in

MTNR1B, G6PC2, and GCK on FPG. Compared to the carriers

with 0 or 1 alleles, each additional allele increases mean FPG level

by 0.048 (0.032–0.064) mmol/l (Figure 1). This effect size is similar

to those observed in Dutch (0.05 (0.04–0.07)) [32], French (0.07

(0.06–0.08) [9], and Japanese (0.055 (0.045–0.065)) [45] popula-

tions, despite the use of different risk variants. While GCK

rs1799884 and MTNR1B rs10830963 are strongly associated to

FPG in both Caucasian and Asian cohorts [21,43,45,48], we and

others have observed an Asian specific G6PC2 risk variant

(rs16856187 in Hu et al [31] and the current study, and

rs3755157 in Takeuchi et al [45], r2$0.9) in addition to the

Caucasian reported rs563694 (Figure S4). This suggests that while

these loci are reproducibly associated to FPG across populations,

as shown in our meta-analyses (Figures S2, S3), replication in

multiple ethnicities could help to identify population specific risk

variants and filter for causal variants. Since G6PC2 rs478333 is

common in both Asian (0.29 in Hapmap CHB) and Caucasian

(0.49 in HapMap CEU), its replication could provide new insight.

Together, the Asian-specific rs16856187 and rs478333 and the

Caucasian specific rs563694 (r2 = 0.02 and 0.03 to rs16856187

and rs47833, respectively) helped refined a 8.8 kb region of

interest (Figure S4), which would be useful for future functional

studies.

We further observed that these variants exerted individual and

combined effects on beta-cell function, as estimated by the

homeostasis model (HOMA-B). To our knowledge, this is the first

study showing that the same risk alleles can jointly impair insulin

secretion and elevate FPG level. Each allele decreases mean

HOMA-B level by 0.04%, which may partially explain the

concomitant increase of 0.048 mmol/l in mean FPG level

(Figure 1). A recent GWAS meta-analysis involving ,100,000

Table 4. Associations of GCK rs1799884 and GCKR rs780094
with type 2 diabetes related traits in Chinese control subjects.

Study Genotypes n HOMA-IR HOMA-B

GCK rs1799884

Adults GG 399 1.5 (0.9–2.1) 106.4 (66.4–167.8)

GA 149 1.6 (1.0–2.2) 104.9 (62.8–161.7)

AA 16 1.4 (0.9–2.4) 102.5 (69.2–132.4)

P 0.6334 0.1551

Adolescents GG 686 1.6 (1.2–2.2) 133.7 (100.4–
178.2)

GA 303 1.6 (1.2–2.1) 119.5 (90.6–159.4)

AA 42 1.6 (1.2–2.0) 124.2 (88.0–170.2)

P 0.5414 0.0014

Combined P 0.8239 0.0015

Adjusted P 0.9901 0.0095

GCKR rs780094

Adults TT 123 1.5 (0.9–2.0) 108.9 (67.7–160.1)

TC 272 1.4 (0.9–2.0) 95.2 (62.2–155.8)

CC 169 1.5 (1.0–2.4) 112.8 (74.4–183.4)

P 0.3560 0.4322

Adolescents TT 192 1.6 (1.2–2.1) 128.7 (96.3–181.1)

TC 441 1.6 (1.2–2.1) 130.1 (97.6–168.2)

CC 273 1.7 (1.2–2.3) 130.3 (95.1–172.9)

P 0.2892 0.9381

Combined P 0.1503 0.4630

Adjusted P 0.3173 0.7997

Data are expressed as N, mean 6 SD or median (interquartile range). P values were
calculated from linear regression adjusted for sex, age and BMI (where appropriate)
assuming an additive genetic model. In the combined analysis, calculated P values
were also adjusted for study cohorts (adult or adolescent). Adjusted P values refer
to the P values controlled for false discovery rate in combined analysis. HOMA-IR,
HOMA of insulin sensitivity; HOMA-B, HOMA of beta- cell function.
doi:10.1371/journal.pone.0011428.t004
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Europeans demonstrated that the same risk alleles in MTNR1B,

G6PC2, and GCK were associated to FPG and HOMA-B at

genome-wide significant levels [48]. Most of the 17 FPG-

associated loci were also consistently associated to HOMA-B

[48]. Our result and other literature support that impaired beta-

cell function and hyperglycemia likely share the same underlying

pathogenic mechanism.

Although we had sufficient power (.90%) to detect T2D risks

with odds ratio ranging from 1.16 to 1.22 [21,25,31,43], we did

not detect T2D-associations for these four loci (P = 0.47–0.88).

Several large-scale studies failed to find T2D-associations as well

[28,29], and even if found, their effects on T2D are shown to be

much weaker than their effects on FPG [9,10,11,21,31,32,43].

Dupuis et al. estimated that MTNR1B, GCK and GCKR were

associated to T2D with modest effect sizes of 1.06–1.09 [48], so

our result may be explained by a lack of power due to the small

sample size.

In pancreatic islets, glucose is phosphorylated by GCK into

glucose-6-phosphate (G6P), committing it for glycolysis and the

subsequent glucose-stimulated insulin secretion (GSIS). G6PC2 is

hypothesized to counteract this process, which removes the

phosphate group and releases glucose from the beta-cell [16].

MTNR1B may down regulate GCK expression and GSIS by

lowering intracellular cAMP level [17,49]. Indeed, GCK, G6PC2

and MTNR1B knock out mice demonstrated significantly lower

FPG levels [18,27,50]. Thus, the coexistences of risk alleles in

MTNR1B, G6PC2, and GCK may confer high melatonin level, low

intra-islet glucose oxidation, and low GCK activity in carriers,

causing decreased insulin secretion and increased FPG level as

observed in this study. The low number of overlapping loci

between FPG and T2D GWAS studies [48] suggested that genetic

variants may disturb beta-cell function and affect physiological

fasting glucose levels beneath the pathological thresholds of T2D.

In conclusion, we showed that risk alleles in GCK, GCKR,

G6PC2, and MTNR1B exert joint effects on FPG and HOMA-B.

The Asian-specific risk variants in G6PC2 may help to fine map the

causal region within the gene (or possibly the G6PC2-ABCB11

region, given the proximity and strong linkage disequilibrium

between the two genes). Concordant with previous studies, we

assumed each allele contributes equal dosage, despite minor

differences among their effect sizes. Some limitations of this study

include using adolescents as controls, which may reduce our power

as they may develop T2D later in life. This concern is partially

alleviated by obtaining similar results compared to the Chinese

and Caucasian adult cohorts (Figures S2, S3). Other studies using

adolescent cohorts also reported consistent results [44]. Our study

could be improved by using directly measured insulin data rather

than surrogate measures such as HOMA-B and HOMA-IR, and

increasing the sample size of our OGTT-based associations. Our

results could be further improved by using the PACT method

instead of FDR to correct for multiple comparisons, which

considered the correlation structure among both SNPs and

phenotypes and is less conservative [40]. Future studies in other

populations would substantiate our finding.
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