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Abstract

Lung cancer is the most frequent form of cancer. The survival rate for patients with metastatic lung cancer is ,5%, hence
alternative therapeutic strategies to treat this disease are critically needed. Recent studies suggest that lipid biosynthetic
pathways, particularly fatty acid synthesis and desaturation, are promising molecular targets for cancer therapy. We have
previously reported that inhibition of stearoylCoA desaturase-1 (SCD1), the enzyme that produces monounsaturated fatty
acids (MUFA), impairs lung cancer cell proliferation, survival and invasiveness, and dramatically reduces tumor formation in
mice. In this report, we show that inhibition of SCD activity in human lung cancer cells with the small molecule SCD inhibitor
CVT-11127 reduced lipid synthesis and impaired proliferation by blocking the progression of cell cycle through the G1/S
boundary and by triggering programmed cell death. These alterations resulting from SCD blockade were fully reversed by
either oleic (18:1n-9), palmitoleic acid (16:1n-7) or cis-vaccenic acid (18:1n-7) demonstrating that cis-MUFA are key molecules
for cancer cell proliferation. Additionally, co-treatment of cells with CVT-11127 and CP-640186, a specific acetylCoA
carboxylase (ACC) inhibitor, did not potentiate the growth inhibitory effect of these compounds, suggesting that inhibition
of ACC or SCD1 affects a similar target critical for cell proliferation, likely MUFA, the common fatty acid product in the
pathway. This hypothesis was further reinforced by the observation that exogenous oleic acid reverses the anti-growth
effect of SCD and ACC inhibitors. Finally, exogenous oleic acid restored the globally decreased levels of cell lipids in cells
undergoing a blockade of SCD activity, indicating that active lipid synthesis is required for the fatty acid-mediated
restoration of proliferation in SCD1-inhibited cells. Altogether, these observations suggest that SCD1 controls cell cycle
progression and apoptosis and, consequently, the overall rate of proliferation in cancer cells through MUFA-mediated
activation of lipid synthesis.
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Introduction

Non-small cell lung cancer is the leading cause of death by

cancer in the developed world. The 5-year survival rate is ,15%

for patients with lung cancer, and decreases to ,5% in subjects

with metastatic cancer [1], therefore novel therapeutic approaches

based on new molecular targets are needed. In recent years,

studies have revealed that the constitutive activation of lipid

biosynthesis, particularly the synthesis of saturated (SFA) and

monounsaturated fatty acids (MUFA), is a critical event in

carcinogenesis [2,3], suggesting that lipogenic pathways may be

valuable targets for cancer intervention. SCD is a family of D9-

fatty acid desaturase isoforms that converts SFA into MUFA [4].

Two isoforms are present in humans; SCD1, which is expressed in

most adult tissues, and SCD5, which is highly expressed in embryo

tissues and adult brain [5,6]. It has been shown that malignant

transformation in lung cancer cells is positively correlated with

SCD1 activity and expression [7]. Furthermore when several

cancer cell lines were screened with a siRNA library against 3,700

genes to identify suitable targets for inducing cytotoxicity and cell

death, SCD1 was one of the main targets identified [8]. In lung

cancer cells, abrogation of SCD1 gene expression leads to

impaired de novo lipid synthesis, a reduced rate of cell

proliferation, a loss of anchorage-independent growth and higher

rates of ceramide-independent apoptosis [9]. These findings

strongly implicate SCD1 in the regulation of proliferation,

invasiveness and survival of cancer cells.

SCD1 also plays a key role in tumor formation and growth. In

mice, the background level of SCD1 expression correlates with

predisposition to liver carcinogenesis; rodents with higher levels of

SCD1 are more susceptible to induction of cancer [10].

Furthermore, using athymic ‘‘nude’’ mice, we demonstrated for

the first time that lung cancer cells with reduced levels of SCD1

exhibit a severely impaired capacity for tumor formation and

progression of tumor growth, suggesting that SCD1 is a critical

factor in tumorigenesis [11].
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We previously reported [9,11,12] that SCD1, by converting

SFA into MUFA, regulates cancer cell lipogenesis by: i)

maintaining ACC in its activate state though the conversion of

saturated acylCoAs which are allosteric inhibitors of ACC into

MUFA; ii) promoting the dephosphorylation and inactivation of

AMPK, the main cancer cell fuel sensor that targets ACC for

phosphorylation/inactivation; and iii) inducing the activation of

the Akt pathway, which activates the expression of key lipogenic

enzymes [3]. While these results clearly support SCD1 as a central

regulator of lipogenesis in cancer cells, they do not fully explain

how SCD1 and lipogenesis interact in regulating cancer cell

mitogenesis and transformation.

The goal of the present study was to investigate the role of

SCD1 in modulating cell cycle progression. Using a novel small

molecule inhibitor of SCD activity, we determined that acute

pharmacological inhibition of SCD1 in lung cells blocks the

passage of cycling cells from G1 to S-phase and induces the

entrance of cells into programmed cell death. Moreover, in cells

incubated with a small molecule inhibitor of ACC, a rate-limiting

lipogenic enzyme that is modulated by SCD1 activity levels,

similar alterations in cell proliferation were observed. Consistent

with fatty acid synthesis being the common target pathway, there

was no synergistic cytostatic effect when cells were incubated with

both an ACC and SCD inhibitor.

Materials and Methods

Materials
AG01518 normal human skin fibroblasts were obtained from

Coriell (Camden, NJ). H460 human lung adenocarcinoma cells

were from ATCC (Manassas, VA). Cell culture media and other

culture reagents were from Invitrogen Life Technologies (Carls-

bad, CA). [6-3H]thymidine was from American Radiolabeled

Chemicals, Inc. (St. Louis, MO). Ultrafiltered fetal bovine serum

(FBS), fatty acid-free bovine serum albumin (BSA), mouse anti-b-

actin monoclonal antibody, anti-mouse IgG peroxidase conjugate,

phosphatase and protease inhibitor cocktail were purchased from

Sigma (St. Louis, MO). Cyclin D1 and CDK6 antibodies were

from Cell Signaling Technology (Danvers, MA). Cell culture

supplies, silica gel 60 chromatography plates, and analytical-grade

solvents were from Fisher Scientific, (Morris Plains, NJ). CP-

640186 was kindly donated by Donnie Owens, Pfizer.

Cell culture
Cells were grown in DMEM supplemented with 10% FBS,

penicillin (100 U/ml), streptomycin (10 mg/ml), 1% non essential

amino acids and 1% MEM vitamin solution (growing medium), at

37uC, 5% CO2, and 100% humidity.

Cell proliferation assay
Cell proliferation rate was determined in normal human

fibroblasts and H460 cancer cells by Crystal violet assay [12].

Briefly, cells were fixed with methanol, stained with 0.1% crystal

violet in distilled water and rinsed three times with water. The dye

in the stained cells was solubilized in 10% methanol, 5% acetic

acid solution and quantified by spectrophotometry at 580 nm.

The value of a blank well was subtracted in each case. Results were

expressed as percentage change in cell proliferation with respect to

OD values of vehicle-treated control (100%). In these cells, SCD1

activity was abrogated by incubation with the small molecule SCD

inhibitor CVT-11127 [13]. At the concentrations used in

experiments, CVT-11127 inhibited SCD1 activity more than

95% [12]. Cells were also treated with 20 mM CP-640186, a

potent inhibitor of ACC activity [14]. Cells were incubated with

the inhibitors for 48 h or more in order to allow for at least one

population doubling. For some experiments, exogenous fatty acids

complexed with BSA (ratio 2:1) were added to the incubation

media.

Determination of cell cycle distribution
In order to determine the distribution of cell populations in

different phases of cell cycle, H460 cells were treated with either

1 mM CVT-11127, 20 mM CP-640186, or DMSO vehicle for

48 h. Groups of cells were incubated in parallel with 100 mM fatty

acids complexed with BSA. At the end of incubations, cells were

collected and treated with 50 ml RNase I (1 mg/ml) and stained

with 5 ul propidium iodide (1 mg/ml). The percentage of cells in

cell cycle phases was analyzed by fluorocytometry.

Determination of apoptosis by DNA fragmentation assay
The determination of DNA fragmentation rate was performed

as described by Scaglia & Igal [11]. Briefly, DNA in preconfluent

cells was labeled with 0.4 mCi [3H]thymidine in regular growing

medium for 24 h. Medium was then removed, the cell monolayers

were washed twice with PBS at 37uC and cells were allowed to

grow for 24 h in presence of 1 mM CVT-11127 or vehicle. Groups

of cells were supplemented with oleic acid. After treatment, the

chase medium containing detached apoptotic cells was collected

and the [3H]radioactivity was determined in a scintillation

counter. Cell monolayers were lysed in PBS with 1% Triton-

X100 and 0.2 mM EDTA and sedimented by centrifugation.

Radioactivity was quantified in the supernatant containing

fragmented [3H]DNA, and in the pellet containing intact cellular

DNA. The pellet was washed and resuspended in 1% Triton-

X100 and 0.2 mM EDTA. The percentage of fragmented

[3H]DNA was estimated according to the following calculation:

(chase medium DPM + supernatant DPM)/total DPM.

Cell lipid extraction and analysis
Cell lipids were extracted following the procedure of Bligh &

Dyer [15]. Total phospholipids and individual neutral lipids were

separated by thin-layer chromatography (TLC) as described in

Scaglia and Igal [7]. Lipid spots on the TLC plate were stained

with iodine vapors, photographed and their relative content was

quantified by optical densitometry in Bio-Rad Chemidoc digital

image system using QuantityOne software.

Results

SCD1 controls the passage of H460 cells through the G1/
S boundary of the cell cycle.

Previous studies from our laboratory established that acute and

chronic depletion of SCD1 in cancer cells resulted in impaired cell

proliferation [9,11,12]. To better understand the mechanism by

which SCD1 inhibition impairs cell growth, H460 lung adeno-

carcinoma cells were incubated with 1 mM CVT-11127, a novel

small molecule inhibitor of SCD1, in serum-containing media for

48 h and cell cycle progression was analyzed by flow cytometry

(Fig. 1A). It was observed that the population of cells in S-phase

was decreased by ,75% with CVT-11127 treatment when

compared to vehicle-treated controls, indicating that SCD1

inhibition specifically targets the progression of the cell cycle at

the level of the synthetic phase. A concomitant increase in the

population of SCD1-deficient cells in G1 phase was also detected,

while there were no changes in percentage of cells in G2/M phase.

However, in cells incubated with the SCD inhibitor in serum-

deficient media, a ,50% decrease in cells in G2/M-phase was also

observed (data not shown), suggesting that identified components

SCD Activity and Cell Cycle
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of serum, possibly MUFA-containing lipids, were able to sustain

the passage of SCD1-deficient cells through mitosis. Overall, these

results indicate that cycling cells with a blockade in SCD1 activity

were not able to progress through the early stages of the cell cycle.

Exogenous oleic acid markedly reversed the cell cycle changes

produced by SCD1 inhibition demonstrating the critical impor-

tance of MUFA to cell cycle progression.

The levels of mammalian cyclins and cyclin-dependent kinases

(CDKs) notably fluctuate during cell cycle progression. Cyclins D

and CDKs are key determinants in the passage of the cell cycle

through G1 phase, past the restriction point and into S-phase.

Having observed that the pharmacological ablation of SCD1

promoted an alteration in the progression G1RS, we determined

the levels of cyclin D1 and CDK6 when compared to vehicle-

treated controls. We observed that after treating cells for 48 h with

the SCD1 inhibitor, cancer cells exhibited a marked decrease in

the content of both cyclin D1 and CDK6 (Fig. 1B). Incubation of

SCD1-depleted cells with oleic acid normalized the levels of both

proteins confirming that MUFA are crucial molecules in the

regulation of the cell cycle.

Since the capacity of cancer cells to evade programmed cell

death also contributes to the rate of cancer cell proliferation, the

effects of oleic acid on the restoration of cell proliferation in the

presence of an SCD1 inhibitor could be due, in part, to

suppression of apoptosis. Therefore, we determined the rate of

DNA fragmentation, a typical marker of apoptosis, in cells treated

with CVT-11127 or DMSO for 48 h in the presence or absence of

100 mM oleic acid. As shown in Fig. 1C, fragmentation of DNA

was increased by 2.2-fold in SCD1-ablated cells compared to

controls, indicating that SCD1 is a key survival factor in cancer

cells. We also observed that exogenous oleic acid reduced the level

of fragmented DNA in SCD1-deficient cells to control values,

suggesting that this fatty acid or a fatty acid product of SCD1 is

essential for preventing apoptosis in cancer cells.

Cis-MUFA rescue cell proliferation impaired by SCD1
inhibition

We have previously shown that the anti-proliferative effects of

CVT-11127 (1 mM) could be reversed by oleic acid [12].

However, the effect of other SCD product fatty acids has not

been investigated. In H460 lung cancer cells, we found that

palmitoleic (16:1 n-7) and cis-vaccenic acids (18:1n-7), like oleic

acid completely reversed the anti-proliferative effect of CVT-

11127 (Fig. 2A). However, when H460 cells were incubated with

Figure 1. The inhibition of SCD1 activity blocks cell cycle progression and induces programmed cell death in cancer cells. In H460
lung cancer cells treated with 1mM CVT-11127 (CVT) or DMSO for 48h, in presence or absence of 100mM oleic (Ole), the distribution of cells in cell cycle
phases was determined by fluorocytometry (A), levels of cyclin D1, CDK6 and b-actin were assessed by Western blot (B), and the rate of apoptosis
was determined by the levels of fragmented [3H]thymidine-labeled DNA (C). *, p,0.05 or less vs. vehicle-treated cells; **, p,0.05 or less vs CVT-
treated cells, by Student’s t test.
doi:10.1371/journal.pone.0011394.g001
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or without 1 uM CVT or DMSO for 48 h in presence of either

100 mM myristic (14:0), palmitic (16:0), heptadecanoic (17:0), or

stearic acids (18:0) (Fig. 2B), we observed that all the SFA, with the

exception of heptadecanoic acid, a non-natural fatty acid,

augmented the anti-proliferative effect of the SCD inhibitor,

whereas the SFA had no anti-proliferative effect in cells treated

with vehicle. In addition, the anti-proliferative effect of both SCD1

inhibition and stearic acid could be overcome by co-incubation

with oleic acid. Taken together these observations clearly show

that both endogenous and exogenous SFA are cytotoxic in the

absence of either SCD to produce MUFA or exogenously added

MUFA.

As shown in Fig. 2C, when CVT-treated cells or their controls

were incubated with 250 mM palmitic acid cell proliferation

decreased even further than in cells with a blockade in SCD1 and

incubated with 100 mM palmitic acid. However, the cytotoxic

effect of very high palmitic acid was fully prevented with oleic acid

but only partially with 250 mM of the trans-MUFA elaidic acid,

suggesting that only cis-MUFA are functionally appropriate to

counteract the cytotoxic effect of high levels of SFA.

To determine whether MUFA provides broad protection

against cytotoxicity, we determined the ability of oleic acid to

overcome the anti-growth effect of tunicamycin, a compound that

promotes cell stress and apoptosis by inhibiting protein glycosyl-

ation. Tunicamycin decreased cell proliferation by 80% in both

CVT and vehicle-treated cancer cells, whereas addition of oleic

acid was unable to restore the proliferation of SCD1-inhibited cells

(Fig. 2D). This observation emphasizes that the protective action

of SCD1 against SFA-mediated cytotoxicity in cancer cells results

from its specific activity in the fatty acid biosynthetic pathway and

not general cytoprotective activity.

Blockade of SCD1 activity with CVT-11127 impairs the
proliferation of H460 cancer cells but not normal human
fibroblasts

In earlier studies we reported that the proliferation of normal

human skin fibroblasts was not impaired by SCD inhibition [12].

However, it is possible these cells are resistant to the effects of SCD

inhibition and need to be incubated for a longer period of time

with the inhibitor or with a higher concentration of inhibitor. To

look at the effect of incubation time and inhibitor concentration,

normal human fibroblasts were incubated for 96 h, time enough to

ensure at least one population doubling, with 1 and 2 mM CVT-

11127 in medium containing 10% FBS. As displayed in Fig. 3A,

incubation with the SCD inhibitor did not effect the proliferation

of these cells. However, similar conditions completely blocked

(98%) the growth of H460 cells (Fig. 3B). Both normal and cancer

cells were treated with the SCD inhibitor in serum-deficient media

and the effect of the SCD inhibitor on cell growth was

independent of the presence of serum (data not shown). The fact

that fibroblasts were completely unresponsive to the cytostatic

Figure 2. Impaired cell proliferation of cancer cells with a blockade in SCD1 activity is restored by exogenous cis- and trans-MUFA.
A, H460 lung cancer cells were treated with 1 mM CVT-11127 (CVT) or DMSO for 48 h in presence or absence of 100 mM cis-MUFA palmitoleic acid
(Pol), oleic acid (Ole) or cis-vaccenic acid; and cell proliferation was determined by Crystal violet staining. Proliferation was similarly assessed in H460
cells that were treated with 1 mM CVT-11127 (CVT) or DMSO for 48 h in presence or absence of 100 mM SFA myristic (Myr), palmitic (Pal),
heptadecanoic (Hep), or stearic (Ste) acids (B), or 250 mM Pal, plus or minus 250 mM Ole or elaidic (Ela) (C). Groups of DMSO- and CVT-treated cells
were incubated with 2 mg/mL tunicamycin in presence or absence of 100 mM oleic acid for 48 h and cell growth was determined (D). *, p,0.05 or
less, vs DMSO; **, p,0.05 or less vs fatty acid-treated control, by Student’s t test.
doi:10.1371/journal.pone.0011394.g002
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effect of the SCD inhibitor suggests that non-cancer cells have a

smaller requirement for endogenously produced MUFA than

cancer cells.

Active de novo lipid synthesis is required for fatty acid-
mediated reversal of the anti-proliferative effect of SCD1
inhibition

We have reported that inhibition of SCD1 reduces lipogenesis, at

least partly by inactivating the rate-limiting lipogenic enzyme ACC-

a and that reduced lipogenesis may contribute to the low

proliferation by SCD1-ablated cells [12]. To investigate the

relationship between SCD1, ACC and lipogenesis in cancer cell

proliferation, we treated H460 cells with CP-640186, a specific

inhibitor of ACC, at a concentration of 20 mM which inhibits more

than 95% of enzyme activity [14]. As shown in Fig. 4A, incubation

of cells with the ACC inhibitor for 48 h led to a ,30% decrease in

cell number compared to vehicle-treated controls. This is in

agreement with previous reported studies [16,17]. The cytostatic

effect of ACC blockade was reversible by both 100 mM palmitic

acid and 100 mM oleic acid (Fig. 4A) suggesting that ACC activity

regulates cell proliferation by supplying fatty acids for lipid

biosynthesis. The growth inhibitory effect of ACC inhibition was

caused by a block in cell cycle progression since there was a

significant reduction in the population of cells in S- and G2/M

phases and a concomitant increase in cells in G0/G1 with respect to

controls (Fig. 4B). Exogenous oleic acid had a marked effect on

restoring the cell cycle profile of ACC-depleted cells, similar to the

effect on SCD1 inhibited cells reinforcing the concept that the

ultimate metabolic purpose of the concerted activation of ACC,

FAS and SCD1 observed in cancer cells is the production of MUFA.

Interestingly, co-treatment with CVT-11127 and CP-640186

did not potentiate the growth inhibitory effect of each of these

compounds, suggesting that inhibition of either ACC or SCD1

affects a common product of the pathway. Since SCD1 is later in

the fatty acid biosynthetic pathway, MUFA are the fatty acid

critical for cell proliferation. Indeed, in cells incubated with both

ACC and SCD1 inhibitors, oleic acid was able to fully restore the

low cell proliferation rate of H460 cells to control values. These

data strongly support the conclusion that MUFA are the

functional end product(s) of fatty acid biosynthesis that are

required for cancer cell growth.

Lipid biosynthesis in mammalian cells is controlled by the

transcriptional factors SREBP-1a and SREBP-1c, which are

central regulators of fatty acid and phospholipid synthesis in

mammalian cells [18,19]. Induction of lipogenesis in human non-

transformed and cancer cells requires SREBP-1 activation [20–

22], therefore we determined the effect of down-regulation of

lipogenesis by SREBP-1 inactivation on cell-proliferation. H460

cells were incubated with the SCD1 inhibitor for 48 h in presence

or absence of 25-hydroxycholesterol, a potent inhibitor of SREBP-

1 activation and cleavage by SCAP [19]. Incubation with 25-

hydroxycholesterol alone did not affect cancer cell proliferation,

however co-treatment of cells with the hydroxysterol and CVT-

11127 promoted a more profound growth inhibitory effect than

with the SCD1 inhibitor alone, an effect likely due to a

potentiation of the anti-lipogenic activity of both inhibitors

(Fig. 4D). Consistent with our previous observations, 100 mM

oleic acid was sufficient to overcome the cytostatic effects of both

SCD1 inhibition and combined SCD1 inhibition and down

regulation of lipid synthesis, further confirming the importance of

both lipid synthesis and fatty acid desaturation by SCD1 in

providing the substrates for cancer cell growth.

Finally, additional proof that active lipid formation is a key step

in the regulation of cell proliferation by SCD1 was obtained by

examining the relative content of major lipids in cells undergoing

inhibition of SCD1 and treated with exogenous fatty acids. As

displayed in Fig. 5A, blockade of SCD1 with CVT-11127 led to a

significant reduction of the main neutral lipids, CE and TAG

while total phospholipids were slightly reduced. Incubation of

SCD1-depleted cells with 100 mM oleic acid dramatically

increased the levels of TAG by 4.4-fold over control values

(Fig. 5B). Addition of oleic acid fully restored the decreased

content of CE in SCD1-deficient cells (Fig. 5C), whereas it

returned phospholipid levels (Fig. 5D) to control values. Altogeth-

er, these observations reinforce the notion that SCD1 determines

the rate of cell cycle progression and programmed cell death, and

ultimately, the proliferation of cancer cells by sustaining active

lipid synthesis and cis-MUFA production.

Discussion

In previous studies, we reported that genetic and pharmaco-

logical ablation of SCD1 severely impairs the ability of cancer cells

to proliferate [12]. In the present work, we provide new evidence

that SCD1 controls the rate of cancer cell mitogenesis by

modulating cell cycle progression. Our observation that cancer

cells treated with a pharmacological inhibitor of SCD1 are

Figure 3. Inhibition of SCD activity with CVT-11127 impairs the proliferation of H460 cancer cells but not normal human
fibroblasts. Cell growth was determined in AG01518 normal human fibroblasts (A) in presence of 1 and 2 mM CVT-11127 in 10%FBS DMEM or
vehicle for 96 h. H460 cells (B) were treated with 1 mM CVT-11127 or vehicle for 96 h. Cell proliferation rate was assessed by Crystal violet staining.
*, p,0.05 or less, vs DMSO; by Student’s t test.
doi:10.1371/journal.pone.0011394.g003
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arrested in the G1 phase and that this effect is restored by oleic

acid suggests that MUFA synthesis is required in early phases of

the cell cycle. Furthermore, inhibition of ACC and FAS, two key

enzymes of the synthesis of fatty acids, elicited a similar blockade

in the progression of the cell cycle through the G1/S boundary

[16,23,24]. These observations suggest that a concerted activation

of SFA synthesis and subsequent conversion of SFA into MUFA is

required to provide the phospholipid biosynthetic machinery with

MUFA substrates for new membrane synthesis before or during

the synthetic phase of the cell cycle. In fact, elegant studies by

Jackowski [25,26] revealed that the accumulation of new

phospholipids for dividing cells is the product of elevated synthesis

and turnover that occurs during G1 and early S phases.

Our data also suggest that SCD1 may control cell cycle

progression by altering the levels of cyclin D1 and CDK6, two

proteins whose expression and interaction are critical for the

passage of cycling cells through G1/S transition [27]. SCD1

activity may indirectly regulate the content of these cell cycle

proteins by modulating GSK3b, a downstream target of the Akt

pathway that increases the degradation of cyclin D1 [28]. We have

previously reported that inhibition of SCD1 expression inactivates

Akt and increases the dephosphorylation and activation of

GSK3b. Changes in the biochemical composition and hence the

biophysical properties of cellular membrane domains can activate

signal transduction and transcription pathways that modulate

mitogenesis [3]. Control of SFA and MUFA balance by SCD1

appears to be a critical modulator of growth signals in human cells

[11,12], however the mechanisms through which this enzyme

coordinates modifications in membrane lipid composition, mem-

brane-derived signals and their downstream effects are still not

fully understood.

While cancer cells multiply through persistent cell division, the

number of proliferating cells is also affected by the rate of cell

death. Besides favoring a greater rate of cell mitogenesis, we

provide evidence that SCD1 is an important survival factor for

cancer cells by helping the cell avoid programmed cell death

through production of cis-MUFA. SCD1 activity may prevent

cancer cell apoptosis by at least two mechanisms: protection from

SFA-mediated toxicity or lipoapoptosis [11,29], and the stimula-

tion of cis-MUFA biosynthesis for cell proliferation. High

constitutive fatty acid synthesis is typically found in cancer cells

[3], hence a tonically active SCD1 may prevent the potentially

deleterious effects of endogenous SFA accumulation. Since elaidic

acid, a trans-MUFA, only weakly prevented the cytotoxic effect of

both SCD1-deficiency and SFA while cis-MUFA fully restored

proliferation, there appears to be some fatty acid species specificity

for the protective effect. This possibly occurs by MUFA displacing

SFA from key cytotoxic metabolic reactions.

Active lipogenesis, particularly membrane lipid synthesis, is a

critical requirement for the continuous proliferation of cancer cells

Figure 4. Oleic acid is unable to fully reverse the low proliferation rate of SCD1-deficient when de novo lipid synthesis is blocked.
H460 lung cancer cells were treated with 1 mM CVT-11127 (CVT), 10 mM CP-640186 or both in presence or absence of 100 mM palmitic acid (Pal) or
oleic acid (Ole) (A), and cell proliferation was assessed after 48 h. Distribution of cells in cell cycle phases was determined by fluorocytometry in cells
incubated with CP-640186 plus or minus 100 mM oleic acid and (B). Cancer cell proliferation was also determined upon treatment with 1 mM CVT-
11127 (CVT), 20 mM CP-640186, or both in presence or absence of 100 mM palmitic acid (Pal) or oleic acid (Ole) (C), and in cells treated for 48 h with
1 mM CVT-11127, 25-hydroxycholesterol or both, plus or minus 100 mM oleic acid (D). In all experiments, control cells received equivalent volumes of
DMSO vehicle. *, p,0.05 or less compared to DMSO; **, p,0.05 or less compared to CVT-treated control, by Student’s t test.
doi:10.1371/journal.pone.0011394.g004
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and a mechanism for avoiding entry into the program of apoptosis

[30]. We have previously established that SCD1 controls the

overall rate of lipid synthesis in lung cancer cells [9,11,12]. Results

from the present work reinforce the concept that SCD1 may

control cell proliferation by affecting the fatty acid biosynthetic

rate [12]. We observed a significant decrease in the proliferation of

H460 cells in the presence of an ACC inhibitor and the anti-

proliferative effect which can be attributed to defective fatty acid

synthesis could be rescued by both oleic acid (MUFA) and palmitic

acid (SFA). These findings agree with previous reports demon-

strating that cell growth arrest in ACC depleted cells could be

reversed by exogenous palmitic acid [16,17]. Since both ACC and

SCD1 inhibition promoted similar alterations to cell cycle

progression that were reversible by exogenous oleic acid, it is

reasonable to conclude that MUFA are the ultimate functional

product in cancer cells necessary for rapid cell proliferation and

resistance to SFA cytotoxicity.

Our data show that exogenously added oleic acid restored

neutral lipid levels in SCD deficient cells. The pro-lipogenic effect

of MUFA may be due to their capacity to act as substrates for

acylation as it has been established that MUFA are preferred over

SFA as substrates for triacylglycerol and cardiolipin synthesis

[31,32]. In cancer cells, the high MUFA production promoted by

SCD1 activity ensures the overactive lipid biosynthetic machinery

is supplied with preferential substrates. The presence of highly

unsaturated lipids in cancer cells may have critical implications for

their biological phenotype. The constitutive activation of SCD1 in

cancer cells enriches the major phospholipids of cell membranes

with MUFA thereby producing a more fluid lipid membrane

environment [7], a condition that is thought to induce growth

factor-activated proliferation [33,34], cancer growth and invasive-

ness [35–37].

In conclusion, this is the first published study demonstrating that

SCD1 modulates the passage of cycling cells through the G1/S

boundary and the entry in the apoptotic program. This work

supports the view that SCD1 regulates mitogenesis by modulating

the rate of fatty acid synthesis, by preventing the toxic

accumulation of SFA, and by controlling the supply of MUFA

substrates required for lipid biosynthesis and cancer cell

proliferation.
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Figure 5. Effect of exogenous fatty acids on the levels of lipids in SCD1-deficient cells. H460 lung cancer cells were treated with 1 mM
CVT-11127 (CVT) for 48 h in presence or absence of 100 mM oleic acid (Ole). Total cell lipids were extracted, separated by TLC and stained with iodine
vapors (A). Relative levels of, triacylglycerols (B), cholesterolesters (C), and phospholipids (D), were determined by densitometric scanning. *, p,0.05
or less, vs DMSO; **, p,0.05 or less vs CVT-treated control, by Student’s t test.
doi:10.1371/journal.pone.0011394.g005
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