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Abstract

Messenger ribonucleoprotein particles (mRNPs) are used to transport mRNAs along neuronal dendrites to their site of
translation. Numerous mRNA-binding and regulatory proteins within mRNPs finely regulate the fate of bound-mRNAs. Their
specific combination defines different types of mRNPs that in turn are related to specific synaptic functions. One of these
mRNA-binding proteins, Staufen2 (Stau2), was shown to transport dendritic mRNAs along microtubules. Its knockdown
expression in neurons was shown to change spine morphology and synaptic functions. To further understand the molecular
mechanisms by which Stau2 modulates synaptic function in neurons, it is important to identify and characterize protein co-
factors that regulate the fate of Stau2-containing mRNPs. To this end, a proteomic approach was used to identify co-
immunoprecipitated proteins in Staufen2-containing mRNPs isolated from embryonic rat brains. The proteomic approach
identified mRNA-binding proteins (PABPC1, hnRNP H1, YB1 and hsc70), proteins of the cytoskeleton (a- and b-tubulin) and
RUFY3 a poorly characterized protein. While PABPC1 and YB1 associate with Stau2-containing mRNPs through RNAs, hsc70
is directly bound to Stau2 and this interaction is regulated by ATP. PABPC1 and YB1 proteins formed puncta in dendrites of
embryonic rat hippocampal neurons. However, they poorly co-localized with Stau2 in the large dendritic complexes
suggesting that they are rather components of Stau2-containing mRNA particles. All together, these results represent a
further step in the characterization of Stau2-containing mRNPs in neurons and provide new tools to study and understand
how Stau2-containing mRNPs are transported, translationally silenced during transport and/or locally expressed according
to cell needs.
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Introduction

In neurons, mRNA transport is widely used to differentially

regulate protein content in domains distant from the cell body [1].

Especially, mRNA transport and local translation are known to be

involved in neuron development, synaptic functions and plasticity

[2,3,4]. A current model stipulates that, along the way from

nuclear export to dendritic anchoring, proteins are added or

removed from the mRNP complexes in a dynamic way. It was

proposed that these proteins finely control the successive steps that

ensure proper expression of mRNA at specific times and space.

Several combinations of mRNAs and proteins form a highly

heterogeneous population of ribonucleoprotein (RNP) complexes

that are linked to different forms of synaptic activity and/or

plasticity [5,6,7]. In particular, two large families of RNPs have

been suggested: mRNA particles and mRNA granules [3,6].

mRNA particles are distinguished from mRNA granules by the

absence of ribosomes. It was suggested that RNA particles might

represent the observed transport mRNPs [2].

Staufen2 (Stau2), a protein mainly expressed in brain is a well

accepted player for mRNA localization [7,8]. The Stau2 gene

expresses four protein isoforms of 62, 59, 56 and 52 kDa that are

generated by differential splicing (Fig. 1) [7]. Stau2 binds double-

stranded RNAs and is incorporated into mRNPs that move along

microtubules in neuronal dendrites [6,7,8]. Interestingly, its level

of expression in dendrites regulates the level of transported

mRNAs showing the importance of Stau2 for mRNA transport.

Likely as a consequence, neurons in which Stau2 has been down-

regulated by RNAi show a reduced density of dendritic spines,

associated with a change in their morphology. These phenotypes

result in reduced amplitude of the miniature excitatory postsyn-

aptic currents, a measure of synaptic transmission [9].

Stau2 was described in both the nucleus and somatodendritic

compartment of the cells [7,10]. Accordingly, Stau2 was shown to

associate with nuclear factors suggesting an early role for Stau2 in

mRNP assembly [11,12]. In the somatodendritic compartment, Stau2

associates with both mRNA granules and mRNA particles. On a

sucrose gradient, Stau262 co-fractionates with ribosome-free particles

whereas Stau259 and Stau252 were found in fractions that contained

ribosomes [7]. However, the composition of these complexes is still

largely unknown. In the work described in this paper, we

immunoprecipitated Stau2-containing mRNPs and used a proteomic

approach to identify Stau2-associated proteins. Several RNA-binding

proteins and proteins of the cytoskeleton have been identified.
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Results

Isolation and characterization of Stau2-containing
mRNPs

In order to identify the protein content of Stau2-containing

RNPs, extracts of embryonic rat brains were prepared and

endogenous Stau2 was immunoprecipitated using the polyclonal

anti-Stau2 antibody L1 and its pre-immune serum as control

(Fig. 1). Following separation of co-immunoprecipitated proteins

by SDS-PAGE, the gel was cut into bands of 3 mm and the

proteins digested in-gel with trypsin. Resulting peptides were

identified by mass spectrometry. In addition to Stau2, seven

proteins were present in the Stau2 immunoprecipitate (Table 1

and Supplemental Table S1). Y box-binding protein 1 (YB1),

polyadenylate-binding protein cytoplasmic 1 (PABPC1), heat-

shock cognate protein 70 (hsc70) and heterogeneous nuclear

ribonucleoprotein H1 (hnRNP H1) are RNA-binding proteins

previously associated with other mRNPs, a- and b-tubulin are

protein components of the cytoskeleton and RUFY3 (rap2-

interacting protein X) is still poorly characterized.

PABPC1, YB1, and hsc70 co-immunoprecipitate with
Stau262 and Stau259

It was previously shown that Stau262 co-fractionated with

ribosome-free mRNPs whereas Stau259 and Stau252 isoforms were

found in heavy fractions that also contained ribosomes [7].

Therefore, we first tested whether the association between Stau2

and the identified RNA-binding proteins is specific for one Stau2

isoform or present in different complexes. In addition, we

determined whether the association is direct or whether it involves

an RNA intermediate. To this end, N2A cells were transfected

with plasmids coding for Stau262-HA3 or Stau259-HA3 and tagged

proteins as indicated (Fig. 2). Cell extracts were prepared and

Stau2 was immunoprecipitated using anti-HA antibody, in the

presence or absence of the micrococcal nuclease. Co-immunopre-

cipitated proteins were analyzed by western blotting using anti-

myc or anti-GFP antibody as indicated. In the absence of

micrococcal nuclease, PABPC1-myc, YB1-CFP and hsc70-CFP

were found in Stau262-HA3 and Stau259-HA3 immunoprecipitates

indicating that they are present in the same complexes as Stau2-

HA3 isoforms (Fig. 2 A–C). In contrast, hnRNP H1-myc was not

detected (Fig. 2D). When micrococcal nuclease was added to the

cell extracts before immunoprecipitation, Stau262-HA3 and

Stau259-HA3 interaction with hsc70-CFP was still observed

(Fig. 2C) whereas interactions with PABPC1-myc and YB1-CFP

were lost (Fig. 2 A,B). These results show that several RNA-

binding proteins are present in the same complexes as Stau2

isoforms and suggest that only the Stau2/hsc70 interaction

involved direct protein-protein interaction.

Direct interaction between hsc70 and Stau262

To confirm the interaction between hsc70 and Stau2 at the

protein level, we performed two in vitro binding assays, GST-pull

down and surface plasmon resonance (SPR). To this end,

bacterially expressed GST, maltose-binding protein (MBP),

GST-hsc70 and MBP-Stau262 fusion proteins were affinity

purified (Fig. 3A). For the pull down assay, GST as a negative

control and GST-hsc70 were attached to glutathione columns.

Figure 1. Immunoprecipitation of Stau2 isoforms. (A) Schematic
representation of Stau2 isoforms. The Stau2 gene generates four
different isoforms of 62, 59, 56 and 52 kDa through differential splicing.
Black, grey and white boxes represent double-stranded RNA-binding
(dsRBD) consensus sequence having full, partial or no RNA-binding
activity, respectively. Hatched boxes represent the tubulin-binding
domain (TBD). (B) Immunoprecipitation of Stau2 isoforms from
embryonic E17-18 rat brain extracts using two different polyclonal
anti-Stau2 antibodies, L1 (St2-L1) and L2 (St2-L2). The specificity of
these antibodies was previously reported [7]. Pre-immune (PI) sera were
used as controls. The Stau256 isoform is not visible in these cell extracts.
* represents a non-specific IgG band.
doi:10.1371/journal.pone.0011350.g001

Table 1. Proteomically identified proteins in Stau2-containing mRNPs.

Name Peptides Description/function References

Staufen 2 12 Double-stranded RNA-binding protein. Mainly involved in mRNA transport [7]

PABPC1 7 Polyadenylate-binding protein cytoplasmic 1. Mainly involved in the regulation
of translation

[44]

YB1 3 Y-box 1 RNA-binding protein. Mainly involved in the regulation of translation [36]; [55]

Hsc70 3 heat-shock cognate RNA-binding protein 70. Involved in nuclear trafficking, RNA
chaperone, kinesin-mediated transport

[49]; [48]; [53]

hnRNP H1 1 heterogeneous nuclear ribonucleoprotein H1. Poly(rG)-RNA-binding protein [56]

a-tubulin (1A, 1B) 5 Component of microtubule [57]

b-tubulin (2b) 12 Component of microtubule [57]

RUFY3 10 Protein interacting with rap2. Role in axonogenesis [35]

doi:10.1371/journal.pone.0011350.t001

Stau2-Containing mRNPs
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Their ability to bind MBP-Stau262 in the presence or absence of

RNase A was tested by western blotting. In contrast to GST that

failed to pull-down MBP-Stau262, the GST-hsc70 fusion protein

was able to bring down MBP-Stau262 even in the presence of

RNase A (Fig. 3B). Similarly, MBP and MBP-Stau262 were fixed

to the SPR sensor chip surface. Then GST and GTS-hsc70 were

flowed over the SPR chip surface and their interaction with the

immobilized proteins was monitored in real time. The resulting

sensorgrams indicate that a direct interaction occurred between

GST-hsc70 and MBP-Stau262 even in the presence of RNase A

(Fig. 3C). These in vitro binding studies confirm the ability of hsc70

to interact with Stau2, independent of RNA.

ATP modulates the interaction between hsc70 and
Stau262

hsc70 contains two functional domains, an N-terminal ATPase

domain that contains the ATP/ADP-binding site and a C-

terminal peptide-binding domain that contains the substrate-

binding pocket [13]. Upon ATP binding and hydrolysis a

conformational change is induced in the ATPase domain

[14,15] that modifies the structure of the substrate binding

domain and consequently modulates its ability to bind substrates.

In its ATP bound form, hsc70 binds and releases substrates

quickly, while, in the ADP bound state, substrate binding and

release are slow [16,17]. Therefore, we next tested whether the

Stau262/hsc70 association is sensitive to the presence of ATP. To

this end, the co-immunoprecipitation experiment (Fig. 4A) and the

SPR experiment (Fig. 4B) were reproduced in the presence of

10 mM ATP. In both cases, the presence of ATP almost

completely abolished the Stau262/hsc70 interaction.

Co-localisation of Stau2 isoforms with YB1 and PABPC1 in
dendrites of hippocampal neurons

Altogether, our data suggest that we have isolated Stau2-

containing mRNA particles, a sub-population of all Stau2-

associated complexes in brains [6], and that these mRNPs contain

YB1, PABPC1 and/or hsc70. To determine whether these proteins

can also be detected in the large granule complexes that are visible

in dendrites, embryonic hippocampal neurons were first transfected

with plasmids coding for PABPC1-myc, YB1-CFP, hsc70-CFP or

hnRNP H1-myc and fixed. Tagged-proteins and endogenous Stau2

were detected with anti-myc or anti-GFP and anti-Stau2 antibodies,

respectively (Fig. 5). In addition to their presence in the cell bodies,

PABPC1-myc (Fig. 5A) and YB1-CFP (Fig. 5B) can be found as

puncta in dendrites (Fig. 5A). Only a very small fraction of these

puncta also stained with antibodies that recognized endogenous

Stau2. This suggests that PABPC1 and YB1 are not components of

the large Stau2-containing complexes in dendrites. Similarly, hsc70-

CFP was homogeneously distributed in the cell body and dendrites

and did not form observable puncta (Fig. 5C). Therefore, it is

suggested that its association with Stau2 may occur outside the large

dendritic RNP complexes. Finally, hnRNP H1-myc was strictly

nuclear (Fig. 5D), indicating that, if confirmed, Stau2/hnRNP H1

association would be restricted to the nucleus.

The reverse experiment was also done. Hippocampal neurons

were transfected with Stau262-HA3 and its co-localization with

endogenous PABPC1 (Fig. 6A) and YB1 (Fig. 6B) was analyzed

with specific antibodies. In these conditions, PABPC1 partly co-

localized with Stau262-HA3 whereas YB1 displayed only a weak

co-localization. Altogether, our results suggest that PABPC1, YB1,

hsc70 and hnRNP H1 may be mostly associated with Stau2 in

small mRNPs and mainly absent in the large Stau2-containing

mRNA granules in dendrites.

Figure 2. RNA-binding proteins are associated with Stau2
isoforms in mRNPs. N2A cells were mock transfected (2) or co-
transfected with plasmids coding for either Stau259-HA3 (59) or Stau262-

HA3 (62) and plasmids coding for PABPC1-myc (A), YB1-CFP (B), hsc70-
CFP (C) or hnRNP H1-myc (D) as indicated. Immunoprecipitation of
Stau2-containing RNPs was performed with anti-HA antibody and the
proteins detected on western blots using anti-HA, anti-myc or anti-GFP
antibodies as needed. The experiments were done in the absence
(-RNase) or presence (+RNase) of Microccocal nuclease to determine if
the Stau2-protein association requires an RNA bridge. These results
were representative of at least three experiments. Input (INPUT) of
transfected proteins before immunoprecipitation is also shown to
indicate that the tagged-proteins were well expressed in these cells.
doi:10.1371/journal.pone.0011350.g002

Stau2-Containing mRNPs
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Figure 3. MBP-Stau262 binds GST-hsc70 through protein-protein interaction. To confirm the RNA-resistant interaction between Stau2 and
hsc70, bacterially expressed proteins were purified (A) and GST-pull down (B) and surface plasmon resonance SPR (C) assays were performed in the
presence or absence of RNase A. (A) MBP-Stau262, MBP, GST-hsc70 and GST were purified on amylose and glutathione-Sepharose-4B affinity columns,
respectively, and eluted proteins were analyzed by SDS-PAGE and Coomassie brilliant blue staining. (B) GST and GST-hsc70 were fixed on a
glutathione-Sepharose-4B affinity column and MBP-Stau262 was loaded in the presence (+) or absence (2) of RNase A. After several washing, proteins
were eluted from the columns and detected by western blotting using anti-Stau2 and anti-GST antibodies, respectively. (C) MBP and MBP-Stau262

were immobilized on different lanes of a SPR sensor chip. GST-hsc70 or GST were injected for 3 minutes over the surfaces in the presence or absence
of RNase and then buffer alone was injected for 2.5 min to monitor protein dissociation rate. The resulting resonance units (RU) were measured
during the association and dissociation phases. The baseline obtained with the MBP-coupled reference surface was subtracted from the sensorgram
obtained from the MBP-Stau262-coupled surface and a typical result is shown.
doi:10.1371/journal.pone.0011350.g003

Stau2-Containing mRNPs
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Discussion

Stau2 is an RNA-binding protein mainly expressed in brain [7]

and its importance for mRNA transport in dendrites [8,18] and

synaptic functions [9] has been established. As a further step

aiming to define its molecular functions in neurons and the

mechanisms of regulation of Stau2-mediated mRNA transport

and translation, we determined the molecular composition of

Stau2-containing mRNPs. The absence of ribosomal proteins in

the proteomics suggests that Stau2-containing particles have been

characterized. They mainly contain components of the microtu-

bules and RNA-binding proteins. While PABPC1, YB1 and hsc70

are clearly associated with Stau2-mRNPs, the presence of hnRNP

H1 in these complexes is still unclear. It is possible that hnRNP H1

only transiently interacts with Stau2 in the nucleus and/or that it

specifically associates with Stau256 or Stau252 isoform(s). Alterna-

tively, hnRNP H1 may be a false positive hit in the proteomics.

However, hnRNP H1 has previously been identified in polysome-

free poly(A)-bound mRNA complexes [19] and in embryonic

RNA granules [20] suggesting that it is a component of at least

some mRNPs.

Post-transcriptional regulation of gene expression relies on a

highly heterogeneous population of mRNP particles that ensure

proper mRNA processing during splicing, nuclear trafficking,

cytoplasmic localization, translation and/or decay [21,22]. The

differential presence/absence of RNA-binding proteins and other

cofactors in each mRNP determines the roles of each mRNP

complex in cellular functions and the fate of associated mRNAs.

They may also form organized domains such as nuclear speckles,

P-bodies or stress granules that are visible under the microscope

when using specific markers [23,24,25]. In dendrites of neurons,

large ribonucleoprotein complexes shown to be associated with

membranes and/or ribosomes can also be observed [2,3,6]. Our

results at the biochemical and cellular levels are consistent with the

possibility that we have isolated and characterized Stau2-

containing ribosome-free mRNPs. A minor population of soluble,

ribosome-free Stau2-containing complexes was already described

in neurons [6,7]. This population contained all differentially

spliced Stau2 isoforms and was enriched with RNAs [6].

Accordingly, in a parallel approach, we also isolated mRNAs

from the immunoprecipitated Stau2-containing mRNPs indicating

that the proteomically identified proteins are components of

complexes that also contain mRNAs [26]. The role of Stau2 and

of its protein partners on the fate of associated mRNAs is still

unclear. The presence in the proteomics of a nuclear protein

(hnRNP H1), a protein and mRNA chaperone also involved in

nuclear import/export (hsc70) and proteins that regulate transla-

tion initiation (PABPC1 and YB1) suggests that the isolated Stau2-

containning mRNPs may be those involved in mRNP formation in

the nucleus and/or in post-transcriptional regulation of bound

mRNAs (see below). Stau2 was shown to be involved in mRNA

transport in cellular processes [6,8,18,27], and based on known

functions of its paralog Stau1, it might also be implicated in the

control of mRNA stability or translation [28,29].

Interestingly all Stau2-associated proteins except RUFY3 were

previously described in different mRNPs. Indeed, a- and b-

tubulin, YB1, PABPC1, hsc70 and hnRNP H1, as well as Stau2,

were all present in the heterogeneous populations of mRNA

granules isolated from embryonic rat brains [20]. Different

combinations of the proteins were also described in other mRNPs

[19,30,31]. However, they are not universal components of all

mRNPs since they were not identified in RNA granules isolated

from post-natal rat brains [32] and only PABPC1 and tubulins

were found in Stau1-containing mRNPs [33,34] suggesting that

they play specialized roles for the transport and translation of

specific mRNAs. In contrast, RUFY3 is specific to Stau2-

containing mRNPs. This poorly characterized protein is expressed

in brain and peaks around post-natal day 4. It accumulates in

growth cones of minor processes and axons. Down-regulation of

RUFY3 expression by RNAi leads to an increase in the population

of neurons bearing surplus axons [35]. Its molecular function and

its role within RNPs are completely unknown.

One of the fundamental questions in the field is how mRNA

translation is repressed during transport and reactivated in response

to cell needs. It is believed that mRNA transport particles are

translationally repressed at the level of initiation whereas ribosome-

associated granules are kept silent during elongation [3]. Accord-

ingly, our proteomic results on Stau2-containing RNPs identified

YB1 and PABPC1, two proteins known to modulate translation

through interaction with initiation factors, as prominent candidates

to fulfill translational regulation. YB1 is known to play key roles in

cap-dependent mRNA stabilization [36] and translation [37,38]. It

is viewed as a general translational repressor that maintains mRNPs

in a translationally silent state by its ability to bind the 59cap

structure thus displacing the initiation factors eIF4E and eIF4G

from these mRNAs [36,37]. Interestingly, YB1 can be phosphor-

ylated by the Akt kinase [39,40], the Rsk1/2 kinase and PKC alpha

[41]. Its phosphorylation by the Akt kinase specifically diminishes its

interaction with the capped 59 mRNA terminus reducing its ability

Figure 4. The interaction between Stau262 and hsc70 is
abolished in the presence of ATP. (A) N2A cells were co-transfected
with plasmids coding for Stau262- HA3 and hsc70-CFP as done for
figure 2. Immunoprecipitation of Stau2-containing RNPs was performed
with anti-HA antibody and the proteins detected on western blots
using anti-HA or anti-GFP antibodies as needed. The experiment was
done in the absence (2) or presence of either Microccocal nuclease
(+RNase) or ATP (+ATP). These results are representative of at least three
experiments. (B) As done for figure 3C, MBP and MBP-Stau262 were
immobilized on different lanes of a SPR sensor chip. GST-hsc70 or GST
was injected for 3 minutes over the surfaces in the presence or absence
of ATP. The baseline obtained with the MBP-coupled reference surface
was subtracted from the sensorgram obtained from the MBP-Stau262-
coupled surface and a typical result is shown.
doi:10.1371/journal.pone.0011350.g004

Stau2-Containing mRNPs
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Figure 5. Co-localization of endogenous Stau2 with PABPC1-myc, YB1-CFP, hsc70-CFP and hnRNP H1-myc in hippocampal
neurons. Neurons were transfected with plasmids coding for either PABPC1-myc (A), YB1-CFP (B), hsc70-CFP (C) or hnRNP H1-myc (D). Twenty four
hours post-transfection, neurons were fixed and labeled with anti-myc or anti-GFP (green) and anti-Stau2 (red) antibodies. Left: Fluorescence
microscopy of hippocampal neurons in culture. Scale bars: 5 mm. Right: Higher magnification of images showing protein localization in dendrites.
The lower panels represent the superposition of both green and red signals. Scale bars: 2 mm.
doi:10.1371/journal.pone.0011350.g005

Stau2-Containing mRNPs
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to inhibit cap-dependent translation. Therefore, upon activation of

a signalling pathway, phosphorylation of YB1 would be an efficient

mechanism to modulate local translation of Stau2-bound mRNAs

in neurons. Similarly, PABPC1 is involved in both activation and

repression of translation at the level of initiation. By binding

simultaneously to the poly(A) tail of mRNAs and to the initiation

factor eIF4G, PABPC1 facilitates the formation of the closed loop

structure that facilitates translation. PABPC1 is also involved in

translation inhibition by repressors [42]. Indeed, poly(A) tail,

PABPC1 and eIF4G are all required to allow the translational

inhibition of the ceruloplasmin transcript by the IFN-gamma-

activated inhibitor of translation (GAIT) repressor. Similarly,

PABPC1 is involved in the translational repression of its own

transcript by binding an adenine-rich autoregulatory sequence

(ARS) in the 59-untranslated region [43]. It also binds with lower

affinities to a non-poly(A) cis-acting dendritic localizer sequence in

the vasopressin mRNA [43,44,45]. In addition to their roles in

translation, both YB1 [46] and PABPC1 [47] strongly bind

tubulins. The association between YB1 and tubulin is believed to

interfere with mRNA binding thus reducing the YB1/mRNA ratio

and facilitating translation. Considering that Stau2 mRNPs are

transported on microtubules in dendrites and that both a- and b-

tubulin were found in the proteomics, the presence of YB1 and

PABPC1 in Stau2-containing mRNPs may contribute to the control

of mRNA translation activation by regulating mRNA accessibility.

Another proteomically identified protein is hsc70. Hsc70 has a

chaperone activity driven by cycles of ATP/ADP bound states

[15]. It could be an important factor for Stau2 folding, thus

enabling it to bind mRNAs and/or other protein partners. It may

also more directly influence mRNA metabolism and/or transla-

tion through its ability to modulate the folding of mRNA [48] and

to stabilize mRNA via its binding to AU-rich sequences [49].

Interestingly, its mRNA binding activity is inhibited by the binding

of ATP molecules that compete for the same protein domain [48].

We show in this paper that ATP binding also inhibits its

interaction with Stau2 (Fig. 4) suggesting that hsc70 through

ATP binding may regulate the release of mRNAs and/or control

the dissociation of Stau2-containing RNPs. Releasing and/or

destabilising mRNAs at precise moments during synaptic activity

can finely tune protein expression at synapses. Hsc70 can play two

additional important roles in mRNP transport. First, hsc70 is

known to regulate the nuclear export/import trafficking of several

karyopherin family members [50,51]. Therefore, it could be an

important factor for the nuclear shuttling of Stau2 and/or nuclear

exit of Stau2-containing mRNPs. However, its role in the

trafficking of exportin-5 and CRM1 which are known to export

Stau2 from the nucleus [10,52] has not yet been tested. Finally,

hsc70 is important for the release of the molecular motor kinesin

from its vesicular cargo permitting its precise localization [53].

Stau2 mRNPs are transported on dendritic microtubules [7] and

co-fractionate with tubulin and kinesin [6] making hsc70 an

important candidate for the regulation of their transport.

Altogether, these functions of hsc70, especially those related to

protein and mRNA folding and to nuclear export/import,

suggested that hsc70 is involved in mRNP formation and/or

other early steps in the process of mRNA transport. This may

Figure 6. Co-localization of Stau262-HA3 with endogenous PABPC1 and YB1 in hippocampal neurons. Neurons were transfected with a
plasmid coding for Stau262-HA3. Twenty four hours post-transfection, neurons were fixed and labeled with anti-HA antibody (red) and either anti-YB1
(A) or anti-PABPC1 (B) antibodies (green). Left: Fluorescence microscopy of hippocampal neurons in culture. Scale bars: 5 mm. Right: Higher
magnification of images showing protein localization in dendrites. The lower panels represent the superposition of both green and red signals. Scale
bars: 2 mm.
doi:10.1371/journal.pone.0011350.g006

Stau2-Containing mRNPs
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explain why the presence of hsc70 in large Stau2-containing

mRNA transport complexes in dendrites may not be required

(Fig. 5).

In conclusion, our data suggest that we have characterized a

heterogeneous population of Stau2-containing mRNPs from

embryonic rat brain. Our study indicates that they are largely

composed of proteins that are also components of other types of

mRNPs. The biochemical characterization of Stau2-containing

particles gives us new tools that will contribute to our understanding

of mRNA transport in neurons and of its role in neurons.

Materials and Methods

Ethics statement
Pregnant Sprague-Dawley rats were purchased from Charles

Rivers Canada. Our research involving animals has been

conducted according to the guidelines of the Canadian Council

of Animal Care (CCAC). Our project has been approved by the

‘‘Comité de déontologie de l9expérimentation sur les animaux’’ at

the Université de Montréal.

Immunoprecipitation and immunoblotting
Rabbit polyclonal anti-Stau2 [7] and a mouse monoclonal [29]

anti-HA antibodies were used for immunoprecipitation. For

immunoblotting, mouse monoclonal anti-Stau2 [7], rabbit poly-

clonal anti-HA (Sigma), goat anti-myc (Bethyl), goat anti-GST

(Amersham Pharmacia Biotech), goat anti-GFP (Rockland), and

rabbit anti-MBP (New England BioLabs, Inc) were used. For

immunofluorescence in hippocampal neurons, rabbit polyclonal

anti-Stau2 (a generous gift from Dr Michael Kiebler), anti-

PABPC1 (Abcam) and anti-YB1 (Abcam) were used.

Immunoprecipitation of Stau2-containing mRNPs was per-

formed on cell extracts prepared from whole brains of E17–E18

rat embryos. Cells were dissociated with a manual putter and lysed

in 50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 0.5% Triton X-100,

15 mM EGTA, 1 mM DTT and complete EDTA-free protease

inhibitor cocktail (Roche). Cell lysates were centrifuged at 9300 g

for 10 min to remove nuclei and cell debris. After centrifugation,

supernatants were incubated with a rabbit polyclonal anti-Stau2

antibody [7] for 2 hours at 4uC, then with a 50% protein A-

sepharose slurry for 2 hours at 4uC. Immune complexes were

washed five times with the lysis buffer and eluted from the resin by

heating at 95uC for 5 minutes in elution buffer (100 mM Tris-HCl

pH 7.4, 200 mM DTT and 4% SDS). RNAs were isolated by

Trizol (Invitrogen) extraction.

For the co-immunoprecipitation experiments, N2A cells were

propagated in DMEM medium supplemented with 10% BSA

serum (HyClone). Cells were co-transfected with plasmids coding

for one of the following proteins: Stau259-HA3 or Stau262-HA3

[12] and either hsc70-CFP, YB1-CFP, hnRNP H1-myc or

PABPC1-myc using the calcium-phosphate technique. Cells were

collected 48 h post-transfection. Immunopurifications were per-

formed as above using a mouse monoclonal anti-HA antibody.

Detection of the co-immunoprecipitated proteins was done by

western blotting with either rabbit polyclonal anti-HA (Sigma),

goat anti-Myc (Bethyl) or goat anti-GFP (Rockland) antibodies. To

asses if the interaction was RNA dependent, cell extracts were

incubated for 30 min at room temperature with 300 U (300 U/

ml) of the Micrococcal Nuclease (Fermentas) in 1 mM CaCl2

before adding the antibody.

Proteomic techniques
Proteomic techniques were essentially done as before [20].

Briefly, immunoprecipitation eluates were separated by SDS-

PAGE, stained with Coomasie Blue, and cut into 26 horizontal gel

slices with each slice processed for in-gel trypsin digestion and

peptide extraction. The extracted peptide mixtures were separated

and analyzed in an automated system by nanoscale LC Q-TOF

MS/MS. After fragmentation in the MS/MS mode, the resulting

spectra were searched with Mascot (version 1.9.03; Matrix

Science, London, UK) against a copy of the National Center for

Biotechnology Information (NCBI) non-redundant protein data-

base (June 21st, 2004) restricted to the Mammalia taxonomy.

Protein co-localisation in hippocampal neurons
Primary hippocampal neurons were cultured on #1,5 coverslips

as previously described [12,54]. On day 5, neurons were

transfected with 2 mg of LipofectamineTM 2000 and 1 mg of

plasmids coding for Stau262-HA3, PABPC1-myc, hsc70-CFP,

YB1-CFP, or hnRNP H1-myc as indicated in 100 ml of plain

Neurobasal for 10 min. Neurons were fixed 24 hours later with

PBS/PFA 4%, PFA was quenched with 1 M glycine in PBS/0.1%

Triton X-100 for 10 min, blocked with 0.1% Triton X-100/2%

BSA in PBS overnight at 4uC. Neurons were incubated with goat

anti-myc (1:400 Bethyl A190–104A), mouse anti-GFP (1:500,

Roche) or anti-HA (1:3000, 12CA5) and rabbit anti-Stau2 (1:600,

a generous gift from Dr Michael Kiebler), rabbit anti-PABP or

anti-YB-1 (1:200 and 1:250, Abcam ab21060 and ab12148,

respectively) antibodies for 2 h at room temperature, washed in

PBS and stained with Alexa FluorH647 dyed donkey anti-rabbit

immunoglobulin G (IgG) and Alexa FluorH488 dyed donkey anti-

mouse or anti-goat IgG antibodies (1:400, Invitrogen A31573,

A21202 and A11055, respectively) for 1 h. Coverslips were

mounted on slides (Fisher) using Dako fluorescent mounting

medium (Dako). Neurons were visualized under a Nikon E800

widefield microscope Plan Apo 1006 N.A. 1.40 oil-immersion

objective lens.

Protein expression and purification
Plasmids coding for GST-hsc70 and MBP-Stau2 were cloned

into the pGEX (Amersham Pharmacia Biotech) and pMal-C (New

England Biolabs) vectors, respectively. The fusion proteins were

expressed in E. coli BL21 cells, following induction with IPTG for

2 h. Proteins were collected in PBS/1 mM DTT/1% Triton X-

100/5 mM benzamidine at 4uC. GST-hsc70 and MBP-Stau2

proteins were purified on glutathione-Sepharose-4B and amylose

affinity columns, respectively and eluted with 10 mM reduced

glutathione in 50 mM tris-HCl (pH 8.0) or 10 mM of D-maltose

in PBS, respectively. For some experiments, lysates were treated

with 50 mg/ml RNAse A for 1 h at 4uC before column

purification. Protein purification was monitored by SDS-PAGE.

Proteins were detected by zinc staining and/or western blotting

experiments.

GST-pull down assay
Bacterially expressed and purified GST and GST-hsc70

proteins were attached to glutathione columns. MBP-Stau2 or

MBP were loaded onto the columns, extensively washed and

eluted as recommended by the manufacturer. Eluted proteins were

analyzed by western blotting using anti-GST and anti-MBP

antibodies. For some experiments, protein extracts were treated

with 50 mg/ml RNAse A for 1 h at 4uC before loading onto the

columns.

Surface plasmon resonance (SPR) binding assay
Binding interactions between purified MBP-Stau2 and GST-

hsc70 were examined in real time using a BIACORE 2000
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instrument (GE Healthcare Bio-Sciences AB, Upssala, Sweden).

Experiments were performed on research-grade CM5 sensor chip

at 25uC using filtered (0.2 mm) and degassed HBS-EP [10 mM

Hepes pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% (v/v)

Surfactant P20]. Protein-grade detergents [10% (v/v) Tween-20,

10% (v/v) DDM] were from Calbiochem; all other chemicals were

reagent grade quality. Immobilized sensor chip surfaces were

prepared using the Biacore amine Coupling Kit. Briefly, 35 ml of a

freshly mixed solution of 200 mM 1-ethyl-3-(3-dimethylamino-

propyl)-carbodiimide and 50 mM N-hydroxysuccinimide was

injected (at a flow rate of 5 ml min21) to activate surface-exposed

carboxymethyl groups into reactive esters. Next, 120 ml of MBP-

Stau2 diluted to 70 mg ml21 in 10 mM sodium acetate pH 4.0 was

injected (at a flow rate of 10 ml min21) to generate amine-coupled

protein surfaces. Finally, 70 ml of 1 M ethanolamine pH 8.5 was

injected to deactivate excess reactive groups and remove any non-

specifically bound ligand. A reference surface was prepared in a

similar manner with purified MBP. To test binding, purified GST-

hsc70 (60 mg ml-1) or GST (negative control) were injected over

the coupled surfaces at 10 ml min21 (3 min association time and

2.5 min dissociation time). For all SPR assays, the surfaces were

regenerated between sample injections at 50 ml min21 with a 30 s

single pulse of 0.4 M NaCl followed by a stabilization time after

regeneration of 3 min. The assays were performed in duplicates

with different batches of purified proteins.

Supporting Information

Table S1 Proteomically identified proteins in Stau2-containning

mRNPs.

Found at: doi:10.1371/journal.pone.0011350.s001 (0.05 MB

DOC)
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