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Abstract

Background: The Pr55gag (Gag) polyprotein of HIV serves as a scaffold for virion assembly and is thus essential for progeny
virion budding and maturation. Gag localizes to the plasma membrane (PM) and membranes of late endosomes, allowing
for release of infectious virus directly from the cell membrane and/or upon exocytosis. The host factors involved in Gag
trafficking to these sites are largely unknown. Upon activation, CD4+ T cells, the primary target of HIV infection, express the
class II transcriptional activator (CIITA) and therefore the MHC class II isotype, HLA-DR. Similar to Gag, HLA-DR localizes to
the PM and at the membranes of endosomes and specialized vesicular MHC class II compartments (MIICs). In HIV producer
cells, transient HLA-DR expression induces intracellular Gag accumulation and impairs virus release.

Methodology/Principal Findings: Here we demonstrate that both stable and transient expression of CIITA in HIV producer
cells does not induce HLA-DR-associated intracellular retention of Gag, but does increase the infectivity of virions. However,
neither of these phenomena is due to recapitulation of the class II antigen presentation pathway or CIITA-mediated
transcriptional activation of virus genes. Interestingly, we demonstrate that CIITA, apart from its transcriptional effects, acts
cytoplasmically to enhance Pr160gag-pol (Gag-Pol) levels and thereby the viral protease and Gag processing, accounting for
the increased infectivity of virions from CIITA-expressing cells.

Conclusions/Significance: This study demonstrates that CIITA enhances HIV Gag processing, and provides the first evidence
of a novel, post-transcriptional, cytoplasmic function for a well-known transactivator.
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Introduction

HIV polyprotein Gag serves as a scaffold to promote assembly

of progeny virions at cellular membranes [1] and recruits

components of the vesicular protein sorting pathway to facilitate

virus budding [2,3,4]. Concomitantly, the virally encoded protease

begins to cleave Gag, which is required for complete virion

maturation and infectivity [5,6,7]. Gag proteins can be detected at

both the PM and the membranes of endosomes among different

cell types, suggesting that budding is not limited to one cell-type

specific locale [8,9,10,11,12,13,14,15,16]. Further, host factors

which participate in targeting Gag trafficking to particular

membranes are largely unknown. As Gag and infectious virus

can originate from two cellular locations, two models for Gag

trafficking have emerged. The first model proposes that following

synthesis, Gag traffics to endosomal membranes, and upon

exocytosis is deposited on the PM, where it serves as the site for

productive virus assembly [14,17]. The second model proposes

that Gag is first trafficked to the PM, where virus assembly occurs,

and then excess Gag is internalized to intracellular compartments

[14,18,19,20], that serve as sites of productive virus assembly

[15,21].

MHC class II heterodimers follow a similar trafficking route,

appearing at both the PM and specialized multivesicular bodies

(MVBs) called MHC class II containing compartments (MIICs)

[22]. MHC class II is utilized by antigen presenting cells (APCs) to

present exogenous processed antigen to CD4+ T cells [22,23,24].

MHC Class II genes, including: HLA-DR, -DP and –DQ and the

accessory molecules, invariant chain (Ii) and HLA-DM, are

transcriptionally activated by the class II transactivator (CIITA),

the global regulator of coordinate class II MHC gene expression

[25,26]. As CIITA is induced in CD4+T cells upon activation,

these cells express MHC class II [27,28]. Upon synthesis, HLA-

DR heterodimers are assembled in the ER and the immature

complex (HLA-DR+ Ii) travels through the secretory pathway to

MIICs, where the specialized HLA-DM chaperone loads the

HLA-DR heterodimer with peptide [22,29,30]. Interestingly, both

immature and mature forms of HLA-DR can be found at the PM

and can be subsequently internalized to MIICs due to a di-leucine

motif in the cytoplasmic tail of Ii (immature HLA-DR) and a di-

leucine motif and/or ubiquitination of conserved lysine residues

within the HLA-DR b chain (mature HLA-DR), respectively

[22,29,31,32,33,34,35,36]. Therefore, a connection between HLA-

DR and Gag trafficking would not be surprising as both have an

alternative route to intracellular compartments by way of the PM.

Indeed, expression of HIV-1 Nef, Vpu and Gag have been shown

to alter HLA-DR trafficking [37,38,39,40]. In addition, HLA-DR

is preferentially acquired on the viral envelope of budding virions,
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which enhances virion infectivity and may play a role in bystander

apoptosis of T lymphocytes [41,42,43]. Therefore, HLA-DR locali-

zation at virus assembly sites is not unexpected.

Finzi et al. (2006) addressed the contribution of MHC class II-

induced MIIC formation to Pr55Gag trafficking by monitoring

virus budding in the presence of transiently expressed HLA-DR

heterodimers [8]. In HEK-293T cells expressing HLA-DR, there

was a marked redistribution of Gag to intracellular compartments,

and reduced virus release at the PM; mature virus budded into

HLA-DR containing multivesicular bodies and was retained [8].

We hypothesized that recapitulating endogenous expression of the

entire class II antigen presentation pathway in producer cells via

expression of CIITA would restore infectious virus release and

provide a more physiologically relevant model for HIV-1 assembly

studies. As expected, stable or transient expression of CIITA did

not induce intracellular retention of Gag. However, HLA-DR

induced Gag retention could not be alleviated by transient

co-expression with HLA-DM and/or Ii, or CIITA-mediated

upregulation of the recycling endosome GTPase, Rab4B [44].

Further, mutating ubiquitinatible lysine residues or complete

truncation of the cytoplasmic tails of the HLA-DR a and b chains

did not restore virus release. Rather, limiting the amount of HLA-

DR DNA transfected into cells restored virus release and alleviated

Gag retention. Curiously, CIITA expressing cells produced virus

that was significantly more infectious than CIITA deficient cells,

and this was independent of the class II antigen presentation

pathway. CIITA enhances infectivity of virions from producer

cells through a novel function, by improving maturation through

an increase in viral protease-dependent Gag processing. Using a

panel of CIITA mutants, we demonstrate that cytoplasmic CIITA

increases Gag-Pol polyprotein levels. Overall, our work reveals a

novel cytoplasmic, post-transcriptional function of CIITA, which

is expressed upon T cell activation and is constitutively expressed

in macrophages and dendritic cells, all known targets of HIV

infection.

Results

CIITA expression does not induced HLA-DR-mediated
Gag retention

Transient expression of the class II heterodimer, HLA-DR,

induces intracellular accumulation of Gag and a marked reduction

in extracellular virus release from producer cells [8]. This previous

study focused on HLA-DR in the absence of Ii and HLA-DM,

critical components of the antigen processing and presentation

pathway which influence MHC class II trafficking. To determine if

expression of the complete MHC class II pathway could overcome

Gag and virus retention we used CIITA to coordinately express

these genes. Cells were either transiently (pcCIITA) or stably

(A293T-CIITA) transfected with CIITA (Figure S1) and HIV-

1NL4-3 DNA, and Gag localization was monitored by immunoflu-

orescence and compared to cells transiently expressing the HLA-DR

a and b heterodimers (pcDRab1b5), or vector-only (pcDNA3.1). As

expected, a weak but uniform Gag signal was present in vector-only

transfected cells (Figure 1Aa) and transient HLA-DR expression

induced a marked redistribution of Gag as indicated by a dense,

punctuate Gag staining pattern (Figure 1Ad). Conversely, Gag

accumulation was not observed when CIITA was either transiently

or stably expressed (Figure 1Ab or c, respectively). Therefore,

transient expression of HLA-DR in producer cells does indeed lead

to Gag retention, which is not observed in the presence of CIITA.

However, recapitulation of the MHC class II pathway in trans

(pcDRab1b5+Ii+HLA-DMab), also resulted in dense accumulation

of Gag signal (Figure 1Ae), suggesting that CIITA-mediated

coordinate activation of HLA-DR, -DM and Ii expression is

insufficient to overcome Gag retention. Flow cytometric analysis

confirmed these findings, as cells transfected with HLA-DR

heterodimers and/or co-transfected with some or all of the

components of the class II antigen presentation pathway stained

as Gaghi, indicating Gag accumulation (Figure 1B and C). However,

this population was absent in cells transiently or stably expressing

CIITA (Figure 1B and C). Therefore, absence of Gag accumulation

in CIITA expressing cells is likely not due to its transactivation of the

MHC class II antigen presentation pathway.

CIITA increases virion infectivity independently of
HLA-DR and the class II pathway

To assess whether CIITA-mediated alleviation of Gag retention

in class II expressing cells correlated with restored virus pro-

duction, virus particle and infectious virus release were measured

by p24 ELISA and GHOST cell infectivity assays, respectively.

Virus release, both infectious and particle titers) were reduced

when cells were transfected with either HLA-DR or other com-

ponents of the MHC class II antigen presentation pathway (Figure

S2), confirming a correlation between Gag retention and reduced

virus titers in the presence of HLA-DR, as previously demon-

strated [8]. These assays also demonstrate a dramatic increase in

infectious virus release from CIITA-expressing cells as compared

to cells expressing vector only (Figure 2A & S2), despite signifi-

cantly fewer virus particles being released from a CIITA-

expressing cell (as measured by pg/mL of p24 in the culture

supernatant, Figure 2B & S2). Therefore, while fewer virus

particles are released from a CIITA- expressing cell, those particles

are significantly more infectious (Figure 2C).

Previously, HLA-DR incorporation into the envelope of

budding virions was demonstrated to enhance virion infectivity

[45,46]. To determine if CIITA-enhancement of virion infectivity

was due to HLA-DR or other components of the class II antigen

presentation pathway, we measured virion infectivity from cells

expressing these proteins. However, virions from these cells were

just as infectious as virions released from vector only controls, yet

not as infectious as virions from cells either stably or transiently-

expressing CIITA (Figure 2D). Therefore, CIITA enhancement of

virion infectivity is independent of the MHC class II antigen

presentation pathway. Together, these data suggest CIITA has

two effects on the HIV replicative cycle in producer cells, both

of which are independent of the MHC II antigen processing

pathway; i) it does not induce HLA-DR, mediated intracellular

retention of Gag and ii) it increases the infectivity of HIV virions.

Rab4B does not alleviate HLA-DR mediated Gag
retention

CIITA has been shown to upregulate expression of Rab4B, a

small GTPase involved in endocytic recycling [44,47]. Therefore,

we hypothesized that CIITA via the action of Rab4B, could

increase Gag recycling back to the PM, thereby alleviating HLA-

DR-mediated Gag retention. Commercially available Rab4

antibodies cannot distinguish between Rab4A and 4B. However,

Krawczyk et al. (2007) demonstrated by chromatin immunopre-

cipitation that CIITA specifically associates with the Rab4B and

not the Rab4A promoter [44]. Immunoblotting demonstrated that

there is an increase in Rab4 in CIITA-expressing cells (Figure 3A),

therefore it is likely that this is in the form of Rab4B. However,

when Rab4B and HLA-DR were co-expressed in producer cells

with the HIV-1NL4-3 plasmid, it did not rescue intracellular

retention of Gag (Figure 3B). In fact, infectious virus release from

cells transiently co-expressing Rab4B and HLA-DR was further

CIITA Enhances HIV Maturation
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reduced, suggesting that Rab4B does not alleviate HLA-DR-

mediated retention of Gag (Figure 3C).

Up until this point, we had not co-expressed CIITA with HLA-

DR in producer cells to determine if CIITA could alleviate

retention of Gag and/or restore infectious virus release as would

be expected. Interestingly, when CIITA was transiently expressed

with the HLA-DR heterodimers in producer cells, Gag still

accumulated intracellularly and infectious virus production

remained reduced (Figure 3B and C, respectively), suggesting that

expression of CIITA is not sufficient to compensate for HLA-DR-

mediated Gag retention. However, when HLA-DR is endogenously

expressed under the control of CIITA, retention is alleviated.

Gag retention is an artifactual effect of HLA-DR
overexpression

Previously, Finzi et al. (2006) demonstrated that Gag retention in

HLA-DR+, multivesicular bodies could be alleviated when the

cytoplasmic tails of the HLA-DR a and b chains were removed

Figure 1. CIITA does not induce HLA-DR-mediated Gag retention. A293T cells were co-transfected with indicated plasmids and HIV-1NL4-3

and following intracellular staining of Gag (using an antibody which recognizes the CA p24 domain of Gag), immunofluorescence microscopy (A) and
flow cytometry (B) were performed. Total levels of Gag present in cells as well as cells which contain dense staining of Gag (Gaghi) are depicted (C).
Data are representative of three independent experiments.
doi:10.1371/journal.pone.0011304.g001
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[8]. Ubiquitination of a conserved lysine residue on the HLA-DR

b chain induces intracellular accumulation of class II heterodimers

in MHC class II compartments (MIICs) [35,36]. Thus, the

ubiquitination state of HLA-DR, might influence Gag retention.

To address this idea, Lys225Arg (pcDRabK225R) and Lys222/

225Arg (pcDRabK222/225R) point mutations were made in the

HLA-DR beta chain. Despite these mutations, HLA-DR expres-

sion on the surface of A293T cells was not significantly altered

(flow cytometric data not shown), nor was intracellular retention of

Gag alleviated or infectious virus release restored (Figure 4A

and B, respectively). Therefore, we attempted to alleviate Gag

retention and restore infectious virus release, as demonstrated by

Finzi et al. (2006) [8], by complete truncation of the cytoplasmic

tails of both HLA-DR a and b (pcDRaDcyto and pcDRbDcyto,

respectively). However, loss of either cytoplasmic tail (pcDRaDcy-

tob and pcDRabDcyto), or both cytoplasmic tails (pcDRaDcy-

tobDcyto), from the heterodimer did not alleviate Gag retention

and even further reduced infectious virus release from these cells

(Figure 4A and B, respectively). Our results may differ from Finzi’s

because of the differences in cell type, or HLA-DR gene alleles,

nevertheless they strongly suggest that transient HLA-DR

expression in producer cells induces Gag retention. Further, flow

cytometry to monitor surface HLA-DR expression demonstrates

that transient transfection of HLA-DR induces an approximate

half-log to log-fold increase in HLA-DR as compared to cells

stably or transiently expressing CIITA, respectively (Figure S1).

Therefore, it is possible that HLA-DR induced Gag retention is a

consequence of HLA-DR overexpression in this transient system

Figure 2. CIITA increases virion infectivity independently of HLA-DR and the class II pathway. Producer cells were transfected with
HIV-1NL4-3 and the indicated plasmids (A293T-CIITA is a stable clone) and at 48 h.p.t. infectious virus (A) and virus particle release (B) was determined
by a GHOST infectivity assay and p24 ELISA, respectively. The number of infectious virions per total number virions released from a live cell was also
determined (C). Similarly, the infectivity of virions from cells expressing HIV-1NL4-3 and the indicated constructs was determined (D). Standard
deviation of the mean for $5 independent experiments is presented. Statistical significance (p#0.05) was determined by a two-sample unequal
variance student’s T-test.
doi:10.1371/journal.pone.0011304.g002

CIITA Enhances HIV Maturation

PLoS ONE | www.plosone.org 4 June 2010 | Volume 5 | Issue 6 | e11304



and thus endogenous expression of HLA-DR via CIITA does not

result in the same phenotype.

To test this possibility, virus producer cells were transfected with

increasing amounts of HLA-DR in the presence of HIV-1NL4-3

DNA, and infectious virus release was monitored. As HLA-DR

expression increased, the level of infectious virus release decreased

(Figure 4C). Further, while not statistically significant, there was a

positive correlation (r = 0.9954) between Gag accumulation

(Gaghi) and increasing HLA-DR expression (Figure 4D), suggest-

ing Gag retention is likely related to HLA-DR overexpression.

Similarly, when HLA-DM, which is structurally similar to HLA-

DR, was overexpressed in producer cells, Gag retention was

also induced (Figure 4D) and infectious virus release reduced (data

not shown). As endogenous expression of the class II antigen

presentation pathway by CIITA does not induce Gag retention

and limiting expression of HLA-DR or –DM likewise has a limited

effect on Gag retention in producer cells, these data collectively

suggest that overexpression of the class II pathway alters Gag

trafficking in producer cells leading to reduced infectious virus

release. However, these data do not provide an explanation for the

increased infectivity of virions released from CIITA-expressing

cells.

CIITA expression enhances virion maturation through
increased Gag processing

Viral protease cleavage of the Gag and Gag-Pol polyproteins is

required for virion maturation and infectivity [5,6]. The mature

complement of HIV-1 structural proteins includes matrix (MA

[p17]), capsid (CA [p24]), nucleocapsid (NC[p7]) and p6, as well

as spacer peptides, SP1 [p2] and SP2 [p1] within Gag (Figure 5A).

The enzymatic proteins, integrase (IN[p32]), reverse transcriptase

(RT [p66/51]) and protease [p10], as well as the transframe

octapeptide (TFP) and p6* are generated from the Gag-Pol

polyprotein (Figure 5A) [13,48,49,50,51]. As there is an increase in

virion infectivity from CIITA-expressing cells, we hypothesized

that the processing of Gag polyproteins may be enhanced in these

cells. As suspected, analysis of cell lysates from equal numbers of

HIV-1 transfected A293T-CIITA and A293T cells demonstrated

a higher ratio of mature CAp24 to Pr55Gag in CIITA-expressing

cells (Figure 5 B&C), demonstrating that Gag processing in the

presence of CIITA is enhanced. Additionally, increased levels of

processing intermediates are present in A293T cell lysates.

Specifically, the p41 (MA-CA-SP1) and p25 (CA+p2) products

were increased (Figure 5 B&C) in these cells, indicating that Gag

processing in the presence of CIITA is more efficient. Gag

processing is also enhanced in cell-free virions from cells either

transiently or stably expressing CIITA, as demonstrated by the

increased levels of CAp24, and the loss of the p41 and p25

intermediate products relative to Pr55Gag (Figure 5D&E).

Collectively, these results suggest that CIITA increases Gag

polyprotein processing, leading to enhanced production of

infectious virions.

HLA-DR does not increase Gag processing
HLA-DR is incorporated into the HIV virion envelope [52] and

is transcriptionally activated by CIITA, therefore its contribution

to Gag processing was assessed. Virions from HLA-DR-expressing

cells exhibited less Gag processing than virions from CIITA-

expressing cells (Figure 5F, bottom panel). When virions from both

cell lines were affinity-purified on HLA-DR binding columns, Gag

processing was reduced in those produced in the HLA-DR-

expressing cells as compared to virions from cells which express

CIITA (Figure 5F, upper panel and 5G), suggesting that HLA-DR

alone does not contribute to increased Gag processing. Similar to

our previous results, there are fewer processing intermediates

present in virions from CIITA-expressing cells, suggesting that

CIITA expression enhances virion infectivity by increasing

maturation through more complete Gag processing.

CIITA enhancement of Gag processing is through the
viral protease activity

Cleavage of the Gag and Gag-Pol polyprotein is mediated

specifically by the virally-encoded protease [53,54,55]. We

considered that CIITA might increase viral protease processing

of Gag; thus, we examined Gag processing and infectious virus

release from CIITA-expressing HIV producer cells in the presence

of a protease inhibitor. If CIITA is increasing protease processing,

such an enhancement should be overcome by lower doses of the

Figure 3. Rab4B does not alleviate HLA-DR mediated Gag retention. The level of Rab4 expressed in CIITA-expressing A293T cells was
determined by immunoblotting, where b-actin served as a loading control (A). Cells were co-transfected with the indicated constructs and HIV-1NL4-3

and Gag retention was monitored by intracellular staining and flow cytometry (B) and infectious virus release was measured via GHOST infectivity
assays (C). Data are representative of three independent experiments and error bars indicate standard error.
doi:10.1371/journal.pone.0011304.g003
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HIV protease inhibitor, Lopinavir. As expected, between concen-

trations of 0.6 and 1.25 nM of Lopinavir infectious virus release

from CIITA-expressing cells was reduced to that of A293T cells

treated with vehicle only (Figure 6A). To determine if the reduced

Gag processing correlated with decreased infectious virus release,

we monitored Gag cleavage by western blotting and as expected,

between 0.6 and 1.25 nM of Liponavir, Gag processing in virions

from CIITA-expressing cells was returned to that of vehicle

treated, vector-only control cells (Figure S3). These results directly

demonstrate that CIITA-mediated enhancement of Gag process-

ing and infectious virus release is through the HIV protease.

CIITA acts cytoplasmically to improve and enhance Gag
processing

The only known function of CIITA is as a transcriptional co-

activator; therefore, we thought it likely that it drives the

expression of a gene which enhances viral protease-mediated

Gag processing. Therefore, we reasoned that expression of CIITA

mutants which fail to localize to the nucleus should not mediate

increased Gag processing or enhanced infectious virus release. To

test this idea, a panel of CIITA mutants (GTP2, a magnesium ion

coordination site mutant and GTP3, a guanine ring-binding domain

mutant and L1035P, a point mutant in the C-terminal leucine rich

repeat domain, which are all defective for nuclear localization and

fail to activate HLA-DRA transcription [56,57,58]), were individ-

ually co-expressed with HIV-1NL4-3 DNA, and infectious virus

release and Gag processing were monitored. Interestingly, producer

cells expressing these mutants also produced more infectious virus as

compared to vector-only control (Figure 7A) and had increased Gag

processing in both cell-bound virions and cell-free virions (Figure 7B

and Figure S4, respectively). Loss of CIITA nuclear localization

(and therefore coactivation potential), did not hinder increased

Gag processing and infectious virus release, strongly suggesting

that CIITA acts cytoplasmically to increase HIV virus maturation

Figure 4. MHC class II- induced Gag retention is a consequence of HLA-DR overexpression in producer cells. Mutations were made in
the HLA-DR cytoplasmic tails as indicated and transfected into producer cells at a 1:1 ratio with HIV-1NL4-3 and Gag retention by flow cytometry (A)
and infectious virus release (B) was monitored. Decreasing amounts of HLA-DR a and b heterodimer constructs were transfected into producer cells
with HIV-1NL4-3 and infectious virus release (C) and Gag retention (D) were monitored. Data are representative of three independent experiments and
error bars indicate standard error.
doi:10.1371/journal.pone.0011304.g004
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Figure 5. CIITA enhances virion maturation through increased Gag processing. Diagram of Pr55Gag and Pr160Gag-Pol and their respective
cleavage products (A). Protein lysates from cell equivalents of HIV-1NL4-3 transfected vector-only (A293T) or CIITA expressing (A293T-CIITA) cells (B)
were western blotted with an antibody which recognizes CAp24 of Gag. Similarly, cell-free virions from vector-only (A293T), transient-CIITA
expressing (pcCIITA) or stably-expressing CIITA (A293T-CIITA) (D), or virions affinity purified with biotinylated-anti-HLA-DR antibody (L243) on
streptavidin-coated magnetic beads (F, top panel, where bottom panel is input control virus), were western blotted for Gag processing.
Densitometric analysis of western blots was performed and quantitative analysis of Gag cleavage products is presented as percentage of total
reactive bands (C, E and G). Data are representative of three independent experiments.
doi:10.1371/journal.pone.0011304.g005

CIITA Enhances HIV Maturation
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Figure 6. CIITA enhancement of Gag processing and viral infectivity is through the viral protease. Following co-transfection with vector-
only (pcDNA3.1) or pcCIITA and HIV-1NL4-3, producer cells and were treated with indicated concentrations of Lopinavir and 17 h later infectious virus
titers were determined by GHOST assay (A) and Gag processing was measured via western blotting with antibody against CAp24 followed by
densitometric analysis of Gag cleavage products (B). Data are representative of three independent experiments.
doi:10.1371/journal.pone.0011304.g006

Figure 7. CIITA cytoplasmically increases Pr160Gag-Pol levels. Producer cells were transfected with the indicated CIITA constructs and
HIV-1NL4-3; 48 h later infectious virus titers were determined by GHOST assay (A, n.2, error bars rep. standard deviation of the mean). Gag processing
was measured via western blotting with antibody against CAp24 and densitometric analysis of Gag cleavage products (B). Producer cells were
transfected with indicated constructs and then 16 hours later with HIV-1NL4-3 before treatment with 80 nM Lopinavir at 4.5 hours post-transfection.
17 hours later, cell lysates were blotted with the indicated antibodies (C) and western blotting with antibody against CAp24 followed by
densitometric analysis allowed for the determination of the percentage of Gag-Pol and Gag, following normalization to b-actin (D). Unless indicated,
data are representative of three independent experiments.
doi:10.1371/journal.pone.0011304.g007
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independent of its transactivation function. We further evaluated

CIITA transactivation potential as a mechanism of enhanced virus

release utilizing a different model system. NIH 3T3 BALB/c cells

(expressing human p32 to allow for virus like particle production

[59]) expressing CIITA and transfected with an LTR-deficient HIV

genome construct (pcHIV PAL),under control of a CMV promoter

had a dramatic increase in virus-like particle production as com-

pared to NIH 3T3 cells in the absence of CIITA (Figure S5). This

result provides further evidence that CIITA enhancement of virus

production is independent of its transactivation potential on the

HIV LTR.

CIITA increases the viral protease through increased
Gag-Pol levels

To determine the mechanism by which CIITA mediates

protease activity in these cells, we analyzed the expression of the

Gag and Gag-Pol in CIITA-expressing cells. Expression of the

HIV protease is extremely toxic to cells, and is thus very tightly

regulated during virus replication [60,61,62]. The viral protease

arises from the alternative Gag translation product (Figure 5A),

Gag-Pol which, accounts for only 2–10% of Gag polyproteins and

results from ribosomal frameshifting at a conserved heptamer

‘‘slippery sequence’’ and a secondary stem-loop structure on gag-pol

transcripts [51,63]. Therefore, increased viral protease-mediated

processing of the Gag polyproteins from CIITA-expressing cells

may be due to an increase in overall viral protease levels, due to

increased Gag-Pol synthesis. To establish the ability of CIITA to

mediate the enhanced production of HIV protease, cells were

transiently co-transfected with either CIITA or pcDNA and HIV-

1NL4-3 DNA, and were treated with 80 nM of Lopinavir to inhibit

the majority of Gag polyprotein processing. Gag-Pol levels relative

to Gag were then determined by western blotting. While 1–2% of

all Gag polyprotein in cell lysates of vector-only cells was in the

form of Gag-Pol, expression of CIITA increased this level to

almost 5% (Figure 7C and D), indicating that CIITA increases

Gag-Pol levels in virus producer cells. We also measured the

potential of the cytoplasmic CIITA mutants to increase Gag-Pol

levels relative to Gag and, interestingly, Gag-Pol made up

approximately 13, 20 and 15% of all Gag polyproteins in

GTP2, GTP3 and L1035P –expressing cells, respectively. This

result further demonstrates a novel transcription-independent role

for cytoplasmic CIITA during HIV infection, where CIITA

enhances Gag-Pol protease expression, which subsequently

enhances virus maturation and infectivity.

Discussion

Finzi et al. (2006) demonstrated that transient overexpression of

HLA-DR heterodimers in HEK-293 cells lead to redistribution of

Gag and intracellular accumulation of infectious virus in

multivesicular bodies (MVBs) [16]. We speculated that complete

expression of the antigen presentation pathway, through expres-

sion of CIITA, would alleviate this phenotype in virus producer

cells. Interestingly, we noticed two phenomena: i) CIITA did not

induce intracellular retention of Gag or impair virus release in

producer cells despite expression of HLA-DR and ii) the virus

released from cells expressing CIITA was significantly more

infectious. Upon investigation of CIITA-mediated alleviation of

HLA-DR-induced Gag retention, we found that this effect was not

due to the lack of Ii or HLA-DM (key components of antigen

presentation), as had been expected, nor was it a consequence of

Rab4B expression in these cells. Further, when lysine residues in

the HLA-DR chain were mutated or both of the HLA-DR chain

cytoplasmic tails were truncated, Gag was still retained and virus

release inhibited. In addition, when CIITA was expressed in

conjunction with HLA-DR this effect could not be alleviated,

suggesting that Gag retention is a consequence of HLA-DR

overexpression. Indeed, retention of Gag is directly correlated to

levels of HLA-DR expression. Further, we did not observe Gag

retention when class II antigen presentation pathway genes were

expressed at endogenous levels via CIITA expression. Overex-

pression of HLA-DM, which is structurally similar to HLA-DR

also induced Gag retention, suggesting that retention of Gag is a

likely consequence of altered trafficking of overexpressed class II

antigen presentation pathway components rather than a physio-

logically relevant phenomenon.

Despite observing similar HLA-DR and Gag retention/reduced

virus release effects as Finzi et al.(2006), our results differed in that

we did not observe the requirement for intact HLA-DR a and

b-chain cytoplasmic tails for the induction of Gag retention. In our

hands, when the ubiquitinatible lysine residues in the HLA-DR

b-chain were mutated or the cytoplasmic tails of the HLA-DR

dimer were completely removed, there was no alleviation of Gag

retention or virus release. Beyond the obvious differences between

the previous work [8] and our own (i.e. provirus construct and cell

type), our mutant data may differ from theirs because arginine

residues were substituted for lysine 215 and tyrosine 220 residues

in the HLA-DR a and b chain, respectively, in order to ensure

stabilization of the truncated HLA-DR molecule at cellular

membranes. These differences in mutant constructs may poten-

tially explain discrepancies in our results.

We also observed that expression of HLA-DM was sufficient to

induce Gag retention and impede virus release from cells.

However, Finzi et al.(2006) did not observe retention in the

presence of HLA-DM or HLA-DO [8]. This difference may be

explained by their use of a bicistronic construct for expression of

the HLA-DM heterodimer; however, this strategy was also used to

express HLA-DR, which still induced retention [8]. Irrespective of

these differences, Gag retention and loss of virus release correlates

with increasing HLA-DR expression. These results do not exclude

the possibility that HLA-DR and Gag trafficking may be linked.

Indeed, we have demonstrated that Gag co-immunoprecipitates

with HLA-DR from CIITA expressing cells and this interaction is

independent of the cytoplasmic tails of HLA-DR (data not shown).

Further, other HIV proteins may be linked to class II trafficking.

Stumptner-Cuvelette et al.(2003) and Chaudhry et al.(2009), have

independently demonstrated that HIV Nef induces internalization

of surface class II in epithelial and monocytic cell lines, respectively

[37,64]. However, we did not observe downregulation of HLA-

DR from the cell surface, following transfection of the HIV

genome into CIITA-expressing epithelial cells (data not shown) or

HIV infection of CIITA-expressing CD4+ T cells (unpublished

data). Further, Gluschankof and Suzan demonstrated that ex-

pression of Gag-Pol restored HLA-DR presence at the cell surface

in the H78-C10.0 line, a T cell clone deficient for surface HLA-

DR expression [40]. Collectively, our work and that of others

suggests a link between HLA-DR and Gag trafficking, where

localization may be cell-type dependent.

One of the more interesting findings of this study is that while

overall viral titers from CIITA-expressing cells decrease the

infectivity of these particles is significantly enhanced. Increased

infectivity was due to improved virion maturation in a viral

protease-dependent manner. Not only was processing to capsid

p24 more complete in CIITA expressing cells, but vector-only

control cells and those only expressing HLA-DR contained

increased levels of processing intermediates. The presence of

higher levels of processing intermediates in virus produced in these

cells may help explain the reduced infectivity, as studies in both
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MLV [65] and HIV [7] demonstrate that partially cleaved Gag

products act transdominantly to reduce virion infectivity through

reduced reverse transcription of viral RNA, despite the presence of

functional Reverse Transcription polymerase [7].

Next we demonstrated that CIITA increased Gag processing

through the viral protease and evaluated whether this enhancement

was a consequence of CIITA-mediated transcriptional activation.

The CIITA L1035P mutant, which fails to translocate to the nucleus

[58], demonstrated increased Gag processing and virus release

compared to vector-only control, suggesting a cytoplasmic role for

CIITA in the later stages of the HIV infection cycle. This does not

preclude the possibility that an undetectable level of CIITA L1035P

might translocate to the nucleus. However, no L1035P was detected

in the nucleus after a 24 hour treatment with the nuclear export

inhibitor, leptomycin B [58]. Further, the predominantly cytoplasmic

GTP-binding CIITA mutants, GTP2 and GTP3, had a similar

increase in infectious virus release versus vector-only expressing cells.

Previously, it was demonstrated that increased Gag-Pol levels

severely impair virion infectivity through disruption of RNA

genome dimerization [62]. Further, HIV protease is known to be

toxic to cells as it leads to the production of the novel Procaspase 8

cleavage product, Casp8p41, which induces apoptosis through loss

of mitochondrial membrane potential [66]. Therefore, we would

expect that virions from CIITA-expressing cells would be reduced

in titer and infectivity, as there is increased Gag-Pol and protease.

However, while overall viral particle numbers (as measured by p24

ELISA) from CIITA expressing cells were decreased, the infectivity

of these virions was significantly increased when calculated by

infectious units per pg p24. Interestingly, at 0.6 nM Lopinavir, the

infectivity of virions from CIITA-expressing cells increased over

vehicle-treated controls, despite reduced Gag processing. Further,

the mutants of CIITA, which produced the highest level of Gag-Pol,

did not demonstrate a linear increase in Gag processing or virion

infectivity, which may be explained by previous work demonstrate-

ing that increased Gag-Pol levels impairs viral infectivity [61,62].

Therefore it is likely that CIITA is capable of increasing Gag-Pol

levels to a point which can impede virus maturation, albeit not

enough to reduce it to levels observed from vector-only expressing

cells. Therefore, overall infectivity of virions is increased from cells

expressing CIITA despite an altered Gag to Gag-Pol ratio. Future

studies should focus on how CIITA can increase this ratio without

severely impairing virus release as well the novel mechanism by

which CIITA increases Gag-Pol levels. Preliminary studies in this

laboratory suggest that CIITA enhancement Gag-Pol may be due to

increased ribosomal frameshifting (data not shown).

Finally, it is tempting to speculate that CIITA, which is expressed

upon CD4+ T cell activation and increases viral protease levels, may

also contribute to Casp8p41-mediated apoptosis, which may link

CIITA to the decimation of T cells in the GALT during primary

viremia [67]. Thymic epithelial cells [68], cervical epithelial cells

[69], human colonic epithelial cells [70] and oral keratinocytes

(normal human oral epithelial cells) [71] have all demonstrated in

vitro the capability of being productively infected with HIV.

Infection of epithelial cells provides potential in vivo significance to

this study, especially considering that thymic epithelial cells

constitutively express MHC class II (and thus CIITA) [28]. In

addition, most other cells can be stimulated to express CIITA in the

presence of IFN-c (i.e. a pro-inflammatory environment), which is

induced during HIV infection of the GALT [72]. Overall, this study

demonstrates that the function of CIITA may be more broad than

previously thought. Given this previously undescribed role in

enhancement of virion maturation, the precise consequences of

CIITA expression during the HIV replicative cycle may provide

rationale for the development of novel antiviral therapeutics.

Materials and Methods

Cell Culture
A293T cells [73] were maintained as previously described [74]

and CIITA-stable A293T cell lines were generated by co-

transfecting PVU I linearized pDNA3.FLAG.CIITA8 [75] and

pCMV4His, a mammalian selection vector which encodes the

histidinol dehydrogenase gene under control of the CMV pro-

moter into the cells. Stable clones were selected in DMEM

medium containing 5 mM L-histidinol (Sigma-Aldrich., St. Louis,

MO) and cloned by limiting dilution assay. GHOST cell medium

was supplemented with 0.2 mg/ml G418, 0.1 mg/ml hygromycin

B and 1 mg/ml puromycin (Sigma) as previously described [76].

Cloning and transfections
Using cDNA reverse transcribed from A293T-CIITA RNA, we

amplified HLA-DRa, HLA-DRb1 and HLA-DRb5 sequences

(GenBank accession nos. NM019111, NM002121, and NM002125,

respectively), using primers containing forward restriction site XbaI

and the reverse restriction site HindIII (Table S1). The haplotyping

of HLA-DR isotypes expressed by A293T cells was determined by

the Transplantation Immunology Lab, Albany Medical College.

Primers were designed to include an intact Kozak sequence

upstream of the translation start site. HLA-DRa and b5 plasmids

were then used for site-directed mutagenesis using primers indicated

(Table S1). Transient transfections of all plasmids, including:

pDNA3.FLAG.CIITA8 [75], CIITA-GTP2 and -GTP3 [56] and

CIITA -L1035P [58], p33-143 (coding for the p33 and p35 isoforms

of invariant chain–a kind gift provided by Dr. Eric O. Long,

NIAID), HLA-DMa and b (pMCFR-PAC and pDMb/MCFR-

kindly provided by Dr. Lisa K. Denzin, Sloan-Kettering Cancer

Center), eGFP-Rab4B (kindly provided by Dr. Marci Scidmore,

Cornell University), and HIV Gag-iGFP [77] (kindly provided by

Dr. Benjamin Chen, Mount Siani School of Medicine) were

performed using a 3:1 ratio Fugene HD Transfection Reagent to

DNA in serum-free media as suggested by the manufacturer

(Roche, Indianapolis, IN). Virus plasmid DNA provided half of total

DNA used in transfection reactions.

NIH 3T3 Balb/c cells are transfected with 1.5 mg CIITA and

4.5 mL FuGene HD (7:2 ratio of FuGene to DNA for optimal cells

growth) and selected for with L-histidionol for two weeks and

analyzed for MHC II expressing using fluorescence-activated cell

sorter (FACS) with PE-conjugated mouse IgG2a (Cedar Lane)

against I-Ad and clones were selected by limiting dilution. These

cells were co-transfected with p32cDNA and pcHIV PAL (which

contains all HIV genes except the LTR sequences) at a 2:1 ratio.

The p32cDNA was donated by the Peterlin laboratory [59]. Both

MHC II expressing VLPs and MHC II-negative VLPs were

produced and concentrated 10-fold in a 100 K molecular weight

cut-off filter tube (Millipore) for 15 minutes at 4000 rpm prior to

titering via HIV-1 p24 CA Antigen Capture Assay Kit were

performed following the manufacturer’s instructions (NIH AIDS

Research and Reference Reagent Program).

RNA Extraction
Cytoplasmic RNA from 48 hr cultures of each cell type was

collected using the RNeasy Mini Kit according to manufacturer’s

instructions (Qiagen, Inc., Valencia, CA).

RT-PCR
1ug of DNA-free RNA was run out on a non-denaturing gel to

ensure equal concentrations of each sample followed by reverse

transcription of 1 mg of each RNA sample using the iScript cDNA

synthesis kit, following manufacturer’s instructions (BioRad, Hercules,
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CA). 50 ng of cDNA was used to amplify HLA-DM, CIITA, gapdh,

and Ii from each cell type to confirm expression. Forward and

reverse primers sequences used in RT-PCR experiments indicated

in Table S1.

Flow Cytometry
Cells were analyzed for HLA-DR expression as previously

described [56]. Briefly, cells were incubated with murine clone

L243 [78] hybridoma (ATCC, Manassas,VA) supernatant diluted

1:10 in PBS/2% FBS for 30 minutes on ice, washed, and then

incubated with goat- anti-mouse Alexa-Fluor 488- or Alexa-Fluor

647-conjugated secondary antibody (Molecular Probes/Invitro-

gen) diluted 1:100 in PBS/2% FBS for 20 minutes on ice in the

dark. Alternatively, the cells were incubated with L243 monoclo-

nal antibody conjugated to AlexaFluor 488 or 647 (BioLegend)

diluted 1:50 in PBS/2% FBS for 40 minutes on ice in the dark.

Cells were then analyzed with the FACSCanto (BD Biosciences,

San Jose, CA) and further analyzed with Flo-Jo 7.2.2 software

(Tree Star, Inc, Ashland, OR). For Gag retention experiments, live

cells were gated, followed by gating of DR+ cells and then the

percentage of Gag and Gaghi cells were gated. Microscopy on the

same samples was performed using Leica L2 microscope (Leica

Microsystems Wetler GmbH, Wetzler, Germany).

Western blotting
(1:000) of mouse anti-human Rab4 (BD, Franklin Lakes, NJ),

rabbit anti-human b-actin (Cell Signaling Tech., Danvers, MA),

(1:200) HIV-1 p24 hybridoma supernatant (183-H12-5C)[79],

(1:10,000, NIH AIDS Research and Reference Reagent Program,

Germantown, MD) and (1:1000) mouse anti-FLAG M2 (Sigma).

Secondary antibodies used: HRP conjugated, Goat anti-Mouse

IgG and Goat anti-Rabbit IgG (Zymed grade) or (Invitrogen,

Carlsbad, CA). Densitometric analysis was performed as previ-

ously described [80] and the percentage of total HIV-1 a CA p24

(183-H12-5C) [79] reactive bands was used as a measure of Gag

processing [81].

Intracellular Gag staining
106 cells were permeabilized with IntraPrep Permeabilization

Reagent (Beckman-Coulter, Fullerton, CA), following manufac-

turer’s instructions. Gag was stained with FITC-conjugated

FH190-1-1 (Beckman-Coulter) for approximately 15 m prior to

analysis and data interpretation as performed above, with the

exception of the percentage of Gag+ cells was determined after

gating on HLA-DR+ cells.

Virus purification and titering
Virions were purified using the mMACS Streptavidin Kit

(Miltenyi Biotec Inc., Auburn, CA.), according to the manufac-

turer’s instructions using biotinylated-L243 (Biolegend). GHOST

assay [82] to determine infectious virus production and p24

ELISAs to determine virus particle release using the HIV-1 p24

CA Antigen Capture Assay Kit were performed following the

manufacturer’s instructions (NIH AIDS Research and Reference

Reagent Program).

Protease inhibition
Cells were transfected with either pcCIITA or empty pcDNA

vector 4.5 hours prior to Lopinavir (NIH AIDS Research and

Reference Reagent Program) or DMSO (vehicle-only) treatment

at indicated concentrations. Virus and cell supernatants were

collected approximately 17 hours post-treatment. For determina-

tion of p160Gag-Pol to p55Gag ratios, producer cells were

transfected with CIITA constructs (pcCITIA, GTP2, GTP3,

L1035P) or vector only control (pcDNA) and then transfected with

pNL4-3 16 hours later, prior to being treated with 80 nM

Lopinavir. Cell lysates were used to monitor the levels of Pr55Gag

to Pr160Pol via western blotting with HIV-1 a CA p24 (183-H12-

5C) after 17 hours.

Supporting Information

Table S1 Primers used in this study.

Found at: doi:10.1371/journal.pone.0011304.s001 (0.06 MB

DOC)

Figure S1 Gene expression analysis via semi-quantitative PCR

was performed on A293T cells transfected with the indicated

constructs (A), where the Hut78 T cell line served as a positive

control. Expression of HLA-DR on the surface of cells transfected

with the indicated plasmids was assessed by flow cytometry (B).

Found at: doi:10.1371/journal.pone.0011304.s002 (0.71 MB

DOC)

Figure S2 Virus titers were determined at 48 h.p.t. following

transfection with indicated plasmids and HIVNL4-3, as determined

by GHOST infectivity assays and p24 ELISA. Standard deviation

of the mean for 3 independent experiments is presented.

Found at: doi:10.1371/journal.pone.0011304.s003 (0.07 MB

DOC)

Figure S3 Representative blot of Gag processing in virions from

cells treated with indicated concentrations of Lopinavir, where

Vehicle = vehicle only (DMSO).

Found at: doi:10.1371/journal.pone.0011304.s004 (0.41 MB

DOC)

Figure S4 Gag processing of virions from cells transfected with

indicated constructs and HIVNL4-3 was measured via western

blotting with antibody against CAp24 followed by densitometric

analysis of Gag cleavage products.

Found at: doi:10.1371/journal.pone.0011304.s005 (0.07 MB

DOC)

Figure S5 p32cDNA and pcHIV PAL were cotransfected into

the indicated NIH 3T3 Balb/c cells. At 3 d.p.t. virus containing

supernatants were used for titering via p24 ELISA assay. Data is

representative of three independent experiments, where error bars

indicate standard error.

Found at: doi:10.1371/journal.pone.0011304.s006 (0.03 MB

DOC)
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