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The narrow species tropisms of Epstein-Barr Virus (EBV) and the Kaposi's Sarcoma -associated Herpesvirus (KSHV) have made
Murid Herpesvirus-4 (MuHV-4) an important tool for understanding how gammaherpesviruses colonize their hosts.
However, while MuHV-4 pathogenesis studies can assign a quantitative importance to individual genes, the complexity of in
vivo infection can make the underlying mechanisms hard to discern. Furthermore, the lack of good in vitro MuHV-4 latency/
reactivation systems with which to dissect mechanisms at the cellular level has made some parallels with EBV and KSHV
hard to draw. Here we achieved control of the MuHV-4 lytic/latent switch in vitro by modifying the 5’ untranslated region of
its major lytic transactivator gene, ORF50. We terminated normal ORF50 transcripts by inserting a polyadenylation signal
and transcribed ORF50 instead from a down-stream, doxycycline-inducible promoter. In this way we could establish
fibroblast clones that maintained latent MuHV-4 episomes without detectable lytic replication. Productive virus reactivation
was then induced with doxycycline. We used this system to show that the MuHV-4 K3 gene plays a significant role in
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Introduction

Herpesvirus lifecycles are characterized by lytic infection, latency
and reactivation. The known human gammaherpesviruses -
Epstein-Barr virus (EBV) and the Kaposi’s Sarcoma-associated
Herpesvirus (KSHV) - have narrow species tropisms and show
only limited lytic propagation w wvitro. Consequently they are
studied mainly as latent infections of transformed cells [1]. In
contrast, Murid Herpesvirus-4 (MuHV-4), a close relative of
KSHYV [2], readily propagates by lytic replication such that tightly
latent i vitro infections have proved hard to establish. MuHV-4 is
typically studied i viwo. However, the complexity of pathogenesis
studies makes difficult an understanding of the underlying
mechanisms without additional experimental tools. Thus, while
wm vitro MuHV-4 lytic propagation has proved very useful for
studying gammaherpesvirus lytic functions, the lack of wn wvitro
MuHV-4 latency/reactivation systems has been a significant
hindrance.

MuHV-4-infected NSO myeloma cell cultures can be main-
tained over several weeks [3], but only because these cells are
poorly infectible - their spontaneous reactivation rate is high and
MuHV-4 lacking M7, which infects NSO cells much more readily
[4], cannot be maintained in this way. The S11 tumour cell line
has been used to define some aspects of MuHV-4 latency [5] but
again shows high reactivation rates and offers no way to compare
recombinant viruses with the wild-type or uninfected controls. A
subclone selected for lower reactivation rates proved to have an
abnormal, integrated genome [6]. A predominantly latent
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infection of A20 B cells has been described [7]. However, A20
cells are very poorly infectible by MuHV-4 [8] and HCMV IEI
promoters such as that used to isolate infected clones are normally
turned off in latency [9,10]. Thus, the need for antibiotic selection
may have biased the type of latency being studied. The lack of
good in vitro latency systems has inevitably also made MuHV-4
reactivation hard to analyze. Ex viwo reactivation [11] is restricted
to <1/1000 explanted cells even at peak virus loads, and generally
requires further rounds of lytic replication for detection. Sub-
cloned S11 cells [12] and antibiotic-selected A20 cells [7] can
reactivate, but the proportion of reactivating cells was unclear and
presumably low as there was no sign of reactivation terminating
the infected cultures. In summary, the tools available to study
MuHV-4 latency have been far from ideal.

It might be considered that analyzing MuHV-4 reactivation at
all is unnecessary, since primary lytic replication occurs readily
and has the same end-point. However, exogenous virions engage
cellular receptors and deliver tegument proteins [13], while cells
supporting reactivation may be conditioned by latent viral gene
expression [14]. Therefore these processes are not necessarily the
same. Without a good means of studying reactivation, some
MuHV-4 gene functions have been hard to define. For example,
immune evasion is presumed to play a key role in herpesvirus
reactivation [15], but while MuHV-4 remains the only gamma-
herpesvirus for which CD8* T cell evasion has been analyzed in
viwo [16], the importance of this evasion for reactivation remains
unknown. MuHV-4 lacking its K3 evasion gene [17-19] shows
little defect in lytic replication, but rathers a CD8-dependent
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impairment of latency-associated lymphoproliferation. The in-
creased i wvivo presentation by K3 MuHV-4 of p79 [16], an
epitope presented largely by B cells [20], suggests that K3 might
also be important for reactivation, but it has not been possible to
analyze the effect of K3 disruption on reactivation titers.

Comparing MuHV-4 primary lytic infection with reactivation is
particularly difficult with B cells, since B cell infection remains
poorly characterized. Early reports of phenotypic changes in
splenic B cells exposed to MuHV-4 virions [21,22] did not
necessarily identify actual infection. Virion binding to B cells was
subsequently shown to be poor [4] because this depends on
heparan sulfate [23], which B cells do not express at high levels
[24]. Further blocks are likely, as A20 B cells with artificially high
level heparan sulfate expression remain poorly infectible [8]. Thus,
in order to establish new tools for analyzing MuHV-4 reactivation
we focussed on fibroblasts, for which primary MuHV-4 lytic
infection is well-defined. Stromal cells are not a recognized site of
EBV persistence [25], but MuHV-4 seems to be different to EBV
in also establishing a persistent infection without B cells [26].
Thus, while B cells are the main site of MuHV-4 latency in
lymphoid tissue [27] with a well-established role in virus transport
[28], stromal infection may also play a fundamental role in the
viral lifecycle [26,29,30]. Viral latency and reactivation in stromal
cells may also be important in Kaposi’s Sarcoma [31]. Thus, as a
first step in understanding MuHV-4 latency/reactivation, we
established an inducible infection of fibroblasts, and used this to
define the importance of K3 in protecting reactivation against
CD8" T cell recognition.

Materials and Methods

Plasmids

pREV-TRE, pRevTet-On and pTet-tT'S were from Clontech.
The tetracycline-dependent transactivator (tT'A) of pRevTet-On
was subcloned into pREV-TRE by digesting pRevTet-On with
Bgll and pREV-TRE with BamHI. Each was then blunted with T4
DNA polymerase and digested with Clal. The blunt/Clal tTA
fragment was then ligated into pREV-TRE. A tetracycline-
dependent transcriptional suppressor (tTS) was removed from
pTet-tT'S by digestion with £cwRI and Clal and ligated into the
EcoRI and Clal sites of pSP73 (Promega Corporation). The
retroviral expression vector pMSCV-IRES-PURO [18] was
separately modified by cloning into its EcoRI/Xhol polylinker an
EcoR1/ Xhol fragment of the pSP73 polylinker, thereby gaining an
additional BamHI cloning site. The tTS fragment in pSP73 was
then subcloned as an FcoRI/BglIl fragment into the FcoRI1/BamHI
sites of pMSCV-IRES-PURO.

Viral mutagenesis

We generated a polyA-TRE construct by digesting pREV-TRE
with Xhol and pSV40-ZEO2 (Invitrogen Corporation) with FcoRI.
Both were then blunted with T4 DNA polymerase and digested
with BamHI, and the TRE fragment of pREV-TRE was ligated
mto pSV40-ZEO2 downstream of its SV40 polyadenylation site.
The polyA-TRE construct was then amplified by PCR (Hi-Fidelity
PCR kit, Roche Diagnostics Ltd.), including Bsgl recognition sites
in the upstream and downstream primers, digested with Bsgl and
cloned into a Bsgl site (genomic co-ordinate 66718) of a BamHI-
restricted MuHV-4 genomic clone (co-ordinates 64765-68813) in
pUCI9 [2]. The modified BamHI genomic clone was then
subcloned into the BamHI site of the pST76K-SR shuttle vector
and recombined into a MuHV-4 BAC by transient recA
expression [32] to give TRE-50 MuHV-4. We derived a revertant
BAC by recombining in the corresponding unmutated BamHI
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clone. K3 TRE-50 MuHV-4 was generated by shuttling an
established K3 mutation [10] onto the TRE-50 background.
Viruses were reconstituted by transfecting BAC DNA into BHK-
21 cells with Fugene-6 (Roche Diagnostics Ltd.). GFP* viruses
(retaining the BAC cassette) were grown directly in BHK-21 cells.
To remove the BAC cassette, viruses were first passaged through
NIH 3T3-CRE cells until GFP* cells were no longer visible [4].

Cell lines

MEF-1 cells (American Type Culture Collection CRL-2214),
293T cells, BHK-21 cells, NIH-3T3-CRE cells [16] 49100.2 T
cells [33], and murine embryonic fibroblasts (MEFs) were grown
in Dulbecco’s modified Eagle medium (Invitrogen Corporation)
supplemented with 2 mM glutamine, 100 U/ml penicillin,
100 ug/ml streptomycin and 10% fetal calf serum (PAA
laboratories). Medium for MEFs was further supplemented with
50 uM 2-mercaptoethanol. TET-ON/OFF cells were generated
by retroviral transduction. 293T cells were co-transfected with
either pREV-TRE-tTA plus the retroviral packaging plasmid
pEQPAMS3 [34], or pMSCV-tTS-IRES-PURO plus pEQPAMS3.
Retroviral supernatants were harvested at 48 h and 72 h post-
transfection and used to transduce MEF-1 cells in the presence of
10 pg/ml hexadimethrine bromide. Transduced cells were
selected with hygromycin (250 pg/ml) and puromycin (10 pg/ml).

Virus titers

Wild-type and TRE-50 virus titers were determined by plaque
assay on BHK-21 cells [4]. Briefly, 10-fold virus dilutions were
incubated on BHK-21 monolayers for 2 h. The monolayers were
then overlaid with medium containing 0.3% carboxymethylcellu-
lose. After 4 days, monolayers were fixed in 4% formaldehyde and
stained with 0.1% toluidine blue. Plaques were then counted using a
plate microscope. In preliminary experiments we established that
TRE-50 viruses showed no growth defect on BHK-21 cells
caompred to wild-type MuHV-4, and that TRE-50 virus titers on
BHK-21 cells were equivalent to those on doxycycline-treated TET-
ON/OFF cells (as the TRE promoter is leaky unless suppressed).

DNA analysis

Viral DNA was isolated from infected BHK-21 cells by alkaline
lysis [4], then digested with either BamHI, Bgll or FEcRI,
electrophoresed on 0.8% agarose gels and transferred to positively
charged nylon membranes (Roche Diagnostics Ltd.). A **P-dCTP
(APBiotech) labelled probe was generated by random primer
extension (Nonaprimer kit, Qbiogene) from a 4048bp BamHI
genomic fragment (co-ordinates 64765-68813). Membranes were
hybridised with probe (65°C, 18 h), washed to a stringency of 0.2%
SSC, 0.1% SDS at 65°C and exposed to X-ray film. For viral DNA
quantitation, samples were digested with s and probed with a **P-
dCTP labelled Psfl genomic fragment corresponding to the MuHV-
4 terminal repeat [2]. Circular MuHV-4 genomes were identified by
wn situ cell lysis and resolution in vertical gels [35]: cells were washed,
pelleted and resuspended in 89 mM Tris borate, 2 mM EDTA,
15% Ficoll, 10 ug/ml RNase A, 0-:01% bromophenol blue, then
loaded into a 0.8% agarose gel and overlaid with an equal volume of
5% Ficoll, 1% SDS, 100 pg/ml proteinase K, 0:05% xylene cyanol
green. Samples were electophoresed at 12V for 4 h and then
overnight at 80 V. The DNA was blotted onto positively charged
nylon membranes and probed with the **P-dCTP-labelled Pyl
terminal repeat fragment. Membranes were washed and exposed to
X-ray film as above. Viral genomes were also quantitated by real-
time PCR of genomic co-ordinates 41664252 [36]. The PCR
products were quantitated by hybridization with a Tagman probe
(genomic coordinates 4218-4189) and converted to genome copies
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by comparison with a standard curve of cloned plasmid template
amplified in parallel. Cellular DNA was quantitated in parallel by
amplifying part of the adenosine phosphoribosyl transferase gene
(forward primer 5'-GGGGCAAAACCAAAAAAGGA, reverse
primer 5'-TGTGTGTGGGGCCTGAGTC, probe 5'-TGCCT-
AAACACAAGCATCCCTACCTCAA).

RNA analysis

RNA was extracted from MuHV-4-infected BHK-21 cells with
RNAzol B (Tel-Test). For Northern blots, total RNA was
electrophoresed (5 pg/lane) on 1% formaldehyde agarose gels
and blotted overnight onto positively-charged nylon membranes.
Probes for B-actin, ORF50 and M7 were generated from PCR-
amplified templates by random primer extension (Qbiogene) with
32P_dCTP (APBiotech). Blots were hybridized with probe overnight
at 65°C, then washed (0.2xSSC, 0.1%SDS, 65°C) and exposed to
X-ray film. For cDNA synthesis, any contaminating DNA was first
removed by digestion with RNase-free DNase (Promega Corpora-
tion). cDNA synthesis with AMV reverse transcriptase (Promega
Corporation) was then primed with oligo-dT" and ¢cDNA samples
amplified by real-time PCR (Rotor Gene 3000, Corbett Research).
PCR products were quantitated with Sybr green (Invitrogen
Corporation) and compared with dilutions of cloned plasmid
template amplified in parallel. Amplified products were distin-
guished from paired primers by melting curves, and the correct size
of the amplified products confirmed by agarose gel electrophoresis
and staining with ethidium bromide. The primers used were
ORF73: 5'-TGTGCCAGAAGCTTGTGTA, 5'- ATATCAGG-
GAATGCGAAGAC; ORF25: 5'-ATCGCCTGTCTCAATACT-
GAATTCAA, 5'-GAAGAAGGTGTGCTCTAGTAGATGC; K3:
5" TCTTTGTGGGCTGCTGGGT, 5'- TGGCTGTGCTGAT-
GATAGTGATG; ORF50: 5'-ATCATTAACCTGGACCCT, 5'-
TAAGCCTGTTCGTGCCCAGAAG; ORF46: 5'-TTGCCTTG-
TTTCCCCACAGCATAAA, 5'-GTCAGGATGCAGTTAAGC-
AGAAGAA.

Immunoblotting

Cells were lysed on ice for 30 minutes in 50 mM TrisCl pH 7.4,
150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 1 mM PMSF.
Nuclei and debris were pelleted by centrifugation (13,000 xg, 15 min).
Supernatants were mixed 1:1 with 2Xx Laemmli’s loading buffer,
resolved by PAGE, then transferred to PVDF membranes (Perbio
Science). Membranes were blocked with PBS/0.1% Tween-20/10%
non-fat milk, and probed with a MuHV-4-immune rabbit serum
[32], followed by horseradish peroxidase-conjugated donkey anti-
rabbit pAb (Dako-Cytomation). The immunoblots were then
developed with ECL reagents (APBiotech) and exposed to X-ray film.

Antigen presentation assay

TRE-50 virus was reactivated from TET-ON/OFF cells
(5x10*/well) with doxycycline, then incubated (18 h, $7°C) with
49100.2 T cells (10°/well) [33], which are specific for the H2-D"-
restricted p36 epitope of MuHV-4 (AGPHNDMEI) [20], and
produce beta-galactosidase in response to T cell receptor signalling
[37]. To assay beta-galactosidase production, the cells were
washed in PBS and lysed in PBS with 5 mM MgCl,, 1% NP-
40, 0.15 uM chlorophenol-red-beta-D-galactoside (Merck Biosci-
ences). After 4-6 h the absorbance at 595 nm was read on a
Biorad Benchmark Microplate Reader.

Flow cytometry

Cells infected with GFP* viruses were washed (0.1% BSA,
0.01% azide in PBS) and analysed directly for green channel
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fluorescence. For specific staining, cells were incubated with rabbit
anti-MuHV-4 immune serum [11] (1 h, 4°C), washed x2 in PBS,
incubated with fluorescein-conjugated pig anti-rabbit pAb (Dako
Cytomation) (1 h, 4°C), washed x2 in PBS and analysed on a
FACS Calibur using Cellquest software (BD Biosciences).

Immunofluorescence

Cells were fixed in 4% formaldehyde (30 min), then permea-
bilized with 0.1% Triton-X100 +0.1% Tween-20 in PBS. The
MuHV-4 ORF65 capsid component was identified by staining
with mAb MG-12B8 [38] plus Alexa-568-conjugated goat-anti-
mouse IgG pAb. EGFP was visualized directly. Nuclei were
counter-stained with DAPI. Staining was visualized with an
Olympus IX70 microscope plus a Retiga 2000R camera line

(QImaging).
Results

Establishment of cell lines with latent, reactivatable
MuHV-4

We previously de-regulated the MuHV-4 lytic cycle by inserting
an additional promoter element in the 5’ untranslated region of
ORF50 [39], a gene both necessary and sufficient to drive lytic
replication [12,40]. We used a similar strategy here to down-
regulate ORF50, adding an SV40 polyadenylation signal to its 5’
untranslated region. We also added a doxycycline-inducible
promoter downstream of the polyadenylation signal (Fig. la).
Thus, endogenous ORF50 transcripts were replaced with
doxycycline-inducible transcripts. Southern blots confirmed the
predicted genomic structures of the recombinant (TRE-50) viruses
(Fig. 1b). We next generated a cell line (TET-ON/OFF) with a
doxycycline-inactivated, TRE-binding transcriptional suppressor
and a doxycycline-activated, TRE-binding transcriptional activa-
tor. The suppressor was expressed constitutively from an HCMV
IE1 promoter and the transactivator from a doxycyline-inducible
promoter, such that doxycycline induced ORF50 expression but
without doxycycline ORF50 transcription was actively suppressed.

We infected these cells and cloned them cells 4 h later to
establish uniform, latently infected populations. The minority of
clones showing cytopathic effects were discarded. Infectious virus
remained undetectable in supernatants of most clones over at least
4 weceks, but reappeared 24-48 hours after exposure to doxycy-
cline. Fig. 2a shows a typical example; Fig. 2b shows 5 further
clones with similar patterns of latency and doxycycline-induced
reactivation. Thus, we could reproducibly establish fibroblast
clones that carried a replication-competent viral genome and were
fully permissive for MuHV-4 lytic replication, but were latently
infected. Fig. 2c¢ shows a titration of doxycycline dose for such 3
clones.

MuHV-4 lytic antigens were undetectable in uninduced clones
and abundant 14 h after exposure to exogenous, wild-type virions
(Fig. 2d—e). Lytic antigen expression was also evident after
treatment with doxycycline to reactivate endogenous viral
genomes. However, its onset was slow, being undetectable after
24 h and weak even after 72 h, compared to the 14 h exogenous
infection. This suggested that while latent virus could be
consistently reactivated, this might be occuring in only a minority
of the doxycycline-treated cells. To establish that the cultured cells
had not lost their viral genomes, we subcloned them just before
doxycycline treatment and then scored each subclone for
infectious virus production (Fig. 2f). Reactivation was again slow,
but essentially all the subclones of each latently infected clone
yielded detectable infectious virus, indicating that they maintained
at least one reactivation-competent viral genome.
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Figure 1. Modification of MuHV-4 ORF50 control. a. Schematic diagram showing the insertion in the 5’ untranslated region of ORF50, between
MuHV-4 ORFs 48 and 49, of a poly-adenylation site plus a downstream promoter (TRE) with binding sites for doxycycline-dependent transcription
regulators. b. Viral DNA from the TRE-50 mutant (T50), an independent mutant (ind), a revertant of each mutant (R4, R.8) and wild-type MuHV-4 (WT)
was digested with Bgll, EcoRl or BamHlI, electrophoresed and probed with a BamHI-N fragment as shown in a. The polyA-TRE insertion (705bp)
introduces a Bgll site, such that a wild-type 16476bp band becomes 11040bp + 6141bp, and an EcoRl site, such that a 14937bp wild-type band
becomes 13926bp + 1716bp. The 3525bp EcoRl band is unchanged. The insertion makes the 4048bp wild-type BamHI band 4753bp.

doi:10.1371/journal.pone.0011080.g001

Direct visualization of latent infection

BAC-derived MuHV-4 that retains the BAC cassette expresses
eGFP from an HCMV IE1 promoter at the left end of the viral
genome [32]. This promoter operates independently of other viral
genes: in either lytic infection or in latency it can be either on or off
[9,10]. Thus it marks a subset of latently infected cells. TET-ON/
OFF cells infected with wild-type eGFP"™ MuHV-4 showed eGFP
and capsid expression regardless of doxycycline treatment (Fig. 3a).
TET-ON/OFT cells infected at the same multiplicity with TRE-
50 eGFP* MuHV-4 showed eGFP expression without capsid
expression. When the cells were treated with doxycycline, eGFP
and capsid expression were both evident (although not always in
the same cells). Established, latently infected clones also showed
eGFP expression without detectable capsids (Fig. 3b), although the
proportions of eGFP" cells were low, suggesting that the HCMV
IE1 promoter tended to become silenced.
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Analysis of latently infected cells

Southern blots for the viral terminal repeat unit (Fig. 4a)
established that latently infected fibroblasts contained on
average <5 MuHV-4 genomes per cell. (Fig. 2f shows that
such populations did not include a significant number of
genome-negative cells.) This result was confirmed by quanti-
tative PCR: 6 independent clones contained 3.2%1.3 wviral
genomes/cell (mean®SD). Genome copy numbers remained
stable over at least 3 weeks of culture without induction
(Fig. 4b). Doxycycline treatment (Iig. 4c) then increased
genome copy numbers at a rate consistent with the earlier
infectivity assays. Gardella gel analysis (Fig. 4d) of TET-ON/
OFF-TRE50 cells was difficult because of the low viral genome
copy numbers, but nonetheless showed circular genomes in
uninduced cells, consistent with stable latency rather than an
abortive infection.
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Figure 2. Reactivation of TRE-50 MuHV-4 from latently infected fibroblasts. a. TET-ON/OFF cells were infected with TRE-50 MuHV-4 (3 pfu./
cell) then cloned. Cultures of a representative clone were analyzed for infectious virus by plaque assay after induction with doxycycline (dox, 1 pg/ml).
Infectious virus was undetectable without induction. b. Plaque titers after doxycycline treatment were determined for an additional 5 clones. The x axis
marks the lower limit of assay sensitivity. Again no infectivity was detected without induction. c. 3 clones were tested for sensivity to doxycycline. Virus
titers were determined by plaque assay 48 h after adding doxycycline at the final concentration shown. d. A latently infected TET-ON/OFF cell clone
was induced with doxycycline for the time indicated (dotted lines) or left uninduced (dashed lines), then stained with a MuHV-4-immune rabbit serum
and analyzed by flow cytometry. In the bottom panel, the cells were infected with wild-type MuHV-4 without doxycycline (filled histogram) or left
uninfected. e. A latently infected clone (TET-ON/OFF-TRE-50) or uninfected cells (TET-ON/OFF) were treated or not with doxycycline for the time
indicated, then analyzed for MuHV-4 antigen expression by immunoblotting with a MuHV-4-immune rabbit serum. As a positive control, wild-type
MuHV-4 (virus +) was added 18 h before analysis. f. Latently infected TET-ON/OFF cell clones were sub-cloned further and then cultured with
doxycycline. Sub-clone supernatants were analyzed for infectious virus by incubation with BHK-21 cells for 4 days and then scoring or not for
cytopathic effects. Each graph shows the percentage of subclones yielding infectious virus with time. At least 70 sub-clones were analyzed for each
latently infected clone.

doi:10.1371/journal.pone.0011080.g002

Transcriptional analysis of reactivating viral genomes Protection of reactivating virus by K3

We used RT-PCR to analyze MuHV-4 transcription in To test whether CD8" T cell evasion contributes to MuHV-4
latently infected and reactivating fibroblasts. mRNA was reactivation, we disrupted its K3 evasion gene on the TRE-50
extracted from TET-ON/OFF-TRE50 cells after doxycycline background and derived K3~ and K3" latently infected cells. K3~
treatment, and compared with mRNA extracted from TET-ON/ and K3" viruses showed no obvious difference in their capacity to
OFF cells either uninfected or exposed to wild-type virions establish latently infected clones. Average viral genome copy numbers
(Fig. 5a). mRNA for the ORF73 episome maintenance protein (mean*SD, 5 clones each) were also indistinguishable - 3.0%£1.2 for
was present during both latency and reactivation. ORF50 mRNA K3"and 3.2%1.3 for K3 -as were virus titers after induction (Fig. 6a).

was not detected in latency, but was readily detected after We tested viral antigen presentation using the 49100.2 T cell
induction. K3 mRNA was similarly present only after induction, hybridoma, which recognizes an H2-D'-restricted epitope of
consistent with the ORF50 dependence of its promoter [41]. ORF®6, a lytic gene. Fig. 6b shows the relationship between antigen

ORF46 (an early gene) and ORF25 (a late gene) [42] showed dose and hybridoma response. Reactivating K3~ clones, treated
similar induction kinetics to ORF50. Northern blots (Fig. 5b) with phosphonoacetic acid to prevent any post-induction spread of

comparing ORF50 and a late gene (M7) again gave a similar Iytic infection, showed significantly better epitope presentation
picture. Thus, there was no sign of a much more rapid induction than K3* (Fig. 6¢c). The 49100.2 hybridoma can also exert anti-
of immediate early/early genes than late genes that might have viral effects. Without phosphonoacetic acid treatment, K3 clones
indicated slow progress through the lytic cycle after induction-all showed both better antigen presentation and lower virus titers
Iytic transcripts were undetectable without induction, sparse at when 49100.2 cells were added (Fig. 6d). Therefore K3 protected
24 h, and abundant at 48-72 h. the reactivating cells against CD8* T cell recognition.
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stained for ORF65 capsid expression with mAb MG-12B8. EGFP expression was visualized directly. Nuclei were counterstained with DAPI. b. Latent
eGFP* TRE-50 clones were established and reactivation then induced or not with doxycycline. 48 h later the cells were fixed, permeabilized and
stained as in a. 2 representative clones (3.4, 10.4) are shown.

doi:10.1371/journal.pone.0011080.g003
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Figure 4. Analysis of latently infected TET-ON/OFF cells. a. A latently infected TET-ON/OFF cell clone (c1.3) was analyzed for genome copy
number by Southern blot (100 ng DNA) for the viral 1.2 kb Pstl terminal repeat fragment. For comparison we titrated purified MuHV-4 BAC DNA-
estimated viral genome copy numbers are shown. 100 ng DNA is equivalent to approximately 10 cells. Therefore by this method c1.3 contained 1-3
viral genomes per cell. b. The viral genome copy number of 2 latently infected TET-ON/OFF cell clones (c1.3, c1.6) was determined by real-time PCR of
10 ng DNA. Values were normalized by the cellular APRT copy number of each sample to give the number of viral genomes per 2 copies of host DNA,
i.e. per cell. Each point shows mean = SD of triplicate samples. No change in copy number was observed over 3 weeks of continuous culture.
Ul=uninfected TET-ON/OFF cells. c. The viral genome copy numbers per 2 copies of cellular APRT were determined for ¢1.3 and c1.6 following
doxycycline treatment (1 pg/ml). Each point shows mean = SD of triplicate samples. Ul = uninfected cells. d. c1.3 cells (TET-ON/OFF-TRE-50) were
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electrophoresis, and Southern blots probed for the viral 1.2 kb terminal repeat. Controls included virion DNA (linear), BAC-cloned viral DNA (circular,
although some has sheared to become linear) and TET-ON/OFF cells either uninfected (nil) or exposed overnight to wild-type MuHV-4 (+MuHV-4,
mostly linear). The inset shows a longer exposure to reveal low copy number circular viral genomes.

doi:10.1371/journal.pone.0011080.9g004

Discussion

We controlled MuHV-4 reactivation by manipulating ORF50
transcription. This confirmed a central role for ORF50 in
reactivation from latency and allowed us to compare single gene
knockout viruses for a reactivation phenotype. Thus, K3 was
shown to be important for reactivating fibroblasts to evade CD8"
T cell recognition.

The accumulation of lytic antigens and infectious virus in latently
infected fibroblast populations was notably slower after doxycycline-
induced reactivation than after the initiation of lytic infection by
exogenous virions. Since the induction of early and late viral lytic
transcripts was not significantly delayed compared to that of

@ PLoS ONE | www.plosone.org

ORF50, it appeared that the initiation of reactivation was delayed
rather than progress through the lytic cycle itself. Thus, viral gene
expression increased with time due to more genomes reactivating
and to some lytic spread from cells in which reactivation had already
occured. The failure of all latent genomes to respond synchronously
to doxycycline presumably reflected silencing, either of the TRE
promoter in host genome, such that a doxycycline-dependent
transactivator was not produced, or of the TRE promoter in the
viral genome, such that the transactivator did not function.
Silencing has been observed both for endogenous gammaherpes-
virus promoters [43-45] and for TRE promoters in a non-viral
context [46]. It correlates with CpG methylation and histone
deacetylation [47,48]. Methylation of the ORF50 promoter has
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Figure 5. Transcriptional changes associated with MuHV-4 reactivation. a. Latently infected TET-ON/OFF cells were analyzed for MuHV-4
transcripts by RT-PCR before and after treatment with doxycycline (filled symbols). As a control, uninfected TET-ON/OFF cells were exposed to wild-type
MuHV-4 (open symbols). Each point shows the mean = SD copy number of triplicate RT-PCR reactions, adjusted to give the number of viral transcripts
per 10° beta-actin transcripts in the same sample. Reverse transcriptase-negative controls always gave viral mRNA copy numbers that were undetectable
or <1% of reverse transcriptase-positive samples. b. RNA (5 nug) was extracted from c1.3 cells either before induction (0 h) or after induction with
doxycycline (1 ug/ml). Ul=uninfected TET-ON/OFF cells. Replicate blots were probed for ORF50, M7 (a MuHV-4 late gene) or beta-actin.

doi:10.1371/journal.pone.0011080.g005

been reported for MuHV-4 [49]; another study found a more
important role for histone deacetylation [45]. Methylation can be
reversed with 5-azacytidine, and histone acetylation with sodium
butyrate or Trichostatin A. However, none of these treatments
markedly upregulated doxycycline-dependent or doxycycline-inde-
pendent TRE-50 virus reactivation; nor was delivering the Herpes
simplex virus ICP0O via a recombinant adenovirus vector effective
(data not shown). Therefore the mechanism of silencing remained
unclear. High level reactivation ablates MuHV-4 persistence i vivo
[39], so gammaherpesviruses have presumably evolved multiple
levels of regulation to guard against this. It is also possible that
ORIF'50 expression alone reactivates MuHV-4 less efficiently than

@ PLoS ONE | www.plosone.org

physiological triggers, which might affect the viral genome in
multiple ways.

While the efficiency of doxycycline-induced MuHV-4 reactiva-
tion was far from 100%, it was nonetheless sufficient to establish a
reactivation phenotype for K3 deficiency, something not previ-
ously possible with pathogenesis assays [16]. In viwo MuHV-4
reactivation presumably starts with a latently infected B cell
differentiating in a mucosal or sub-mucosal site, as proposed for
EBV [50]. Thus, extending the current reactivation system to B
cells is a priority. However, gamma-2-herpesviruses may also
undertake further, local rounds of latency establishment and
reactivation, as reflected in the persistence of MuHV-4 infection in
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Figure 6. Antigen presentation by reactivating MuHV-4. a. TET-ON/OFF cells latently infected with K3* or K3~ TRE-50 MuHV-4 were treated
with doxycyline (1 ug/ml), and virus titers determined by plaque assay 30 or 54 h later. Each point shows a separate clone. Infectious virus was
undetectable without induction. b. Uninfected TET-ON/OFF cells were incubated with different doses of p56 peptide (2 h, 37°C), then washed x2 in
DMEM and used to stimulate the MuHV-4-specific T cell hybridoma 49100.2 (16 h, 37°C). Beta-galactosidase production by the hybridoma cells was
assayed by adding CPRG to cell lysates and reading the absorbance at 595 nm. Bars show mean = SD of 3 replicate cultures. c. TET-ON/OFF clones
either uninfected or latently infected with K3* or K3~ TRE-50 MuHV-4 were incubated with doxycycline + phosphonoacetic acid (100 pg/ml) for the
time incubated, then for a further 16 h with 49100.2 cells before assaying beta-galactosidase production as in b. Each bar shows mean = SD of 3
replicate cultures for 1 clone. Hybridoma stimulation was significantly greater by reactivation K3~ MuHV-4 than by K3* at all time points after
induction (p<<0.0001 by Student’s 2-tailed t test). d. TET/ON-OFF cell clones carrying latent K3* or K3~ TRE-50 MuHV-4 were induced with doxycycline
without phosphonoacetic acid for the times indicated. MuHV-4-specific 49100.2 T cells were then added to each culture. Replicate cultures were
assayed 16 h later for viral antigen recognition by beta-galactosidase assay, or for virus titer by plaque assay. Bars show mean * SD of triplicate
cultures for separate clones. K3~ clones were both recognized significantly better by 49100.2 cells and significantly inhibited in virus production
compared to K3* clones (p<<0.01 by Student’s 2-tailed t test).

doi:10.1371/journal.pone.0011080.g006

B cell-deficient mice. Therefore latency and reactivation is non-B
cells is also likely to be an important feature of the viral lifecycle. In
contrast to the frequent KSHV genome loss observed from
Kaposi’s Sarcoma spindle cells [51], MuHV-4 episomes were
maintained in transformed fibroblasts for at least 3 weeks without
evidence of viral lytic gene expression. This would correspond to
approximately 50 cell divisions, so even a 5% loss rate should have
reduced a 100% genome” population to <10% genome”. Viral
episomes entirely lacking ORF50 [36] are also well maintained in
fibroblasts (data not shown). Therefore our i vitro data support the
idea of stromal cells being a possible site of long-term MuHV-4
persistence.

Isolated reactivating cells presumably rely on K3 to protect
them directly against CD8" T cell recognition. Once infection
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