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Abstract

The metabolic stability is a very important idiosyncracy of proteins that is related to their global flexibility, intramolecular
fluctuations, various internal dynamic processes, as well as many marvelous biological functions. Determination of protein’s
metabolic stability would provide us with useful information for in-depth understanding of the dynamic action mechanisms
of proteins. Although several experimental methods have been developed to measure protein’s metabolic stability, they are
time-consuming and more expensive. Reported in this paper is a computational method, which is featured by (1)
integrating various properties of proteins, such as biochemical and physicochemical properties, subcellular locations,
network properties and protein complex property, (2) using the mRMR (Maximum Relevance & Minimum Redundancy)
principle and the IFS (Incremental Feature Selection) procedure to optimize the prediction engine, and (3) being able to
identify proteins among the four types: ‘‘short’’, ‘‘medium’’, ‘‘long’’, and ‘‘extra-long’’ half-life spans. It was revealed through
our analysis that the following seven characters played major roles in determining the stability of proteins: (1) KEGG
enrichment scores of the protein and its neighbors in network, (2) subcellular locations, (3) polarity, (4) amino acids
composition, (5) hydrophobicity, (6) secondary structure propensity, and (7) the number of protein complexes the protein
involved. It was observed that there was an intriguing correlation between the predicted metabolic stability of some
proteins and the real half-life of the drugs designed to target them. These findings might provide useful insights for
designing protein-stability-relevant drugs. The computational method can also be used as a large-scale tool for annotating
the metabolic stability for the avalanche of protein sequences generated in the post-genomic age.
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Introduction

Proteins are inherently dynamic molecules of marginal stability.

Many marvelous biological functions of proteins are realized

through their internal motions [1,2,3,4]. The physicochemical

stability and flexibility are balanced with each other. They are also

thought as intimately correlated with their intramolecular

fluctuations and various other dynamic processes [5]. Protein

flexibility facilitates adaptation and recognition [6] in diverse

molecular events, such as switch between active and inactive states

[7], allosteric transition [8], intercalation of drugs into DNA [9],

cooperative effects [10], and assembly of microtubules [11]. It is

also essential for in-depth understanding the M2 proton channel

gating and inhibition mechanism [3,12,13,14], the switch

mechanism of human Rab5a [15], the inhibition mechanism of

PTP1B [16], the metabolic mechanism [17], and the action

mechanism of calmodulin [18,19]. These properties present

unique challenges to the pharmaceutical scientists attempting to

develop protein-stability-relevant drugs [20,21,22].

Traditional methods of measuring protein’s metabolic stability

rely on either pulse-chase metabolic labeling or administration of

protein synthesis inhibitors followed by half-life biochemical

analysis of the abundance of the protein concerned at multiple

time points during the chase period. Highly regulated proteins

tend to be present in low amounts. Since even mass spectrometry

plus failed to detect low-abundance proteins, study about protein’s

metabolic stability remains far from complete yet although it is of

critical importance for drug development. Recently, it was

reported that high-throughput systematic approaches for the

analysis of global metabolic stability were taken by using a
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fluorescence-based system to monitor metabolic stability at the

single-cell level [23]. In this regard, however, computational

approaches would be much more efficient not only in timely

providing the information about the stability of query proteins but

also in helping analyze what factors play major roles to the

metabolic stability. This study was initiated in an attempt to

develop a computational method for investigating the metabolic

stability of proteins in terms of their biochemical and physico-

chemical properties or features. Our results suggest that KEGG

enrichment scores, subcellular locations, polarity, amino acids

composition, hydrophobicity, secondary structure propensity, and

number of protein complexes, play irreplaceable roles for protein’s

metabolic stability. Moreover, we predicted the metabolic stability

of drug target proteins using the selected features and found an

intriguing correlation between the predicted metabolic stability of

some proteins and the real half-life of the drugs designed to target

them.

Materials and Methods

Data set
As elucidated in a recent review [24], to develop an effective

statistical method for predicting protein attributes, one of the

indispensable things is a valid benchmark dataset. Here, protein

stability data were taken from Yen’s work [23]. We downloaded

ORFs from hORFeome v5.1 library (http://horfdb.dfci.harvard.

edu/), and translated ORFs to protein sequences using transeq in

Emboss [25]. Proteins with the length shorter than 50 and longer

than 2700, were excluded. In Yen’s work, protein samples were

divided into four groups according to their PSI (protein stability

index): (1) short half-life (PSI,2), (2) medium half-life (2#PSI,3), (3)

long half-life (3#PSI,4), and (4) extra-long half-life (PSI$4). After

being thus processed, our dataset consist of 223 short half-life

proteins, 446 medium half-life proteins, 706 long half-life proteins

and 496 extra-long half-life proteins. For reader’s convenience, these

sequences (classified into above four groups) are given in Dataset S1.

Biochemical and physicochemical description of proteins
In order to formulate protein samples of different sequence

lengths with vectors of a uniform dimension, let us adopt the

concept of pseudo amino acid composition (PseAAC) [24,26,27].

The concrete procedures are that the biochemical and physico-

chemical properties [28,29,30,31] are singled out from a protein

sequence according to the following seven aspects: (1) amino acid

composition (AAC) [32], (2) secondary structure propensity, (3)

hydrophobicity, (4) polarizability, (5) solvent accessibility, (6)

normalized van der Waals volume, and (7) polarity [33].

Of the above seven types of properties, except for AAC (the

occurrence frequencies of the 20 native amino acids for a given

protein [34]) that is an extensive quantity reflecting the global or

overall feature of a protein, all the other six types are associated

with a single amino acid in a given protein sequence position and

hence belong to a localized quantity.

The six local types of properties can each be classified into two or

three categories. For example, for the secondary structure

propensity, each amino acid can be classified as: helix, strand or

coil, as predicted by SSpro [35]. For solvent accessibility: buried or

exposed to solvent, as predicted by ACCpro [36]. For the other four

types of properties, i.e., hydrophobicity, polarizability, normalized

van der Waals volume and polarity, each of the constituent amino

acids can also be classified into three categories in a similar way

according to their values. In terms of hydrophobicity, there are

three groups of amino acid: polar (R, K, E, D, Q, N), neutral (G, A,

S, T, P, H, Y) and hydrophobic (C, V, L, I, M, F, W) [37]. In terms

of polarizability, there are three groups of amino acid: 0–0.108 (G,

A, S, D, T), 0.128–0.186 (C, P, N, V, E, Q, I, L) and 0.219–0.409

(K, M, H, F, R, Y, W) [38]. In terms of normalized van der Waals

volume, there are three groups of amino acid: 0–2.78 (G, A, S, C, T,

P, D), 2.95–4.0 (N, V, E, Q, I, L) and 4.43–8.08 (M, H, K, F, R, Y,

W) [38]. In terms of polarity, there are three groups of amino acid:

4.9–6.2 (L, I, F, W, C, M, V, Y), 8.0–9.2 (P, A, T, G, S) and 10.4–

13.0 (H, Q, R, K, N, E, D) [39].

Now, the problem is how to generate the corresponding global

quantity by integrating the localized quantities over an entire

protein sequence. To realize this, let us consider the hydropho-

bicity first. In this study, the hydrophobicity of an amino acid is

classified as: P (polar), N (neutral), or H (hydrophobic). Thus, for a

protein sequence, say, ‘‘MSDKPDMAEIEKFSKETIEQEKQA-

GESTQEKNPLPMLLPATDKSKLKKTE’’, it can be coded as

‘‘HNPPNPHNPHPPHNPPNHPPPPPNNPNNPPPPNHNHHH-

NNNPPNPHPPNP’’.

For the above coded sequence, the following three extensive

quantities can be derived: C (composition), T (transition), and D
(distribution). C refers to the global percent composition of each of

the three groups (i.e., P, N, and H) in the coded sequence; T to the

percent frequencies with which the code letter changes to another

along the entire length of the coded sequence; and D to the

distribution pattern of the code letters along the sequence,

measuring the percentage of the sequence length within which

the first, 25%, 50%, 75%, and 100% of each of the three code

letters is located.

Take the above coded sequence of 50 letters as an example. It is

composed of 10 Hs, 16 Ns and 24 Ps, as shown in Figure 1.

Thus, we have the composition C = (10/50 = 20.0%, 16/

50 = 32%, 24/50 = 48%) for H, N and P respectively. For the

transition feature T , there are totally 31 transitions in the

sequence, with 8 between H and N, 16 between N and P, and 7

between H and P, so that we have T = (8/31 = 25.81%, 16/

31 = 51.61% and 7/31 = 22.58%). As for the distribution D, the

first, 25%, 50%, 75% and 100% of H are located at the positions

of 1st, 10th, 18th, 37th, and 46th in the coded sequence,

respectively. Thus, the distribution D for H is 1/50 = 2%, 10/

50 = 20%, 18/50 = 36%, 37/50 = 74%, and 46/50 = 92%. Like-

wise, the distribution D for N is 4%, 28%, 54%, 78%, and 98%;

and that for P is 6%, 24%, 44%, 64%, and 100%. Accordingly, we

have D = (2%, 20%, 36%, 74%, 92%, 4%, 28%, 54%, 78%, 98%,

6%, 24%, 44%, 64%, and 100%). Combining C, T and D, we

have a total of 21 elements.

For the ‘‘secondary structure’’, ‘‘polarizability’’, ‘‘normalized

van der Waals volume’’ and ‘‘polarity’’, each of them is also

classified into three categories and hence would also generate 21
elements in a similarly way as described above for the case of

‘‘hydrophobicity’’.

For the ‘‘solvent accessibility’’, since it is classified into two

categories, the combination of C, T and D for the sequence coded

according to the ‘‘solvent accessibility’’ would only generate 7

elements rather than 21.

Now for the ‘‘AAC’’ we have 20 elements [34]; for the ‘‘solvent

accessibility’’, 7 elements; and for each of all the other five types of

protein properties, 21 elements. Combining all these extensive

quantities together, we have an augmented extensive quantity

containing (5621+20+7) = 132 elements, as listed in Table 1 for

the details. Furthermore, some more elements should also be

included as will be illustrated below.

Subcellular location description of proteins
The function of a protein is closely correlated with its subcellular

location [40,41]. In view of this, the prediction power would be
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improved by incorporating the protein subcellular location

information. Unfortunately, only a small amount of proteins have

subcellular locations annotated in UniProt [42]. To make up this,

the subcellular locations for most proteins were predicted based on

the sequence similarity evaluated by BLAST [43]. If the BLAST

score of a query protein with a location-known protein was greater

than 120, they were considered similar with the query protein.

The subcellular locations of the query protein were the

intersection of subcellular locations of its sequence similar

location-known proteins. Since there were 22 subcellular locations,

the subcellular location features of each protein can be represented

by a 22-dimensional vector, namely L~(‘1,‘2,‘3,:::,‘22), where

‘i~1 if the protein is located at the i-th subcellular location site;

otherwise, ‘i~0. It is instructive to point out that one can also use

the web-server predictor Euk-mPLoc [44] to get the desired

information for those proteins without subcellular location

annotated in UniProt database. The updated website address for

Euk-mPLoc can be found in the Cell-PLoc package [41] as well as

in Table 3 of [45]. The good thing about Euk-mPLoc is that it not

only can cover up to 22 subcellular location sites but is also able to

identify proteins with multiple location sites, which is particularly

useful for drug development as elaborated recently by Smith [46].

KEGG enrichment scores of proteins
The simplest and most direct method for predicting the function

of a query protein based on the training dataset of function-known

proteins is the immediate neighborhood method [47]. The

information of the neighbor proteins is also an important

environmental feature to the protein concerned. Actually, the

neighbor proteins are in interaction with each other in the

STRING network [48]. The KEGG enrichment score of the

protein and its neighbors was defined as the 2log10 of the p value

generated by hypergeometric test on KEGG pathway. The larger

enrichment score means more overrepresentation. There were 220

KEGG enrichment scores for each of the proteins investigated

here.

Number of protein complexes
If a protein can form a complex with other proteins, it will be

more stable and have longer half-life. Therefore, the number of

this kind of complexes a protein can form is a feature relevant to its

stability, and should be counted in prediction as well. We

downloaded the protein complex dataset from CORUM [49],

which is a comprehensive resource of mammalian protein

complexes.

Feature space of proteins
As mentioned above, the 7 types of biochemical and

physicochemical properties would contribute 132 components to

describe a protein. In addition, its length could also be counted as

a component, its occurrences in the 22 subcellular location sites as

22 components, its 220 KEGG enrichment scores as 220

components, and its number in forming protein-protein complexes

as a component, the total components used in this study to

represent a protein sample would be (132+1+22+220+1) = 376

components. For the list of the 376 feature components, see the

Table S1.

Thus, the i-th protein sample Pi should be formulated as a

vector in a 376-D (dimensional) space; i.e.,

Pi~ pi
1 pi

2 ::: pi
375 pi

376

� �T ð1Þ

where pi
j is the j-th (j~1,2,:::,376) component of the i-th protein

sample Pi and can be derived by following the procedures as

elaborated above.

Note that before performing prediction, each of the 376

components in Eq.1 should undergo the following standard

conversion procedure:

pi
jZ(pi

j{mj)=sj (i~1,2,:::,N; j~1,2,:::,376) ð1aÞ

where N is the number of the total proteins in the training dataset,

mj~
PN
i~1

pi
j=N and sj~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

(pi
j{mj)

2=N

s
are the mean and

standard deviation of the j-th component over the N protein

samples. The converted values obtained by Eq.1a will have a zero

mean value over the N protein samples, and will remain

unchanged if going through the same conversion procedure again

[24,26].

mRMR method
The ‘‘maximum relevance & minimum redundancy’’ (mRMR)

method was originally developed by Peng et al. [50] to deal with

the microarray data processing. In their method, each feature is

ranked according to its relevance to the target and redundancy

with other features. A ‘‘good’’ feature is defined as the one that has

the best trade-off between maximizing the relevance to the target

and minimizing the redundancy within the features. To quantify

both the relevance and redundancy, the following mutual

Figure 1. How to compute the 21 hydrophobic feature components from protein sequence. According to the hydrophobicity of each
amino acid, the protein sequence ‘‘MSDKPDMAEIEKFSKETIEQEKQAGESTQEKNPLPMLLPATDKSKLKKTE’’ was converted to a hydrophobic sequence
‘‘HNPPNPHNPHPPHNPPNHPPPPPNNPNNPPPPNHNHHHNNNPPNPHPPNP’’. It is composed of 10 Hs, 16 Ns and 24 Ps. There are totally 31 transitions in
the sequence, with 8 between H and N, 16 between N and P, and 7 between H and P. Based on the composition, transition, and distribution of H, N,
P, 21 hydrophobic feature components of this protein can be calculated.
doi:10.1371/journal.pone.0010972.g001
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information (MI) is defined to estimate how one vector is related to

another:

I(x,y)~

ðð
p(x,y) log

p(x,y)

p(x)p(y)
dxdy ð2Þ

where x, y are two vectors, p(x,y) is the joint probabilistic density,

p(x) and p(y) are the marginal probabilistic densities.

Suppose V denotes the entire space containing all the

aforementioned 376 components, and Va(5V) denotes the space

contains a components selected from V. The space to be identified

is denoted by Vb(5V) that contains b components. The relevance

R of the feature f in Vb with the target h can be calculated by:

R~I(f ,h) ð3Þ

And the redundancy D of the feature f in Vb with all the features

in Va can be calculated by:

D~
1

a

X
fi[V

a

I(f ,fi) ð4Þ

To obtain a feature fj in Vb with maximum relevance and

minimum redundancy, Eqs.3 and 4 are combined with the

mRMR function:

max
fj[V

b
I(fj ,h){

1

a

X
fi[V

a

I(fj,fi)

2
4

3
5 (j~1,2,:::,b) ð5Þ

For a feature set with 376 (~azb) components, the feature

evaluation will continue for 376 rounds. After these evaluations, a

feature set S can be obtained by the mRMR method as

formulated below:

S~ f1

0
,f2

0
,:::,fh

0
,:::,f

0
376

n o
ð6Þ

where each feature in S has an subscript index, indicating at which

round that the feature is selected. The better a feature is, the

earlier it will satisfy Eq.5 and be selected, and the smaller its

subscript index will be.

Nearest Neighbor Algorithm
In our study, the Nearest Neighbor (NN) algorithm or NNA is

used to classify a protein as either labile or a stable one. NNA

makes its decision by calculating the ‘‘distances’’ of a query protein

with all the proteins in the training dataset one-by-one. Varieties of

distance scales can be used for this purpose, such as Euclidean

distance [51], Hamming distance [52], and Mahalanobis distance

[34]. In the current study, the distance between the query protein

P and Pi, the i-th protein in the training dataset, is defined by

[53,54,55]:

D(P,Pi)~1{
P:Pi

DDPDD:DDPi DD
ð7Þ

Where P and Pi are the feature component vector of query

protein and the i-th protein in the training dataset (cf. Eq.1); P:Pi

is the inner product of P and Pi; Pk k and Pi
�� �� represent the

modules of vectors P and Pi. The smaller D(P,Pi) is, the more

similar P to Pi is. According to the NN rule, given a training set

Strain~ P1,
�

P2,:::,Pm,:::,PV
�

, the query protein P will be

predicted belonging to the same class of Pm that is the closest to

P. In other words, if

m~ arg miniD(P,Pi) ð8Þ

where m is the argument of i that minimizes D(P,Pi), and if Pm

belongs to k-th class, then the query protein P should also belong

to the same class.

Jackknife Cross-Validation Method
In biological literatures, the independent dataset test, subsam-

pling or K-fold (such as 5-fold and 10-fold) test, and jackknife test

are the three cross-validation methods often used to examine the

accuracy of a statistical predictor [52]. Of these three, however,

the jackknife is thought the most objective as elucidated in [41]

and elaborated in [40]. Therefore, the jackknife cross-validation

has been increasingly adopted to examine the power of various

predictors (see, e.g., [54,56,57,58,59,60]) and will be used in this

study as well. During jackknifing, each protein sample in the

benchmark dataset is in turn singled out to test using the rule

parameters trained by the remaining protein samples. For clarity

to describe the test process, let us define

S~Sshort=medium|Slong=extra-long

Sshort=medium~Sshort|Smedium

Slong=extra-long~Slong|Sextra-long

8><
>: ð9Þ

where S is the benchmark dataset used in this study (cf. Dataset

S1), Sshort=medium the sub-dataset containing only the ‘‘short’’ or

medium’’ half-life proteins, Slong=extra-long only the ‘‘long’’ and

‘‘extra-long’’ half-life proteins, Sshort only the ‘‘short’’ half-life

proteins, Smedium only the ‘‘medium’’ half-life proteins, Sshort only

the ‘‘long’’ half-life proteins, Sextra-long only the ‘‘extra-long’’ half-

life proteins, and | the union symbol in the set theory. The

jackknife success rates were examined according to the following

equations:

Q~
Tshort=mediumzTlong=extra-long

Nshort=mediumzNlong=extra-long

Qshort=medium~
TshortzTmedium

NshortzNmedium

Qlong=extra-long~
TlongzTextra-long

NlongzNextra-long

8>>>>>>><
>>>>>>>:

ð10Þ

where Q is the overall success rate in identifying proteins in S as

‘‘short/medium’’ or ‘‘long/extra-long’’ type (see the 1st equation of

Eq.9), Tshort=medium the number of corrected predictions for the

‘‘short/medium’’ type, Tlong=extra-long the number of corrected

predictions for the ‘‘long/extra-long’’ type, Nshort=medium the

number of total proteins in Sshort=medium, and Nlong=extra-long the

number of total proteins in Slong=extra-long; Qshort=medium the success

rate in identifying proteins in Sshort=medium as ‘‘short’’ or

‘‘medium’’ type (see the 2nd equation of Eq.9); Qlongzextra-long

the success rate in identifying proteins in Slong=extra-long as ‘‘long’’

or ‘‘extra-long’’ type (see the 3rd equation of Eq.9).
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Feature Selection
Although the mRMR step could arrange the feature compo-

nents according to some sort of ranks, it is not sufficient for us to

determine which feature components should be selected to

optimize the performance of our predictor. To solve the problem,

the IFS (incremental feature selection) method is adopted as

illustrated below.

Based on the ranked features obtained from the mRMR step,

we can construct 376 feature component sets by adding one

component at a time in an ascending order, with the i-th set given

by

Si~ff1,f2,:::,fig (1ƒiƒ376) ð11Þ

For each of such N feature component sets, an NNA predictor was

constructed and its jackknife success rate derived. Finally, we

obtained a curve, called the IFS curve, with the subscript index i in

Eq.11 as its X-axis and the corresponding jackknife success rate as

its Y-axis. The feature set, say S
optimal

~ff1,f2,:::,fhg, would be

deemed as the optimal one if the IFS curve has a peak at X~h.

Predict metabolic stability of drug target proteins
We predicted the stability of 170 proteins targeted by 332 drugs

with known half-life. The drug-target pairs and half-life of drugs

were downloaded from DrugBank [61]. Only the drugs with well-

defined target proteins and half-life were analyzed. To unify the

time unit, the half-life spans of all the drugs investigated were

uniformly converted to minutes. As formulated in Eqs.8 and 9, the

test procedures are as follows. A query drug target protein was first

identified as ‘‘short/medium’’ half-life and ‘‘long/extra-long’’ half-

life. If it turned out to ‘‘short/medium’’ half-life, the predictor

would automatically continue to classify it as ‘‘short’’ half-life or

‘‘medium’’ half-life; otherwise, classify it as ‘‘long’’ half-life or

‘‘extra-long’’ half-life. Finally, each of the drug target proteins

investigated was assigned as ‘‘short’’, ‘‘medium’’, ‘‘long’’, or

‘‘extra-long’’ half-life, respectively.

Results

mRMR results
The mRMR program in this study was downloaded from

http://penglab.janelia.org/proj/mRMR/. We set the parameter

l~1 to characterize our data into three groups according to their

values which are: (1) smaller than mean{(l:std), (2) between

mean{(l:std) and meanz(l:std), and (3) greater than

meanz(l:std). In the above criteria, mean is the average value

of the features in all samples, and std the standard deviation. In

addition to the list generated by the mRMR to show the index of

each feature described above, mRMR also output a table called

MaxRel list that contains the relevance of features to their target,

as defined in Eq.3. In this study, only the mRMR list was used in

the feature selection procedure.

IFS results
In the IFS procedure, we built 376 feature sets based on the

ordered feature set S obtained in the mRMR step. Accordingly,

376 prediction models were constructed and tested as described

above. Shown in Figure 2 is the IFS curve for (A) all the proteins

in S (cf. the 1st equation of Eq.9), (B) only the ‘‘short’’ and

‘‘medium’’ half-life proteins (cf. the 2nd equation of Eq.9), (C) only

the ‘‘long’’ and ‘‘extra-long’’ half-life proteins (cf. the 3rd equation

of Eq.9). As shown in Figure 2 (A), the overall accuracy reached

its peak of 72.8% when the number of feature component used

was 62. The 62 feature components selected by mRMR would

constitute the optimal feature set for the ‘‘short/medium’’-‘‘long/

extra-long’’ classifier. The optimal feature set for the ‘‘short’’-

medium’’ classifier contained 43 feature components, with the

peak success rate of 69.8%; while the optimal feature set for the

‘‘long’’-‘‘extra-long’’ classifier contained 122 feature components,

with the peak success rate of 67.8%. The optimal feature

components were extracted according to their impact to the

success rates in predicting stability of proteins. The aforemen-

tioned 62, 43, and 122 optimal feature components are provided

in the Table S2 (A), (B), and (C), respectively.

Analysis of optimal feature components
To investigate what kinds of features are critical for protein

stability, we extracted the optimal feature components and

counted the numbers of each kind of features. Shown in

Figure 3 is the numbers of each kind of features in (A) the 62

feature components for the ‘‘short/medium’’-‘‘long/extra-long’’

classifier, (B) the 43 feature components for the ‘‘short’’-‘‘medium’’

classifier, and (C) the 122 feature components for the ‘‘long’’-

‘‘extra-long’’ classifier, respectively. As we can see from Figure 3,

the following seven kinds of features play the major roles in

affecting the protein stability: (1) KEGG enrichment scores, (2)

subcellular locations, (3) polarity, (4) amino acids composition, (5)

hydrophobicity, (6) secondary structure propensity, and (7) the

number of protein complexes.

In a recent work Yen et al. [23] discovered that protein stability

was correlated with amino acid composition. Our results have

further confirmed their finding. These authors also found that the

short half-life group and medium half-life group had a larger

proportion of the unstable ‘‘cell cycle control’’ proteins, and that

the long half-life group had a larger fraction of ‘‘mitosis’’ proteins

consisting of actins, tubulins, septins, and so forth. Interestingly,

our studies indicate that the metabolic stability of a protein is

associated with its subcellular location, such as whether it is located

in nucleus, cytoplasm, extracellular, or cell membrane, quite

consistent with their findings [23] as well. Meanwhile, it was found

that the enrichment of degradation, metabolism and signaling

pathways could help predict protein’s metabolic stability (see

Table S2), which is quite sensible as well.

Proteins bound with ligands or proteins not prone to be

denatured, are usually more stable. This would logically require

them to have proper fold patterns or microenvironments. The

reason why membrane proteins are relatively more stable is that

their folding process involves binding with, transmembrane helix

insertion into (see, e.g., [3,62,63]), and helix-helix interactions with

the presence of bilayer interfaces [64,65,66]. Membrane protein

fold topology may be categorized into two basic secondary

structural motifs, namely a-helices and b-barrels [67]. Stability is a

consequence of the low electrostatic potential energy of small

substructures called knots and is opposed by the stress developed in

contraction of the large substructures called matrices [68]. The

features investigated in this study have provided useful insight

regarding the energetics of driving forces governing folding,

assembly, insertion, and translocation of membrane proteins [69].

The knowledge of inter-residue interactions in proteins structures

is very useful for understanding the mechanism of protein folding

and stability. Also, the secondary structure propensity of amino

acids in a protein, as well as their polarity and hydrophobicity,

would play an important role to the inter-residue interactions, and

hence to its fold pattern [70], folding rate [71,72], and stability as

well [73]. Furthermore, driven by the hydrophobic force, a protein

could overcome the entropic barrier and fold from a random

coiled state into some type of topological shape, with disulfide
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bonding, hydrogen bonding, ion-pairs, and van der Waals

interactions defining the shape and keeping it from falling apart

[74].

A general solution for predicting the metabolic stability of

proteins, even with a moderate success rate, is an extremely

difficult and complicated problem. However, any progress in this

regard would provide us with very useful insights for in-depth

researches in protein science and developing new strategy for drug

design.

The predicted metabolic stability of drug target proteins
It is interesting to predict the metabolic stability of drug target

proteins and compare the results with the half-life spans of the

corresponding drugs. Although there were many factors that can

affect the half-life of a drug, we found that the stability of its target

protein is a quite important one. For demonstration, the predicted

metabolic stability outcomes for some drug target proteins and the

real half-life spans of their corresponding drugs are given in the

Table S3, from which we found some intriguing correlations. The

half-life of drugs targeted to proteins with predicted ‘‘short or

medium half-life’’ (with median of 420 minutes) was shorter than

the half-life of drugs targeted to proteins with predicted ‘‘long or

extra-long half-life’’ (with median of 709 minutes). The median of

the half-life of drugs targeted to proteins with predicted ‘‘short

half-life’’, ‘‘medium half-life’’, ‘‘long half-life’’ and ‘‘extra-long

half-life’’ were 303, 510, 540 and 1080 minutes, respectively.

For instance, Dinoprostone (DrugBank accession number

DB00917) is a prescription drug used, as a vaginal suppository,

to prepare the cervix for labour and to induce labour. The half-life

of Dinoprostone is less than 5 minutes. The predicted stability

results for its target proteins PTGER1 (UniProtKB/Swiss-Prot ID

P34995) and PTGER2 (UniProtKB/Swiss-Prot ID P43116) were

both ‘‘short’’ half-life. Again, Clorazepate (DrugBank accession

number DB00628) is for treating anxiety. It also has the function

for muscle relaxant and anticonvulsant. Its half-life is about 2 days

(1,440 minutes), and the predicted stability for its target proteins

BZRP (UniProtKB/Swiss-Prot ID P30536) and GABRA1 (Uni-

ProtKB/Swiss-Prot ID P14867) were ‘‘long’’ and ‘‘extra-long’’,

Figure 2. The IFS curves of protein’s metabolic stability predictions. The IFS curves for (A) all the proteins in S (cf. Eq. 9), (B) only the ‘‘short’’
and ‘‘medium’’ half-life proteins in Sshort/medium, and (C) only the ‘‘long’’ and ‘‘extra-long’’ half-life proteins in Slong/extra-long. The overall accuracy
reached its peak of 72.8% when the number of feature components used for the classifier between ‘‘short/medium’’ half-life and ‘‘long/extra-long’’
half-life was 62. The corresponding accuracy peak and featured component number for the case of panel B are 69.8% and 43, while those for the case
of panel C are 67.8% and 122.
doi:10.1371/journal.pone.0010972.g002

Figure 3. The numbers of each kind of features in optimal feature sets. The numbers of each kind of features for (A) the 62 feature
components in the optimal ‘‘short/medium’’-‘‘long/extra-long’’ classifier, (B) the 43 feature components in the optimal ‘‘short’’-‘‘medium’’ classifier,
and (C) the 122 feature components in the optimal ‘‘long’’-‘‘extra-long’’ classifier.
doi:10.1371/journal.pone.0010972.g003
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respectively, fully consistent with the sense that the more stable a

protein is, the longer half-life drug is needed for effectively

targeting it; and vice versa.

Discussion

We have developed a new method for predicting the metabolic

stability of proteins by integrating their various biochemical and

physicochemical features. It is indicated by the rigorous jackknife

cross-validation test that the predictor can achieve an overall

success rate of 72.8%. With the feature selection approach based

on the mRMR method and IFS procedure, we found that the

following seven features would play the major roles in determining

the stability of proteins: KEGG enrichment scores, subcellular

locations, polarity, amino acids composition, hydrophobicity,

secondary structure propensity, and the number of protein

complexes. These findings might provide useful information for

drug development. The method presented in this paper might also

become a high throughput tool for large-scale annotating the

metabolic stability of proteins.
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