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Abstract

Background: Human topoisomerase I catalyzes the relaxation of DNA supercoils in fundamental cell processes like
transcription, replication and chromosomal segregation. It is the only target of the camptothecin family of anticancer drugs.
Among these, topotecan has been used to treat lung and ovarian carcinoma for several years. Camptothecins reversibly
binds to the covalent intermediate DNA-enzyme, stabilizing the cleavable complex and reducing the religation rate. The
stalled complex then collides with the progression of the replication fork, producing lethal double strand DNA breaks and
eventually cell death.

Methodology/Principal Findings: Long lasting molecular dynamics simulations of the DNA-topoisomerase I binary complex
and of the DNA-topoisomerase-topotecan ternary complex have been performed and compared. The conformational space
sampled by the binary complex is reduced by the presence of the drug, as observed by principal component and cluster
analyses. This conformational restraint is mainly due to the reduced flexibility of residues 633–643 (the region connecting
the linker to the core domain) that causes an overall mobility loss in the ternary complex linker domain. During the
simulation, DNA/drug stacking interactions are fully maintained, and hydrogen bonds are maintained with the enzyme.
Topotecan keeps the catalytic residue Lys532 far from the DNA, making it unable to participate to the religation reaction.
Arg364 is observed to interact with both the B and E rings of topotecan with two stable direct hydrogen bonds. An
interesting constrain exerted by the protein on the geometrical arrangement of topotecan is also observed.

Conclusions/Significance: Atomistic-scale understanding of topotecan interactions with the DNA-enzyme complex is
fundamental to the explaining of its poisonous effect and of the drug resistance observed in several single residue
topoisomerase mutants. We observed significant alterations due to topotecan in both short-range interactions and long-
range protein domain communications.
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Introduction

Human topoisomerase I (hTop1) catalyzes the relaxation of

DNA supercoils in fundamental cell processes like transcription,

replication and chromosomal segregation [1,2]. The protein is

composed of 765 aminoacids residues, divided in four domains:

the NH2-terminal domain (residues 1–214), the core domain

(residues 215–635) which is divided in three subdomains

(subdomain I: residues 215–232 and 320–433; subdomain II:

residues 233–319; subdomain III: residues 434–635), the linker

domain (residues 636–712) and the COOH-terminal domain

(residues 713–765) (see Figure 1A) [3–5]. Supercoiled DNA

undergoes a topological rearrangement when the catalytic Tyr723

binds the scissile strand DNA 39 terminus thus introducing a

transient break in the phosphodiester chain (catalytic mechanism

B). DNA relaxation is supposed to proceed via a controlled

rotation mechanism, in which the enzyme accompanies the end

downstream of the cleavage site to rotate around the intact DNA

strand [5].

Topoisomerase was discovered for the first time in the early 70’s

but extensive studies began in the 80’s, when it was found that

hTop1 was the only molecular target of camptothecin (CPT) [6,7]

an alkaloid with anticancer property extracted from the Asiatic

plant Camptotheca acuminata [8]. CPT reversibly binds to the

covalent intermediate DNA-enzyme, stabilizing the cleavable

complex and thus reducing the rate of religation. The stalled

topoisomerase I then collides with the progression of the

replication fork, producing lethal double strand DNA breaks and
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eventually cell death [9,10]. Due to its high toxicity, CPT cannot

be used as an antitumor agent and a number of derivatives have

been developed and are currently used in clinical therapy; among

these, topotecan (TPT; Hycamtin, GlaxoSmithKline) is widely

used to treat lung and ovarian carcinoma [11]. TPT differs from

its parent compound in the oxydril and ethyldimethylammine

groups on ring A (see Figure 1B) which have been observed to

increase its solubility and minimize the toxicity.

Many structures of the covalent and non-covalent binary DNA-

hTop1 complexes have been solved [4,5,12], and in all cases the

NH2-terminal domain is never present, being partially unstruc-

tured and flexible. In vitro reconstituted forms of topoisomerase

with only the NH2-terminal domain deleted (topo70) or both the

NH2-terminal and the linker domains deleted (topo58/6.3),

maintain enzymatic activity [13]. The structural dynamical

properties of DNA in complex with native topoisomerase or with

single mutants, displaying a varied reactivity toward CPT, have

been extensively investigated by Molecular Dynamics (MD)

simulations, permitting to observe a direct correlation between

functional properties and inter-domain communication [14–19].

In particular, the computational characterization of the drug

resistant A653 mutant evidenced a perturbed mobility of the linker

domain that could explain the experimental higher religation

activity and therefore the drug resistance [14].

In 2002 the crystal structure of the ternary complex topo70-

DNA-TPT was solved [20]. TPT is found to be intercalated

between the base pairs 21/+1, at the level of the cleavage site

(Figure 1A), and in direct interaction with several protein residues

[20]. Up to now, a single MD study on the hTop1–DNA–CPTs

ternary complexes, focused on the free energy barriers for drug

dissociation, has been carried out [21], but a detailed MD

investigation of the structural and dynamical characteristics of the

ternary complex is still lacking. Recently we have carried out a

systematic investigation of the electronic properties of CPT and

TPT that permitted to computationally reproduce the experimen-

tal absorption bands of the drugs [22,23] and that ended up with

the development of a reliable AMBER compatible TPT force field

[24].

In the present work, taking advantage of the TPT force field, we

have carried out a total of 50 nanoseconds classical MD simulation

of ternary and binary complexes, interacting with the same DNA

substrate present in the crystal structure of the ternary complex.

Comparative analysis of the simulations indicates that topotecan

produces a different behavior of the protein collective motions and

an alteration in secondary structure and flexibility in regions that

are not in direct contact with the drug, such as residues 633–643,

between the linker and the core domains. The explanation of the

dynamical role of the different chemical groups involved in the

interaction with TPT has been also provided.

Methods

Initial configurations and simulation protocol
The initial configuration of hTop1, in covalent complex with a

22 base pair linear double helix DNA substrate, has been modeled

from the crystallographic structures of the binary and ternary

complexes (PDB 1K4S and 1K4T, respectively) [20]. For the

binary complex the starting positions for residues 201–631 and

708–765 have been obtained from the 1K4S crystal structure and

those for residues 632–707 from the 1K4T crystal structure (since

the linker domain is not resolved in the former), following a mass-

weighted fit of backbone atoms on 1K4S (RMSD between the two

structures was 0.7 Å after the fit). The ternary complex was

modeled using atomic positions from the 1K4T structure and

assuming the lactone form of topotecan [23,24]. The 22 base pair

DNA sequence of the ternary complex was used in both systems

(nucleotides in relevant positions in the binary system were

mutated using the rotamers module present in the Chimera

package). The systems have been modeled using the AMBER03

all-atom force field [25] implemented by Sorin and Pande [26] in

the GROMACS MD package version 3.3.3 [27]. The protein has

been immersed in a rectangular box (9361106130 Å3) filled with

water molecules described by means of the TIP3P rigid potential

[28]. Na+ counter-ions have been added to neutralize DNA-

enzyme complex total charge using the genion tool of the

GROMACS package, which randomly substitutes water mole-

cules with ions at the most favorable electrostatic potential

positions. The resulting systems, were composed of 9456 protein

atoms, 1400 DNA atoms, 40271 water molecules, 20 Na+ ions and

one TPT molecule in the ternary complex, for a total of 131727

and 131669 atoms in the ternary and binary systems respectively.

Electrostatic interactions have been taken into account by means

of the Particle Mesh Ewald method (PME) [29,30] using a cutoff of

atom for the real space and Van der Waals interactions. The

LINCS algorithm [31] was used to constrain bond lengths and

Figure 1. hTop1-DNA-Topotecan ternary complex structure.
Panel A: Three-dimensional structure of the hTop1-DNA-TPT complex.
hTop1 core subdomains I, II and III are represented in blue, yellow and
red respectively, while linker and C-terminal domains in green and cyan.
DNA strands are colored in orange (uncleaved strand), purple (cleaved
upstream) and light green (cleaved downstream). Topotecan is
represented using Van Der Waals radii and different colors for different
atom types. Panel B: Topotecan chemical structure with specification of
ring names. The atoms defining the dihedral angle mentioned in the
‘‘TPT and DNA motion’’ paragraph are highlighted in green.
doi:10.1371/journal.pone.0010934.g001
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angles. Relaxation of solvent molecules and Na+ ions was initially

performed keeping solute atoms restrained to their initial positions

with decreasing force constants of 1000 and 500 kJ/(mol N nm), for

3000 ps. The two systems have then been simulated for 25 ns with

a time step of 2.0 fs and the neighbor list was updated every 10

steps. Temperature was kept constant at 300 K using the

Berendsen’s method [32] with a coupling constant of 0.1 ps

during sampling, while pressure was kept constant at 1 bar using

the Parrinello-Rahman barostat [33] with a coupling constant of

1.0 ps during sampling.

Analysis of trajectories
Root mean square deviations (RMSD) were calculated using the

following formula (after a mass-weighted least square fitting to a

reference structure):

RMSD t1,t0ð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

X
mi ri t1ð Þ{ri t0ð Þk k2

r

where M is the sum of atomic masses, mi is the mass of atom i and

t = 0 refers to the selected reference structure. The per-residue root

mean square fluctuations (RMSF) were computed using the

following equation:

RMSFi~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

1

M

X
miS rij tð Þ{rij

� �2T
MD

r

where the averages have been calculated over the equilibrated MD

trajectories.

Principal components analysis (PCA) [34,35] was carried out on

the 3N63N cartesian displacement matrix whose elements are

calculated as:

cij~SqiqjT

where N is the number of Ca protein or C59 DNA atoms of the

two systems and qi is the (mass-weighted) displacement of the i-th

Ca protein or C59 DNA atoms from the reference value (after

removal of rotational and translational degrees of freedom). The

first few eigenvectors of the diagonalized covariance matrix usually

account for a major fraction of the total variance and projection of

atomic trajectories over the corresponding eigenvectors represents

large collective atomic motions. To compare the two simulations,

sampled structures were clustered using the GROMOS method:

after the construction of the MxM RMSD matrix (were M is the

number of structures sampled). The structure with the largest

number of neighbors (i.e. configurations within the cutoff range) is

taken as the centroid of the first cluster and it is eliminated by the

pool with all its neighbors; the process is repeated until all

structures have been assigned to a cluster.

The cosine content (ci) of a principal component pi is a good

indicator for good simulation sampling [36]. It ranges between 0

and 1 and is calculated in the following way:

ci~
2

T

ð
cos iptð Þdt

� �2 ð
p2

i dt

� �{1

where t and T are instantaneous and total simulation time,

respectively. High values of ci (close to 1) are indicative of random

diffusion motion and therefore insufficient sampling [36].

All analyses have been carried out with standard tools present in

the GROMACS MD package v. 3.3.3 or in-house written codes,

except for secondary structure assignment, which was performed

by means of the DSSP program [37]. Graphs have been obtained

with the Grace program [38] and images have been created using

the VMD [39] and Chimera [40] packages.

Results and Discussion

RMSD and secondary structure
Structural modifications of the hTop1-DNA complex during the

25 ns long simulations, in presence or absence of topotecan, can

be monitored by measuring the deviation of each structure from

the starting crystallographic coordinates after a superposition on

the protein Ca atoms. The root mean square deviations (RMSD)

value reaches an average value of about 3 Å in both simulations

during the first nanoseconds, showing strong oscillations during

the whole simulation time (see Figure S1 in Supporting

Documents; black and red dotted lines refer to the binary and

ternary complex simulations, respectively). Upon elimination of

the linker domain from the analysis, the RMSD of the core and C-

terminal domains has average values of 1.7 and 1.8 Å (see black

and red full lines in Figure S1) and stable plateaus are reached in

both systems well before 3 nanoseconds of simulation time. All

results presented in the following sections refer to the last 22

nanoseconds of simulation (unless otherwise specified).

The average protein secondary structure was calculated over

22000 frames uniformly extracted over the 22 ns of sampling of

both simulations. The results, shown in Figure 2, indicate that

small structural alterations are observed only in regions far from

the drug binding site. The regions around residues 283, 303 and

705, in fact, show a loss of a-helix structure when the drug is

present. On the other hand, residues 633–645, at the N-terminal

region of the linker domain, maintain a helical structure in the

ternary complex that is lost in the binary system (see inset in

Figure 2).

Protein-DNA and protein-TPT interactions
A global picture of the protein-DNA interactions is shown in

Figure 3, where the direct hydrogen bonds of the binary and

ternary complexes (panel A and B, respectively) are shown when

present for more than 75% of simulation time. Most of the

hydrogen bonds between hTop1 and DNA found in the

crystallographic structures of the binary and ternary complex

(PDB 1K4S and 1K4T, respectively) [20] are well conserved

during the 22 nanoseconds of MD sampling. In the X-ray

structure of the ternary complex TPT is stabilized in the binding

site by large DNA base stacking interactions (380 Å2) and by

hydrogen bonds of the phosphodiester group, between the 21 and

+1 base pairs in the DNA intact strand, with the main chain

nitrogen atoms of Arg362 and Gly363 and the lateral chain of

Lys374 [20]. As a consequence, the distance between the 59SH

(present in the modified 21 DNA base) and the phosphorous of

the 39 phosphotyrosine is 11.5 Å in the ternary complex, while

only 3.5 Å in the binary one. In the simulation, the TPT-DNA

stacking interactions are fully maintained, as well as the Arg362,

Gly363 and Lys374 hydrogen bonds with the DNA intact strand,

that are present for the 100% of the simulation time. The average

distance between 59OH (which replaces the crystallographic SH

group) and the 39 phosphotyrosine is 8.6 and 4.5 Å in the ternary

and binary complex simulations, respectively. The availability of

the 59OH group also permits the direct interaction with the lateral

chain of Asp722 (98% of the simulation time), that in the

crystallographic structure interacts with TPT via water mediated

contact.

Topotecan in Target Complex
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The interactions between Arg364 with the N3 atom of the

adenosine in position 21 on the uncleaved strand and of Lys532 with

the O2 of 21 thymine on the cleaved strand, observed in 1K4T, are

conserved in the ternary complex simulation (for more than 95% of

the sampling). Thr718 is bridged via a water molecule to the

phosphodiester group of the cleaved strand guanosine in position 21

for the 71% of the simulation time, while in the crystallographic

structure the same residues are bridged by a direct hydrogen bond.

Figure 3. Schematic representation of the protein-DNA hydrogen bonds present for more than 75% of the simulation time for the
binary and ternary complex (panel A and B, respectively). Full line, protein side chain- DNA phosphate group; dashed line, protein main
chain–DNA phosphate group; dotted line, protein side chain-DNA base atoms; dash-dotted line. The phosphotyrosine bond is represented by a full
cyan line. Different colors refer to different protein domains. TPT is represented in purple color.
doi:10.1371/journal.pone.0010934.g003

Figure 2. Secondary structure assignment for the binary (top rectangle) and ternary (bottom rectangle) complex. An inset is present
to highlight the partial destructuration of residues 635–645 in the binary linker domain.
doi:10.1371/journal.pone.0010934.g002
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In the crystal structure a single residue, Asp533, is observed to

have a direct interaction with the oxydril oxygen on topotecan ring

E. In the simulation such an interaction is substituted by a water

mediated contact, present for 84% of simulation time (see Figure 4

for a representative snapshot of the topotecan binding pocket in

the simulation). Two other residues, Lys532 and Arg364, known

for their key role in the catalytic cycle [41], are in direct contact

with the topotecan drug during the simulation. The side chain

nitrogen of Lys532 forms a direct hydrogen bond (99% of

sampling) with either the carbonylic or the oxydril oxygen atom of

topotecan ring E, maintaining the distance between the Lys532-

Nf and the +1G-O59 atoms at 8.8 Å in the ternary complex, while

it oscillates between 2/3 different conformations (from 2.8 Å to 9.7

Å) in the binary one (Figure S2 in Supporting Documents). This

residue is believed to act as a basic catalyst in the religation

reaction, accepting a proton from the +1 cleaved 59OH group,

and permitting the oxygen nucleophilic attack on the scissile

phosphate to (re-)join the two ends of the DNA backbone [42–44].

Therefore, in the ternary complex this critical residue remains far

from its DNA target and is unable to participate in the religation

reaction, while in the binary complex it visits distances compatible

with a proton transfer reaction. Note that the 1K4T and 1K4S

crystallographic structures have a thio-29 deoxy-base phosphonic

acid in position +1 and therefore the distance between the atoms

Lys532-Nf and +1OH59 cannot be compared with the one in our

simulation.

The side chain of Arg364 forms two direct hydrogen bonds with

the B and E rings of topotecan, both present for 100% of

simulation time. This result can explain the experimental finding

that mutation of the nearby Gly363 to cysteine produces an

enzyme resistant to camptothecin, likely causing a different

orientation of Arg364 lateral chain with the consequent destabi-

lization of the interaction with topotecan [45].

Collective Motions
A comparison of the per-residue root mean square fluctuations

(RMSF) calculated from the binary and ternary complex

trajectories shows that the two systems undergo very similar

fluctuations (see Figure 5 panel A). The linker domain is the most

flexible region in both systems, as expected, but residues 655–680,

in the central portion of the domain, are more flexible in the

ternary system (RMSF maximum values are 6.3 Å and 7.3 Å for

binary and ternary complex, respectively). These differences can

be well appreciated comparing panel B and C in Figure 5, where

the colour and width of the ribbons are directly proportional to the

RMSF. On the other hand, a larger flexibility is observed in the

binary system for residues 633–643, the region connecting the

linker to the core domain (RMSF max of 3.4 Å compared to 2.4 Å

when topotecan is present). The same observation can be made for

Arg364 that, besides the interaction with the DNA observed in

both systems, forms two very stable hydrogen bonds with

topotecan in the ternary complex. The higher mobility of residues

633–643 in the binary complex suggests the presence of an

increased number of orientations of the linker domain, hypothesis

confirmed by a cluster analysis of the configurations visited by this

domain in both simulations (Figure 6). A total of 2000 structures of

the 88 linker Ca atoms have been clustered after being extracted

every 10 ps (5000 steps) to ensure absence of correlation between

the frames. The analysis shows that the conformational space

visited by the linker in the native system is strongly reduced by the

presence of topotecan, since fewer clusters are visited by the

ternary system and the conformations in these have a higher

degree of similarity (i.e. a lower inter-cluster RMSD). In detail, the

number of clusters is different in the two systems, being 8 and 4 in

the binary and ternary systems, respectively, when using 1.6 nm as

a cut-off value of the intercluster RMSD. Moreover, the pairwise

RMSD in the binary complex is evenly distributed around

1.75 nm with a width of 1.2 nm while in the ternary complex the

distribution has a peak at 1.0 nm and a width of 0.75 nm. The

linker domain, therefore, visits several potential energy minima in

the binary complex with comparable stability during the

simulation, while its motion is more confined in the ternary

complex trajectory. The evolution of clusters visited by the two

simulations as a function of time is reported in Figure 6, where the

RMSD from the starting structure is plotted using a different color

for each family. The different flexibility of the linker domain in the

two systems is apparent also by the superimposition of the 3D

structures of each cluster centroid, in Figure 6, C and D.

A picture of the global protein correlated motions has been

obtained by a principal component analysis (PCA) carried out on

the 565 Ca atoms of the protein. The overall fluctuations in both

simulations are well described by the first three eigenvectors,

which account for 60% and 70% of the total variance in the binary

and ternary system, respectively. Cosine contents along these

eigenvectors have maximum values of 0.05 and 0.06 for the binary

and ternary complex, respectively, indicating a satisfactory

convergence of simulations along these principal components.

The projection of the Ca trajectories on the plane defined by the

Figure 4. Snapshots of the drug binding pocket. Hydrogen bonds
between hTop1, DNA and Topotecan. Aminoacids and nucleotides are
colored according to atom types while the drug is shown in green; ball-
and-stick style has been used for DNA and licorice for Topotecan and
protein residues and black lines or circles (for interactions between
K532 and TPT) indicate hydrogen bonds cited in the text. Panel A: View
of the active site looking downstream of the cleaved strand. Panel B:
View of the active site looking upstream of the cleaved strand.
doi:10.1371/journal.pone.0010934.g004
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first and second eigenvectors (Figure 7A) indicates that the binary

complex has a wider conformational basin than the ternary

complex. In fact the displacement along the second eigenvector is

more confined for the ternary complex, being 85 Å and 50 Å in

the binary and ternary complex, respectively. An even stronger

confinement of the ternary complex trajectory is observable in the

projection on the plane formed by the second and third

eigenvectors (Figure 7B). The binary complex shows two quite

spread basins of comparable density, while the ternary complex is

confined in a single conformational basin.

In order to better understand the cause of the reduced

conformational space visited by the protein in the ternary

complex, the contribution of each residue to the first three

eigenvectors has been calculated for both systems (Figure 8). The

linker domain (and mainly residues 655–680) dominates the

correlated motions in the first two eigenvectors in both systems

(Figure 8, A and B). Residues 633–643, the region connecting the

core with the linker domain, give a remarkable contribution to the

first two eigenvectors in the binary complex, larger than in the

ternary complex. Moreover, the contribution of this region to the

third eigenvector is the predominant one in the binary but not in

the ternary complex (Figure 8, C).

Taken together these results indicate that the presence of

topotecan gives rise to an overall reduction of the conformational

space of the enzyme-DNA complex, mainly due to the reduction

of the subdomain III-linker junction flexibility.

Other regions are perturbed by the presence of the drug. The

loop connecting the linker with the C-terminal domain and helix 21

in the C-terminal domain (corresponding to residues 703–713 and

732–741, respectively) show an increased correlated motion along

the first eigenvector. The contrary is observed in the 237–250 (core

subdomain II), the 287–338 and the 394–400 (core subdomain I)

regions. The second region contains the so-called nose cone helices:

helix 5 in core subdomain II and helix 6 in core subdomain I. It is

interesting to note, therefore, that the nose-cone helices, known to

play a role in the control of the DNA relaxation step [5], have

stronger correlated motions along the first eigenvector in the binary

complex as compared with the ternary one.

TPT and DNA motion
As already said, TPT in the ternary complex shows strong stable

interactions with DNA, (hydrophobic stacking interactions with

both the 21 and +1 bases) and with the protein (several direct and

Figure 5. Collective motions: per residue RMSF represented with 2D and 3D figures. Panel A: Per-residue RMSF of binary (full black line)
and ternary (red dot-dashed line) trajectory. Panels B and C: Representation of per-residue B factors calculated from the binary complex (Panel B) and
ternary complex trajectory (Panel C). Ribbon width and color scale (from blue to red) is proportional to B factor.
doi:10.1371/journal.pone.0010934.g005
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water mediated hydrogen bonds). An interesting feature of the

TPT molecule concerns the mobility of the di-methyl-amino group

on the A ring, that is altered in the enzyme-DNA binding pocket,

as compared to the simulation of TPT in water solution [24]. This

can be observed by calculating the probability distribution of one

dihedral angle formed by di-methyl-amino atoms (highlighted in

green in Figure 1B). In the ternary complex simulation two peaks,

centered at 298 and 274 degrees, are observed (Figure S3 in

Supporting Documents) with a predominance of the first one,

while in water solution the di-methyl-amino group visits only the

second one (compare black and red lines in Figure S3). In line, the

value of the dihedral angle in the two TPT crystals of the ternary

complex displays values close to 298 degrees (blue dashed line in

Figure S3).

TPT also alters the DNA dynamics. In particular, an

increased fluctuation of the upstream region in both the

cleaved and uncleaved DNA strands is observed when

compared to the binary system, while the opposite is found

for the downstream region of both strands. Since in the

downstream DNA region the scissile DNA strand rotates

around the intact one during the relaxation process, the high

rigidity observed in the presence of the drug is in line with the

blocking effect imposed by the drug itself. This behaviour can

be appreciated by looking at the projection of the motion along

the first eigenvector obtained from PCA analysis on the C59

DNA atoms (compare Figure 9 panel A and B for the binary

and ternary systems, respectively).

Conclusions
Detailed understanding of TPT/DNA-hTop1 interactions is

an important step towards the comprehension of the causes

underlying the TPT poisonous effect. An important contribu-

tion in this direction has been provided by the X-ray

diffraction study of the TPT/DNA-hTop1 ternary complex

[20]. In this work we have carried out MD simulations in order

to investigate the dynamical properties of the TPT/DNA-

hTop1 ternary complex. One of the most interesting results

obtained by comparing the binary and ternary complexes

trajectories is the conformational space reduction caused by

the interaction with the drug, as evidenced by both the cluster

(Figure 6) and PCA analyses (Figures 7 and 8). The reduced

linker domain flexibility in the ternary complex is caused by

the altered motion of residues 633–643 (connecting the linker

to the core domain) that are less mobile than in the binary

complex (Figure 5A). It is interesting to note that the internal

fluctuations of residues composing the linker domain are

Figure 6. RMSD from the starting structure of the 2000 linker domain conformations used in the cluster analysis in the binary and
ternary complex trajectories (Panel A and B, respectively). Visualization of the cluster centroids of the two trajectories (binary and ternary
complex in Panel C and D, respectively). Each cluster is indicated with a different color.
doi:10.1371/journal.pone.0010934.g006
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actually slightly larger in the ternary than in the binary

complex (Figure 5B–C). However the conformational distri-

bution is mainly influenced by the 633–643 region that

determines the orientation of the linker itself. This result

explains the absence of the 633–707 region in the X-ray

diffraction of the binary complex, that is on the other hand

observed in the ternary one [20]. The linker domain flexibility

has been already described to be a key element in determining

the CPT resistance of Ala653Pro mutant [14]. The presence of

the drug has also a direct influence on DNA flexibility since the

cleavage downstream region is more rigid in the ternary

complex than in the binary one, providing another possible

explanation for the inhibitory effect of the drug on the

relaxation process. TPT is firmly bound to DNA during all the

simulation by means of stacking interactions with 21/+1 DNA

base pairs and by direct and water mediated hydrogen bonds

with the protein. The distance between the catalytic residue

Lys532 Nf atom and the O59 oxygen of the G+1 base, sampled

during the simulation, oscillates between 2.8 and 9.7 Å in the

binary simulation while in the ternary the two groups are

always separated by more than 8 Å, making it unable to act as

a basic catalyst in the religation reaction. Note that this

distance cannot be observed in the crystallographic experi-

ments because the 59OH group of the nucleotide in position +1

on the cleaved strand is substituted with a SH- group. Other

direct interactions between the enzyme and TPT are formed

between Arg364 and the B and E rings of topotecan, thus

explaining the CPT resistance obtained after mutation of the

nearby Gly363 to cysteine [45]. On the other hand also the

protein-DNA complex exerts some influence on the TPT

dynamics, since the rotation of the substituent on TPT ring A

is altered in the ternary complex, as compared to simulations

of the drug in water.

Figure 7. Projection of the binary and ternary complex
trajectories on the subspaces formed by binary complex
simulation eigenvectors. Binary and ternary complex frames are
represented as black and red dots, respectively. Panel A: Projection on
first and second eigenvector. Panel B: Projection on second and third
eigenvector.
doi:10.1371/journal.pone.0010934.g007

Figure 8. Individual weights of each Ca atom in the first three
principal components (Panels A–C) of the binary (black
continuous line) and ternary (red dash-dotted line) complex
simulations, respectively.
doi:10.1371/journal.pone.0010934.g008

Figure 9. Representation of ten projections, in different colors,
of the MD motions along the first eigenvector obtained from
PCA analysis for the binary and ternary complex simulations
(Panel A and B, respectively).
doi:10.1371/journal.pone.0010934.g009
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Supporting Information

Figure S1 Root mean square deviation (RMSD) from the

starting structure plotted as a function of simulation time. RMSD

of the binary and ternary complexes are shown in black and red

dotted lines, respectively. RMSD calculated without the linker

domain contribution are represented in black and red full lines for

the binary and ternary, respectively.

Found at: doi:10.1371/journal.pone.0010934.s001 (0.31 MB TIF)

Figure S2 Distance between the catalytic residue Lys532 Nf
atom and the O59 oxygen of guanidine in position +1 on the

cleaved strand, represented as a function of time. Black dots:

binary complex simulation; red dots: ternary complex simulation.

Found at: doi:10.1371/journal.pone.0010934.s002 (0.31 MB TIF)

Figure S3 Probability distribution of dihedral angle (defined in

Figure 1B) values calculated over the MD simulation of TPT in

explicit water solution (red line) and in the ternary complex (black

line). Vertical blue dashed lines indicate experimental X-ray values

obtained from 1K4T structure.

Found at: doi:10.1371/journal.pone.0010934.s003 (0.11 MB TIF)
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