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Abstract

Clostridium perfringens enterotoxin (encoded by the cpe gene) contributes to several important human, and possibly
veterinary, enteric diseases. The current study investigated whether cpe locus organization in type C or D isolates resembles
one of the three (one chromosomal and two plasmid-borne) cpe loci commonly found amongst type A isolates. Multiplex
PCR assays capable of detecting sequences in those type A cpe loci failed to amplify products from cpe-positive type C and
D isolates, indicating these isolates possess different cpe locus arrangements. Therefore, restriction fragments containing
the cpe gene were cloned and sequenced from two type C isolates and one type D isolate. The obtained cpe locus
sequences were then used to construct an overlapping PCR assay to assess cpe locus diversity amongst other cpe-positive
type C and D isolates. All seven surveyed cpe-positive type C isolates had a plasmid-borne cpe locus partially resembling the
cpe locus of type A isolates carrying a chromosomal cpe gene. In contrast, all eight type D isolates shared the same plasmid-
borne cpe locus, which differed substantially from the cpe locus present in other C. perfringens by containing two copies of
an ORF with 67% identity to a transposase gene (COG4644) found in Tn1546, but not previously associated with the cpe
gene. These results identify greater diversity amongst cpe locus organization than previously appreciated, providing new
insights into cpe locus evolution. Finally, evidence for cpe gene mobilization was found for both type C and D isolates, which
could explain their cpe plasmid diversity.
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Introduction

Clostridium perfringens is an important pathogen of humans and

domestic animals. The virulence of this organism is largely

attributable to its producing at least 16 different potent toxins,

although individual C. perfringens isolates never express this entire

toxin arsenal [1,2]. This characteristic is exploited by a commonly-

used classification system assigning C. perfringens isolates to one of

five types (A–E) based upon their production of four typing toxins.

While all C. perfringens types make alpha toxin, type B isolates also

express both epsilon toxin and beta toxin, type C isolates also

produce beta toxin, type D isolates also make epsilon toxin and

type E isolates also express iota toxin [1,2].

Besides those typing toxins, C. perfringens isolates often produce one

or more additional toxins. Notably, about 1–5% of all C. perfringens

isolates produce a toxin named C. perfringens enterotoxin (CPE) [1,3].

When expressed by type A isolates, CPE causes the gastrointestinal

symptoms of the second most commonly-identified bacterial

foodborne illness in the USA, ranking only behind Salmonella

gastroenteritis [1,2,4]. About 75–80% of all type A food poisoning

isolates carry their enterotoxin gene (cpe) on the chromosome

[5,6,7,8,9,10]. The chromosomal cpe locus present in most type A

food poisoning isolates is highly conserved and includes an upstream

IS1469 sequence and flanking IS1470 sequences [11,12].

CPE-producing type A isolates also cause nonfoodborne human

gastrointestinal (GI) diseases such as sporadic diarrhea or

antibiotic associated diarrhea [13,14]. Those type A nonfoodborne

human GI disease isolates typically possess a plasmid-borne cpe

gene [9,15]. Two cpe plasmid families have been identified

amongst most cpe-positive type A isolates [11], although rare type

A soil isolates carry atypical cpe plasmids that have not yet been

characterized [16]. The two major cpe plasmid families share a

conserved region, corresponding to ,50% of each plasmid [11],

that includes a tcp locus closely resembling the tcp locus proven to

mediate the conjugative transfer of C. perfringens tetracycline

resistance plasmid pCW3 [17]. Carriage of this tcp locus likely

explains the demonstrated conjugative transfer of the cpe plasmid

from type A isolate F4969 [18].

The first of the two major cpe plasmid families of type A isolates,

represented by the prototype plasmid pCPF5603, includes cpe

plasmids that are typically ,75 kb in size and also carry the cpb2

gene encoding beta2 toxin [11,13]. As discussed later, the cpe locus

of these pCPF5603-like plasmids includes a cpe gene flanked by an

upstream IS1469 sequence and a downstream IS1151 sequence

[9,11]. The second major cpe plasmid family, represented by the

prototype cpe plasmid pCPF4969, includes cpe plasmids that are

usually ,70 kb in size and carry bacteriocin genes, but no cpb2

gene [9,11]. The cpe locus in the pCPF4969-like plasmids is
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flanked by an upstream IS1469 sequence and also contains, rather

than the downsteam IS1151 sequence found in the cpe locus of

pCPF5603-like plasmids, a IS1470-like sequence downstream of

the cpe gene [9,11]. Some evidence suggests that the insertion

sequences flanking the cpe gene of type A isolates may mobilize

these toxin genes via formation of circular transposition interme-

diates [19].

Type E isolates typically carry plasmid-borne cpe sequences

immediately downstream of their iota toxin genes [20,21], but

those cpe sequences are silent. This loss of CPE expression in type

E isolates likely involves insertion of a mobile genetic element

carrying the iota toxin genes near the cpe promoter, thereby

blocking cpe transcription [20]. Flanking IS1151-like sequences

present in the iota toxin locus may help to mobilize the iota toxin

genes and, sometimes, the adjacent silent cpe sequences of type E

isolates [21]. The iota toxin plasmids of type E isolates are often

related to the major cpe plasmid families found in type A isolates,

suggesting a common evolutionary origin [21]. However, the iota

toxin plasmids are very large (.100 kb) due, in part, to their

common carriage of lambda toxin genes and urease genes that are

missing from cpe plasmids of type A isolates [20,21].

In two recent surveys, ,15% of 45 type C animal or human

isolates and ,25% of 39 type D animal disease isolates tested cpe-

positive [22,23]. Many of those isolates were shown to express

CPE during sporulation [22,23], which is consistent with

suggestions that CPE may, at minimum, contribute to some cases

of human enteritis necroticans caused by type C isolates [24].

However, the organization of the cpe locus in these type C and D

isolates has not yet been studied. Therefore, the goal of the current

study was to explore the relationship, if any, between the cpe locus

of cpe-positive type A isolates vs. the cpe locus found in cpe-positive

type C and D isolates.

Materials and Methods

Bacterial strains, media, and reagents
This study examined four cpe-positive type A isolates, seven cpe-

positive type C isolates, eight cpe-positive type D isolates and two

type E isolates carrying cpe sequences, as listed in Table 1. The

toxin genotypes of these isolates had been determined previously

using a toxin typing gene-specific multiplex PCR assay [22,23].

Isolates were stored frozen in cooked-meat medium (Oxoid,

Basingstock, England) or glycerol stocks. All isolates were grown

overnight at 37uC in either FTG medium (fluid thioglycolate;

Difco Laboratories, Michigan) or TGY medium (3% tryptic soy

broth [Becton Dickinson and Company, Maryland], 2% glucose,

1% yeast extract [Difco], and 0.1% sodium thioglycolate [Sigma

Chemical, Missouri]).

Pulsed-field gel electrophoresis (PFGE) and Southern blot
analyses

Plugs of C. perfringens DNA were prepared as described

previously [11,21,25]. Briefly, selected isolates (CN2078,

CN5388, CN1183, CN4003, 853, NCIB107481, F5603 and

F4969) were grown overnight in FTG broth at 37uC. A 0.1 ml

aliquot of each FTG culture was then inoculated into separate

10 ml tubes of TGY broth and grown overnight at 37uC. The

overnight TGY cultures were washed with TES buffer, pelleted,

and resuspended in 200 ml of TE buffer. A 200 ml aliquot of 2%

pulsed-field gel electrophoresis (PFGE)-certified agarose (Bio-Rad

Laboratories, California) was then added to the resuspended cells,

for a final agarose concentration of 1%.

These plugs were then electrophoresed in a CHEF-DR II PFGE

system (Bio-Rad Laboratories) in 0.56 Tris-borate-EDTA buffer

Table 1. Bacterial strains used in this study.

Strain Type Sources and date cpe loci (plasmid size) XbaI cut size

SM101 A Food poisoning C 5.1 kb

NCTC8239 A Food poisoning C 5.1 kb

F4969 A GI disease P (73 kb) 8.3 kb

F5603 A GI disease P (75 kb) 6.6 kb

CN5388 C Human pigbel P (90 kb) 6.5 kb

CN2076 C Zeissler, UK, 1948 P (110 kb) 2.9 kb

CN2078 C Zeissler, UK, 1948 P (75 kb) 2.9 kb

CN3758 C Zeissler, UK, 1955 P (75 kb) 2.9 kb

CN3763 C Zeissler, UK, 1955 P (110 kb) 2.9 kb

CN3753 C Zeissler, UK, 1955 P (85 kb) 2.9 kb

CN3748 C Zeissler, UK, 1955 P (75 kb) 2.9 kb

CN1183 D Lamb, UK, 1942 P (75 kb) 5.0 kb

CN3842 D Ewe, Spain, 1955 P (85 kb) 5.0 kb

CN4003 D Lamb, unknown, 1955 P (110 kb) 5.0 kb

CN3948 D Sheep, Teheran, 1956 P (110 kb) 5.0 kb

JGS1902 D Sheep, enterotoxemia, USA, 1999 P (110 kb) 5.0 kb

JGS4138 D Goat, sudden death, USA, 2002 P (110 kb) 5.0 kb

JGS4139 D Goat, sudden death, USA, 2002 P (110 kb) 5.0 kb

JGS4152 D Lamb, pulpy kidney, USA, 2002 P (110 kb) 5.0 kb

853 E Calf with enteritis, North America P (100 kb) 7.1 kb

NCIB10748 E Calf with enteritis, North America P (135 kb) 7.1 kb

doi:10.1371/journal.pone.0010932.t001

Type C and D Isolates cpe Loci
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(Bio-Rad Laboratiories) at 14uC. The running parameters were:

initial pulse, 1 sec; final pulse, 25 sec; voltage, 6 V/cm, 24 h. Mid-

Range PFGE markers (New England Biolabs) were used as

molecular size markers. After PFGE, the gel was stained with

ethidium bromide, washed with distilled water, and photographed.

Digoxigenin (DIG)-labeled cpe probes were constructed, as

described previously [11,21,25], with a PCR DIG probe synthesis

kit (Roche, New Jersey) and internal cpe ORF primers. After

hybridization of the cpe probe, performed as described previously

[11], the pulsed-field gel Southern blots were developed using

reagents from the DIG labeling and detection kit (Roche).

Multiplex PCR genotyping analysis comparing cpe locus
organization in cpe-positive type C or D isolates versus
cpe-positive type A isolates

For these multiplex PCR reactions, template DNA was

obtained, as described previously [26], from colony lysates of

cpe-positive C. perfringens type A, C, and D isolates or from type E

isolates carrying silent cpe sequences. Each PCR mixture contained

2 ml of template DNA, 10 ml of TAQ Complete 26 mix (New

England Biolabs), and 1 ml of six multiple primers mix (final

concentrations of 1 mM each for primers cpe4F, IS1470R1.3,

IS1470-likeR1.6, and IS1151 and 0.2 mM each for primers 3F and

4R). The sequences of these primers have been reported

previously [26]. Primers 3F and 4R amplify a product of

,0.6 kb from internal cpe sequences; primers cpe4F and IS1470-

likeR1.6 amplify a product of ,1.6 kb from the cpe locus

containing IS1470-like sequences, as found in pCPF4969-like

plasmids of type A isolates; primers cpe4F and IS1151R0.8

amplify a product of ,0.8 kb from the cpe locus containing IS1151

sequences, as found in pCPF5603-like plasmids of type A isolates;

and primers cpe4F and IS1470R1.3 amplify a product of ,1.3 kb

from the chromosomal cpe locus of type A isolates.

Each reaction mixture was subjected to the following PCR

amplification conditions: cycle 1, 94uC for 2 min; cycles 2 through

40, 94uC for 30 sec, 61uC for 30 sec, and 68uC for 90 sec; with a

final extension for 8 min at 68uC. An aliquot (20 ml) of each PCR

sample was electrophoresed on a 1.5% agarose gel and then

visualized by staining with ethidium bromide.

Restriction fragment length polymorphism (RFLP)
Southern blot analyses

Using the MasterPure gram-positive DNA purification kit

(Epicentre, Wisconsin), C. perfringens DNA was isolated from cpe-

positive type A strains F4969, F5603, SM101 and NCTC8239;

cpe-positive type C strains CN3758, CN3753, and CN5388; cpe-

positive type D strains CN1183, CN3842, CN4003, CN3948,

JGS1902 and JGS4152; or silent cpe sequence-carrying type E

strain NCIB10748. Each isolated DNA sample was then digested

overnight with XbaI according to the manufacturer’s (New

England Biolabs) instructions. The digested DNA samples were

electrophoresed on a conventional 1% agarose gel. The separated

DNA digestion products were then transferred onto a nylon

membrane (Roche) for hybridization with a cpe probe, as described

above.

Sequencing of the cpe ORF in representative type C and
D strains

DNA was isolated from cpe-positive type C strains CN2078 and

CN5388, or from cpe-positive type D strains JGS1902, JGS4139,

CN1183, and CN4003, using the Master-Pure gram-positive DNA

purification kit (Epicentre). PCR was then performed using Taq

DNA polymerase from New England Biolabs and primers cpeF

(59-atgcttagtaacaatttaaatc-39) and cpeR (59-ttaaaatttttgaaataatattg -

39). The PCR reaction was performed in a Techne thermocycler

(Techne, Germany) using the following conditions: 94uC for

2 min; 35 cycles of 94uC for 30 sec, 55uC for 40 sec, and 68uC for

1 min; with a single extension at 68uC for 5 min. The resultant

960 bp PCR products were then cloned into TopoH 2.1 vector

(Invitrogen, California), and this insert was then sequenced at the

University of Pittsburgh Core Sequencing facility. Results from

these sequencing analyses are located in GenBank under accession

numbers GQ225713, GQ225714, GQ225715, GQ225717,

GQ225718, and GQ225719.

Sequencing of the cpe-carrying XbaI fragments in type C
and D isolates

DNA was isolated from cpe-positive type C strains CN2078 and

CN5388, or from cpe-positive type D strain CN4003, as described

above. A 2.5 mg aliquot of each isolated DNA sample was then

digested overnight with XbaI according to the manufacturer’s

(New England Biolabs) instructions. The digested DNA samples

were electrophoresed on a conventional 1% agarose gel. Bands

were cut from that agarose gel based upon RFLP Southern blot

results, gel purified, and cloned into the TopoH 2.1 vector

(Invitrogen). The primers cpeF and cpeR were used to perform

colony PCR to identify clones carrying cpe inserts. Plasmids were

extracted from the PCR-positive colonies using the Qiagen

plasmid preparation kit. Inserts present in the extracted plasmids

were sequenced at the University of Pittsburgh core sequencing

facility, using the primers listed in Table 2, 3 and 4.

Sequencing of the dcm to cpe region in type C isolate
CN2078

DNA was isolated from cpe-positive type C strain CN2078 as

described above. PCR was then performed using the Long Range

Taq DNA polymerase from New England Biolabs and primers

dcmF and cpeseqMR (table 2). The PCR reaction was performed

in a Techne thermocycler (Burkhardstdorf, Germany) and used

Table 2. Primers sequence using in type C CN2078 cpe loci
sequencing and overlap PCR.

Primers name Sequence Product size

dcmF 59-gtaatccaggtagcagaaag-39 642 bp (R1)

dcm2Rseq 59-catttttatcttttctacgtgg-39

dcm2Fseq 59-ccacgtagaaaagataaaaatgc-39 996 bp (R2)

dcm3Rseq 59-gtccgccagccgcatacttc-39

dcm3Fseq 59-gaagtatgcggctggcggac-39 674 bp (R3)

dcm4Rseq 59-gttcaatttgatattgcaatttagaag-39

dcm4F 59-cttctaaattgcaatatcaaattgaac-39 1265 bp (R4)

dcmRseq 59- tcacccaacaagtaactataatg-39

dcm5F 59-tcattatagttacttgttgggtg-39 1386 bp (R5)

cpeMF 59-tccatcacctaaggactgttctaa-39

cpeMR 59-ttagaacagtccttaggtgatgga-39 1499 bp (R6)

p4111R 59- cttaattgtaaaatgaaattgaac-39

p4112F 59- aattctattaatgtaaaattctcc-39 1040 bp (R7)

p5162R 59- aacattttaataaacactcagttg-39

p5165F 59- tctaaagattgtttagatagatg-39 825 bp (R8)

p5990R 59- tttcaaaatttttcaatagaattg-39

doi:10.1371/journal.pone.0010932.t002

Type C and D Isolates cpe Loci

PLoS ONE | www.plosone.org 3 June 2010 | Volume 5 | Issue 6 | e10932



the following conditions: 95uC for 2 min; 35 cycles of 95uC for

30 sec, 55uC for 40 sec, and 65uC for 5 min; with a single

extension at 65uC for 10 min. The resultant 4 kb PCR product

was cloned into the TopoH 2.1 vector. The plasmid insert was then

sequenced at the University of Pittsburgh core sequencing facility

using the primers listed in Table 2.

Sequencing of the region upstream of the cpe gene in
type D isolate CN4003

DNA was isolated from cpe-positive type D strain CN4003 as

described above. A 2.5 mg aliquot of each isolated DNA sample

was then digested overnight with EcoRI and KpnI, according to

the manufacturer’s (New England Biolabs) instructions. The

digested DNA samples were electrophoresed on a conventional

1% agarose gel. The separated DNA digestion products were then

transferred onto a nylon membrane (Roche) for hybridization with

a cpe promoter probe, which was prepared using DIG labeled the

PCR product of cpe-pro-F (59-gcttaactattcttgatagttatct-39) and

cpe-pro-R (59-gcattttcgaacaccattggattt-39) as described above.

Bands were cut from that agarose gel according to sizes

determined by cpe Southern blot analyses (see Results), gel

purified, and cloned into the Topo 2.1H vector (Invitrogen). The

primers cpeupF and cpeupR were used to perform colony PCR to

identify clones carrying a cpe promoter insert. Plasmids were

extracted from the PCR-positive colonies using the Qiagen

plasmid preparation kit. Inserts present in the extracted plasmids

were sequenced at the University of Pittsburgh core sequencing

facility using the primers listed in Table 4.

Nucleotide sequence accession numbers for cpe locus
sequences

Results from sequencing analyses of the cpe locus of type C

isolates CN5388 and CN2078, or the type D CN4003 cpe locus

sequence, are deposited in GenBank under accession numbers

GQ225714, GQ225715 and GQ225713, respectively.

Overlapping PCR analyses to evaluate cpe locus diversity
amongst type C or D cpe-positive isolates

For these short-range PCRs, template DNA was obtained from

C. perfringens colony lysates as described previously [11]. Each PCR

mixture contained 2 ml of template DNA, 10 ml of TAQ Complete

26 mix (New England Biolabs), and 1 ml of each primer pair

(1 mM final concentration). To compare the organization of the cpe

locus present amongst different type C cpe-positive isolates, PCRs

were performed that used overlapping primers for adjacent ORFs

present in the cpe locus of either CN2078 (table 2) or CN5388

(table 3). These primers spanned from the dcm ORF in each cpe

locus to the IS1151-like ORF downstream of the cpe ORF. For type

D cpe-positive isolates, the overlapping PCRs were performed from

the first transposase ORF upstream of the cpe gene to 2500 bp

downstream of the cpe gene; primers are listed in Table 4. The

design of these primers was based upon sequencing results

obtained from the cpe locus of CN2078 (type C), CN5388 (type

C) and CN4003 (type D), as determined above. The reaction

mixtures, with a total volume of 20 ml, were placed in a

thermocycler (Techne) and subjected to the following amplifica-

tion conditions: one cycle of 95uC for 2 min; 35 cycles of 95uC for

30 sec, 55uC for 40 sec, and 68uC for 100 sec; and a single

extension at 68uC for 10 min. PCR products were electrophoresed

on a 1% agarose gel, which was then stained with ethidium

bromide for product visualization.

PCR identification of possible circular transposition
intermediates carrying the cpe ORF

Each PCR mixture contained 5 ml of template DNA, which was

a freshly prepared lysate from an overnight BHI agar culture of

cpe-positive type C isolate CN2078, or cpe-positive type D isolate

CN4003, 25 ml of TAQ complete 26Master Mix (New England

Biolabs), and 1 ml of each primer pair (1 mM final concentration).

Primers used in these studies included dcmRseq, 1027upNF2 and

cpeMR (table 2). PCR amplification were then performed in a

Techne thermocycler using the following conditions: 95uC for

2 min; 35 cycles of 95uC for 30 sec, 54uC for 30 sec, and 68uC for

2 min; with a single extension of 68uC for 5 min. PCR products

were separated on 1.5% agarose gels and visualized with ethidium

bromide staining. PCR products were then excised from the gel

using Quantum Prep freeze ‘N squeeze DNA gel extraction spin

Table 3. Primers sequence using in type C CN5388 cpe loci
sequencing and overlap PCR.

Primers
name Sequence Product size

dcmF 59-gtaatccaggtagcagaaag-39 684 bp (R1)

61466 59-ctacgtggaaatgttaaatctaagaac-39

61644R 59-gttcttagatttaacatttccacgtag-39 1052 bp (R2)

60619 59-catactacctacgttgcatcttaagacgcttaaattag-39

60619R 59-ctaatttaagcgtcttaagatgcaacgtaggtagtatg-39 1024 bp (R3)

59620 59-gagatatccgttaaacagatcaagttg-39

59620R 59-caacttgatctgtttaacggatatctc-39 1064 bp (R4)

cpeMF 59-tccatcacctaaggactgttctaa-39

cpeMR 59-ttagaacagtccttaggtgatgga-39 1024 bp (R5)

5388over2 59-gcctatattactaatgtacctag-39

5388seqF2 59-ctaggtacattagtaatataggc-39 1241 bp (R6)

5388overn3 59-tttaatgcagctctgaatcatgg-39

doi:10.1371/journal.pone.0010932.t003

Table 4. Primers sequence using in type D CN4003 cpe loci
sequencing and overlap PCR.

Primers
name Seqence Product size

1027F1 59-ggatggctctataaatagacac-39 615 bp (R1)

1027overR1 59-tgtgctctagacatagcatcatc-39

1027upR1 59-gttcttagatttaacatttccacgtag-39 1015 bp (R2)

1027upNF3 59-catactacctacgttgcatcttaagacgcttaaattag-39

1027overF2 59-ctaatttaagcgtcttaagatgcaacgtaggtagtatg-39 717 bp (R3)

1027upNF2 59-gagatatccgttaaacagatcaagttg-39

1027overF3 59-caacttgatctgtttaacggatatctc-39 1343 bp (R4)

cpeMF 59-tccatcacctaaggactgttctaa-39

cpeMR 59-ttagaacagtccttaggtgatgga-39 927 bp (R5)

1027overR2 59-ctatcaataactttaactttttatac-39

1027seqR2 59-gtataaaaagttaaagttattgatag -39 692 bp (R6)

1027overR3 59-gaacttgcaactttaaataattgc -39

1027seqR3 59-tgcaattatttaaagttgcaagttc -39 992 bp (R7)

1027overR4 59-gccatttcctccccacttatc-39

doi:10.1371/journal.pone.0010932.t004

Type C and D Isolates cpe Loci
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columns (Bio-Rad), cloned into pCRH2.1-TOPO vector, and

sequenced at the University of Pittsburgh core sequencing facility.

Results

Pulsed-field gel Southern blot analyses of cpe location in
type C isolates

Using well-established conditions that allow plasmids (but not

chromosomal DNA) to enter a pulsed-field gel and migrate

according to their molecular sizes, previous studies [11,21,25,27]

had demonstrated that, i) some cpe-positive type A isolates carry a

chromosomal cpe gene, while ii) other cpe-positive type A isolates

and most, or all, cpe-positive type D isolates carry their cpe genes on

large plasmids. Similarly, the silent cpe sequences of type E isolates

are also carried by large plasmids [21]. However, inter- and intra-

type differences have been observed in the size of plasmids

carrying cpe genes or silent cpe sequences in type A, D and E

isolates. Specifically, most cpe plasmids of type A isolates were

found to be ,70 kb or ,75 kb in size [11], the cpe plasmids of

type D isolates were shown to range in size from ,75 kb to

,110 kb [25], and the plasmids carrying silent cpe sequences in

type E isolates were determined to vary in size from ,100 kb to

,135 kb [21]. A survey of type B isolates reported that these

isolates rarely, if ever, are cpe-positive [28]. The current study first

confirmed those previous reports of size differences in the plasmids

carrying a cpe gene or silent cpe sequences amongst representative

type A, D and E isolates (Fig. 1A, Table 1).

To our knowledge, the location (chromosomal vs. plasmid-

borne) of the cpe gene in cpe-positive type C isolates has not yet

been evaluated. Therefore, DNA from seven cpe-positive type C

isolates was subjected to PFGE, followed by Southern blotting with

a cpe-specific probe. As shown in Fig. 1A and 1B (and summarized

in Table 1), this analysis localized the cpe gene of all surveyed type

C isolates to plasmids, which ranged in size from 70–75 kb up to

110 kb. For comparison, Fig. 1A also shows type A isolates F5603

and F4969, which are known to carry cpe plasmids of 75 kb and

70 kb, respectively [11].

Nucleotide sequencing of the cpe ORF in cpe-positive
type C and D isolates

Having established that, as for cpe-positive type D isolates [25],

the cpe gene is plasmid-borne in most, if not all, cpe-positive type C

isolates, this study next investigated the here-to-fore unstudied cpe

loci of cpe-positive type C and D isolates. This work initiated by

sequencing the cpe ORF from two type C and four type D strains,

which revealed that each of these isolates carries a cpe ORF

nucleotide sequence that is identical to the highly conserved cpe

ORF nucleotide sequence present amongst type A isolates [5,29].

Application of a multiplex PCR type A cpe locus
subtyping assay to begin evaluating type C and D cpe
locus organization

This study next assessed whether the upstream and downstream

sequences flanking the cpe gene in cpe-positive type C or D isolates

resemble a characterized cpe locus found amongst cpe-positive type A

isolates. This possibility was first evaluated using a previously

described multiplex PCR assay [26] that is capable of distinguishing

amongst the three characterized cpe loci commonly found in cpe-

positive type A isolates (Fig. 2). As expected, this multiplex PCR assay

correctly amplified an ,0.6 kb internal cpe product using culture

lysates of all three control type A cpe positive isolates. It also correctly

amplified [26] an ,0.8 kb product from culture lysates of type A

isolate F5603, which carries an IS1151 sequence downstream of its

plasmid cpe gene; an ,1.3 kb product from culture lysates of type A

cpe positive isolate SM101, which carries a chromosomal cpe gene; and

an ,1.6 kb product from culture lysates of type A isolate F4969,

which carries an IS1470-like sequence downstream of its plasmid cpe

gene. Also consistent with previous studies [21], this multiplex PCR

amplified the 0.6 kb internal cpe product, but no other products, from

type E isolates carrying their plasmid-borne silent cpe sequences in a

locus organized differently from those found in cpe-positive type A

isolates.

Having confirmed the reliability of this multiplex PCR assay for

differentiating amongst the three common cpe loci found amongst

type A isolates, the assay was then applied to seven cpe-positive

type C and eight cpe-positive D isolates. These analyses amplified

the ,0.6 kb internal cpe product from all surveyed isolates (Fig. 2

and data not shown), further confirming that these type C and D

isolates are each cpe-positive. However, no other products were

amplified from lysates of any surveyed cpe-positive type C or D

isolates, suggesting that their cpe loci are not organized similarly as

the type A chromosomal cpe locus, the pCPF4969-like cpe locus or

the pCPF5603-like cpe locus.

Figure 1. PFGE cpe Southern blot analyses of cpe-positive type
A, C, D and E isolates. (A) DNA from type A, C, D or E isolates was
subjected to PFGE prior to Southern blotting and hybridization with a
DIG-labeled, cpe-specific probe. (B) DNA from type A (F5603) or type C
(CN2076, CN3748, CN3758, CN3763 and CN3753) isolates was subjected
to PFGE prior to Southern blotting and hybridization with a DIG-labeled,
cpe-specific probe. The migration of molecular size markers is indicated
on the left of the blot.
doi:10.1371/journal.pone.0010932.g001
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RFLP analyses of cpe locus heterogeneity amongst cpe-
positive type C and D isolates

Fig. 2 results were consistent with the existence of organizational

differences between the cpe loci found in type A isolates vs. the cpe

loci found in the surveyed type C or D isolates. This suggestion

was then further explored by RFLP analyses.

As reported previously [5,10,15,30], the cpe gene localized

(Fig. 2) to an ,5.7 kb XbaI fragment in type A isolates, such as

NCTC8239 and SM101, known to carry a chromosomal cpe gene.

As also reported [10,15,30], the cpe gene was detected on larger

XbaI fragments in type A isolates known to carry a plasmid-borne

cpe gene, i.e., in type A isolates F5603 and F4969 the cpe gene

localized to ,6.6 kb or ,8.3 kb XbaI fragments, respectively.

Also consistent with previous sequencing and PCR analyses [21],

these analyses showed that type E isolate NCIB10748 carries its

silent cpe sequences on a 7.1 kb XbaI fragment (Table 1).

When eight cpe-positive type D isolates were similarly surveyed

by RFLP, no size diversity was noted amongst their cpe-carrying

XbaI fragments, i.e., all of these isolates were found to carry their

cpe gene on an ,5 kb XbaI fragment. In contrast. the surveyed cpe-

positive type C isolates showed limited heterogeneity in the size of

their cpe-carrying XbaI fragments. Specifically, CN5388 carried cpe

on an ,6.5 kb XbaI fragment, while the other surveyed type C

isolates all carried their cpe gene on an ,3 kb XbaI fragment

(Table 1 and Fig. 3).

Sequencing of cpe loci in type C isolates
In combination, the Fig. 2 and 3 results suggested that the cpe

locus is often organized differently between cpe-positive type C

isolates versus cpe-positive type A or D strains or even amongst cpe-

positive type C strains. Therefore, the ,3 kb cpe-carrying CN2078

XbaI fragment and ,6.5 kb cpe-carrying CN5388 XbaI fragment

were sequenced. Because the short, ,3 kb CN2078 XbaI

fragment did not include dcm, which is usually located near the

cpe gene in type A isolates [11,13], a long range PCR reaction was

performed to attempt linking of dcm to cpe using CN2078 strain

DNA. A product of ,4 kb was successfully obtained from this

PCR and then sequenced.

As shown in Fig. 4, these sequencing analyses revealed that the

CN2078 cpe locus bears some resemblance to the type A

chromosomal cpe locus, i.e., the CN2078 cpe locus contains an

IS1469 and two IS1470 sequences and it also has a cpe ORF

situated between two IS1470 genes. However, two differences

were identified between the chromosomal cpe locus of type A

isolate SM101 and the plasmid-borne cpe locus of type C isolate

CN2078; i) the IS1469 sequence present in the CN2078 cpe locus is

situated differently with respect to the IS1470 sequence present

upstream of cpe and ii) the IS1151-like sequence located

downstream of cpe in CN2078 is absent from the type A

chromosomal cpe locus. Sequencing results for the ,7 kb

CN5388 XbaI fragment showed that this unusual (by RFLP

analysis) type C cpe locus is missing the two copies of IS1470 that

are present in the cpe locus of CN2078.

Overlapping PCR analyses to evaluate cpe locus diversity
amongst type C cpe-positive isolates

Based upon the sequence obtained for the type C CN2078 cpe

locus, an overlapping PCR assay (8 reactions) was developed to

evaluate the presence of this cpe locus in other cpe-positive type C

isolates. This assay was then applied to assess cpe loci diversity in

six type C cpe positive isolates that, like CN2078, carry their cpe

gene on an ,2.9 kb XbaI fragment (Fig. 3 and Table 1). In this

experiment, DNA from all six surveyed type C isolates supported

full or partial amplification of the expected PCR products. In

particular, DNA from type C isolates CN3753 and CN3748 gave

exactly the same amplification pattern as was obtained using

CN2078 DNA (Fig. 5). DNA from the other three isolates showed

some amplification pattern differences for sequences upstream of

Figure 2. Analysis of cpe locus diversity in type C and D isolates
using a multiplex PCR subtyping assay for cpe loci commonly
found in type A isolates. Representative results obtained with this
assay are shown for type A isolates known to carry a chromosomal cpe
gene (SM101), a plasmid cpe gene with an associated IS1470-like
sequence (F4969), or a plasmid cpe gene with an associated IS1151
sequence (F5603). Also shown are representative results for this assay
using culture lysates from cpe-positive type C isolates (CN2078,
NCTC5388), cpe-positive type D isolates (CN4003) and type E isolates
carrying silent cpe sequences (853 and NCIB10748). The migration of
molecular size markers is indicated on the left of the blot.
doi:10.1371/journal.pone.0010932.g002

Figure 3. RFLP analyses of cpe-positive type A, C, and D isolates
and type E isolates carrying silent cpe sequences. DNA from each
isolate was digested with XbaI prior to conventional agarose gel
electrophoresis and Southern blot hybridization with a cpe-specific
probe. The migration of molecular weight markers is shown on the left
of the blot.
doi:10.1371/journal.pone.0010932.g003
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the cpe gene, but supported conserved amplification of products

corresponding to sequences immediately adjacent to, or down-

stream of, the cpe gene.

Sequencing had shown that CN5388 possesses a very different

cpe locus from that found in the other surveyed type C isolates

(Fig. 4) and also indicated that the CN5388 cpe locus sequence

shares some resemblance to the plasmid borne cpe locus of

pCPF5603 carried by type A isolate F5603 (Fig. 4). This finding

was consistent with results obtained using an overlapping PCR

assay based upon the CN5388 cpe locus sequence (Fig. 6A and B).

Therefore, given their cpe locus similarity, it was possible that the

CN5388 cpe locus might be present on a similar plasmid as

pCPF5603. However, an overlapping PCR assay for the conserved

region of pCPF5603 (and pCPF4969) amplified only the tra region

from CN5388 DNA (Fig. 6C and data not shown).

Sequencing of the cpe locus in type D isolate CN4003
Results from the Fig. 3 RFLP analyses demonstrated that all of

the surveyed type D isolates possess a cpe-carrying XbaI fragment

of the same ,5 kb size. Therefore, the ,5 kb XbaI fragment

carrying the cpe gene of type D isolate CN4003 was cloned into the

pPCR2.1H-TOPO vector and sequenced. Efforts to PCR link the

dcm gene to cpe in type D isolates were unsuccessful (data not

shown). Consequently, additional upstream sequence in the type D

cpe locus was obtained by cloning and sequencing an ,3 kb

EcoR1/KpnI fragment containing sequences upstream of the

XbaI site in the cpe locus of CN4003.

Together, these sequencing analyses revealed that CN4003

possesses a novel cpe locus organization different from that found in

any other characterized cpe-positive C. perfringens (Fig. 4). Specif-

ically, CN4003 was found to possess, upstream of its cpe gene, two

Figure 4. Organization of cpe loci in type A, C, D and E. A) Organization of plasmid cpe loci. B) Organization of the type A chromosome cpe
locus. Each box represents an ORF. * indicates a region with sequence similarity to sequences present downstream of cpe in F4969, except for the
absence of an IS1470-like gene. Sequences of cpe loci in F4969, F5603, NCIB10748, NCTC8239 and SM101 have been reported previously [11,21,38].
Sequences of CN2078, CN5388 and CN4003 are based upon results of this study. The arrows show predicted enzyme (EcoRI, XbaI and KpnI) cleavage
sites used in this study.
doi:10.1371/journal.pone.0010932.g004
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copies of an ORF with 67% identity to a transposase gene

(COG4644) found in Tn1546, but not previously associated with

the cpe gene. This CN4003 cpe locus also has sequences found

downsteam of the cpe gene in type A isolate F4969, except for the

absence of an IS1470-like insertion sequence (Fig. 4).

Overlapping PCR analyses to evaluate cpe locus diversity
amongst type D cpe-positive isolates

Based upon the sequence obtained for the type D CN4003 cpe

locus, an overlapping PCR assay (7 reactions) was developed to

specifically evaluate the presence of this cpe locus in other type D

isolates. When this assay was applied to assess the diversity of cpe

loci in seven other type D cpe positive isolates, the amplification

pattern obtained was identical for each isolate (Fig. 7 and data not

shown). This result strongly suggested that many, if not all, type D

cpe-positive isolates share a very similar cpe locus, consistent with

the Fig. 3 RFLP results.

PCR identification of possible circular transposition
intermediates carrying the cpe ORF

The results presented above indicated that the cpe gene present in

many, if not all, type C and D isolates is closely associated with several

different insertion sequences, including (for type D isolates) some not

previously associated with the cpe gene. Since IS elements in type A

isolates can apparently mediate excision and formation of possible cpe-

containing circular transposition intermediates that might facilitate

cpe gene mobilization [19], primers in opposite orientations were used

in PCR reactions to evaluate whether similar cpe-containing circular

intermediates might also form in cpe-positive type C and D isolates.

Primers dcmRseq and cpemR consistently amplified a strong 1.7 kb

PCR product from cpe-positive type C isolate CN2078. When this

PCR product was sequenced, it corresponded to sequences

containing cpe, one intact IS1470 insertion sequence and one partial

IS1470 insertion sequence (Fig. 8). Similarly, PCR primers from all

three surveyed type D cpe positive isolates amplified a strong 0.6 kb

PCR product. Sequencing showed that this PCR product contains a

partial cpe ORF and some sequence upstream of cpe but no insertion

sequence (Fig. 8).

Discussion

Except for the cpb2 ORF encoding beta2 toxin [13,31], the

ORF sequences of most C. perfringens toxin genes are usually highly

conserved from isolate-to-isolate. For example, only limited

sequence diversity has been observed for the cpa (plc) ORF

encoding alpha toxin, the cpb ORF encoding beta toxin, the ORFs

of the iap/ibp genes encoding iota toxin, and the etx ORF encoding

Figure 5. Overlapping PCR assay analysis of cpe locus diversity amongst type C isolates. An overlapping PCR assay specific for
amplification of the type C isolate CN2078 cpe locus region (R1 to R8) was performed using the primer battery shown in Table 2. (A) Map depicting
the relationship between CN2078 cpe locus ORFs and reactions comprising this overlapping PCR battery. (B) PCR products produced by these
reactions using DNA from type C isolates: CN2078, CN3753 and CN3748. (C) PCR products produced by these reactions using DNA from type C
isolates: CN2076, CN3758 and CN3763. Numbers at left of each gel indicate migration of size markers in kb.
doi:10.1371/journal.pone.0010932.g005
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epsilon toxin [21,22,23,32,33]. Similarly, previous studies [5] had

revealed that the cpe ORF sequence amongst surveyed type A

isolates is invariant, regardless of whether this toxin gene is

chromosomal or plasmid-borne. The current study now extends

that earlier finding by showing that the cpe sequence is identical

amongst type A, C and D isolates. This exceptional conservation

of the cpe ORF sequence is particularly remarkable given the

considerable diversity between sequences flanking the cpe gene in

many type A, C and D isolates, as discussed below. Collectively,

these observations might suggest that CPE protein functionality is

intolerant of most mutations, causing selective pressure to

maintain an invariant cpe ORF sequence amongst CPE-producing

type A, C and D isolates. The single known exception to this

pattern of invariant cpe sequences occurs with type E isolates,

where a genetic element carrying the iota toxin gene has

apparently inserted near the cpe promoter, silencing the cpe gene.

Upon this silencing, a number of missense, nonsense and frame-

shift mutations accumulated in the silent cpe ORF of type E

isolates. Since the same mutations are present in the cpe sequences

of most or all type E isolates [20,21], this cpe silencing is thought to

have occurred relatively recently [20]. One possibility is that

acquisition of iota toxin genes may have compensated for the loss

of a functional cpe gene by providing type E isolates a selective

advantage in a new pathogenic niche, particularly since cpe

expression occurs only during sporulation while iota toxin is

produced by vegetative cells.

Previous studies have localized the cpe gene near a dcm gene on

both the pCPF4969-like and pCPF5603-like plasmids of type A

Figure 6. Overlapping PCR comparison of type C isolate CN5388 versus type A isolate F5603. (A) Map depicting the relationship
between ORFs and reactions in the cpe locus overlapping PCR battery (reactions R1 to R6) was performed using the primer battery show in Table 3.
(B) Products of these reactions amplified by PCR using DNA from type C isolate CN5388 and CN2078 or type A isolates F5603. Arrows indicate that
IS1151 sequences are oppositely oriented in CN5388 vs. F5603. (C) Products obtained when DNA from CN5388 or F5603 were subjected to a
previously described [11] overlapping PCR assay specific for the conserved region of type A cpe plasmids pCPF5603 and pCPF4969. Numbers at left of
each gel indicate migration of size markers in kb.
doi:10.1371/journal.pone.0010932.g006

Type C and D Isolates cpe Loci

PLoS ONE | www.plosone.org 9 June 2010 | Volume 5 | Issue 6 | e10932



isolates, [9,30]. The current study now demonstrates that a dcm

gene is also proximal to the plasmid-borne cpe gene in many, if not

all, type C isolates. One previously proposed [9] explanation for

this strong association between dcm and cpe is that the dcm region of

plasmids represent a hot-spot for insertion of certain mobile

genetic elements, including some carrying a cpe gene. Consistent

with this hypothesis, the cpe gene has now been localized near dcm

in those cpe loci where the cpe gene is flanked by various

combinations of IS1469, IS1470, IS1470-like, IS1151 or IS1151-

like sequences [9]. The possibility that the dcm region of

C. perfringens plasmids represents a hot spot for insertion of mobile

genetic elements consisting of certain IS elements and adjacent

toxin genes receives further support from the established proximity

of dcm to, i) plasmid-borne IS1151-iota toxin gene sequences in

type E isolates and ii) plasmid-borne IS1151-etx sequences in type

B and D isolates [21,25,27].

However, the current study may have also identified the first

exception to the general association between dcm, insertion

sequences, and plasmid-borne C. perfringens toxin genes. Specifi-

cally, attempts to PCR-link dcm and cpe proved unsuccessful in the

surveyed cpe-positive type D isolates. If future studies confirm that

dcm and cpe are not proximal in type D isolates, this could be

explainable by our observation that the cpe gene of type D isolates

is flanked by unique transposase sequences not previously

associated with C. perfringens toxin genes. These transposase

sequences share 67% identity to the transposase (COG4644) of

Tn1546, which is a Tn3-related transposon commonly distributed

amongst plasmids found in Gram-positive bacteria, including

several Bacillus spp, Staphylococcus aureus and Enterococcus faecium [34].

Conceivably, these unique transposase sequences flanking the cpe

gene in many, if not all, type D isolates may mobilize cpe and

prefer integrating into other plasmid sequences rather than

integrating near the dcm gene.

Experimental support for possible IS-mediated mobilization

of adjacent toxin genes in C. perfringens has largely been provided

by studies demonstrating that primers in opposite orientations

support PCR amplification of toxin gene-containing circular

DNAs, which may represent transposition intermediates

[19,21,25,28]. Prior to the current study, possible circular

transposition intermediates had been detected that carry the cpe

genes of type A isolates, the iota toxin genes of type E isolates,

the cpb-tpeL genes of type B isolates and the etx genes of type D

isolates [19,21,28,35]. Results presented in the current study

support the possibility that the cpe genes of many type C and D

isolates, although often present in differently organized loci

from those found in type A isolates, can also be mobilized by

adjacent sequences to form possible circular transposition

intermediates.

This putative mobilization of toxin genes by adjacent IS

sequences may help to explain why the same C. perfringens toxin

gene can be found on different plasmid backbones. For example,

the etx gene is almost always localized on a ,65 kb plasmid in type

B isolates, yet only a minority of type D isolates carry that ,65 kb

etx plasmid [25]. Instead, type D isolates carry a diverse range of

etx plasmids, some also carrying the cpe gene [25]. Since potential

circular transposition intermediates carrying either the cpe or etx

genes have now been identified (this study, [25]), it is possible that

the toxin plasmid diversity of type D isolates reflects this mobility

of toxin gene-carrying mobile genetic elements.

The major finding of the current study is the provision of new

insights into the diversity of cpe loci found amongst C. perfringens

isolates. All surveyed cpe-positive type D isolates were shown to

Figure 7. Overlapping PCR assay analysis of cpe locus diversity amongst type D isolates. An overlapping PCR assay specific for
amplification of the type D isolate CN4003 cpe locus region (R1 to R7) was performed using the primer battery shown in Table 4. (A) Map depicting
the relationship between ORFs and each reaction in this overlapping PCR battery. * indicates a region with sequence similarity to sequences
downstream of cpe in F4969, except for the absence of IS1470-like gene. (B) Products of these reactions using DNA from two representative type D
isolates: CN4003 and JGS1902. Numbers at left of each gel indicate migration of size markers in kb.
doi:10.1371/journal.pone.0010932.g007
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carry the same plasmid-borne cpe locus. This conclusion holds for

type D isolates previously shown [25] to carry cpe and etx on the

same plasmid, as well as type D isolates that carry those two toxin

genes on distinct plasmids. These observations could indicate that

a similar mobile genetic element has mobilized this conserved cpe

locus from a progenitor cpe-carrying plasmid present in a type D

isolate onto other plasmids present in that same isolate or, after

conjugative transfer, in other type D isolates.

With respect to type C isolates, the current study suggests that

many of these isolates also share a relatively conserved cpe locus,

although the cpe locus of CN5388 is more divergent since it lacks

the IS1470 sequences that flank the cpe gene in the other surveyed

type C isolates. The type C cpe locus variants identified in this

study generally resemble the cpe loci found in type A isolates by

sharing many of the same IS elements, although in different

arrangements [11]. This may suggest a common evolutionary

origin for the cpe loci of many type A and C isolates that is distinct

from the cpe locus found in many type D isolates. Of particular

note is the extensive similarity between the type A chromosomal

cpe locus and the common plasmid-borne cpe locus present in

CN2078 and most of the other surveyed type C isolates. One

possible explanation for this similarity is that the chromosomal cpe

locus of a type A isolate may have excised as a mobile genetic

element and, after some recombination, integrated into a

conjugative plasmid, which then transferred to a type C isolate.

Alternatively, IS elements may have mobilized the plasmid-borne

type C cpe locus so it could then integrate onto the C. perfringens

chromosome, followed later by loss of the cpb plasmid to convert

the isolate back to a type A isolate. If this second possibility is true,

this chromosomal integration of a cpe-carrying mobile genetic

element must have occurred rarely since most, if not all,

chromosomal cpe type A isolates appear to be related, as assessed

by MLST analyses [36,37].

A final interesting observation from the current study is that the

single variant cpe locus observed amongst the surveyed type C

isolates involved an isolate causing human pigbel (enteritis

necroticans). Although such clinical isolates are difficult to obtain,

it would be interesting to evaluate whether other cpe-positive, type

C pigbel isolates also carry this same variant cpe locus, possibly

suggesting virulence significance or a common evolutionary origin.

Additional clarification of these and other issues about cpe locus

diversity and evolution are the subject of additional studies

ongoing in our laboratory.
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Figure 8. Detection of potential circular transposition intermediates carrying the cpe gene in type C and D isolates. (A) Diagram of the
cpe locus in type C isolate CN2078 and type D isolate CN4003. (B) PCR amplification of cpe-containing circular intermediates using the primers
dcmRseq and cpeMR with CN2078 DNA or primers 1027upNF2 and cpeMR with CN4003 DNA. (C) Diagram derived from sequencing the CN2078 loop
product of panel B that was amplified using primers dcmRseq and cpeMR. Black regions of the circle correspond to the amplified product. (D)
Diagram derived from sequencing the product from CN4003 loop product of pane B that was amplified using primers 1027upNF2 and cpeMR. Black
regions of the circle correspond to the amplified product.
doi:10.1371/journal.pone.0010932.g008
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