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Abstract

Background: The tumor suppressor PTEN (phosphatase and tensin homolog) is a lipid phosphatase that converts PIP3 into
PIP2 and downregulates the kinase AKT and its proliferative and anti-apoptotic activities. The FoxO transcription factors are
PTEN downstream effectors whose activity is negatively regulated by AKT-mediated phosphorylation. PTEN activity is
frequently lost in many types of cancer, leading to increased cell survival and cell cycle progression.

Principal Findings: Here we characterize the widely expressed miR-22 and report that miR-22 is a novel regulatory molecule
in the PTEN/AKT pathway. miR-22 downregulates PTEN levels acting directly through a specific site on PTEN 39UTR.
Interestingly, miR-22 itself is upregulated by AKT, suggesting that miR-22 forms a feed-forward circuit in this pathway. Time-
resolved live imaging of AKT-dependent FoxO1 phosphorylation revealed that miR-22 accelerated AKT activity upon growth
factor stimulation, and attenuated its down regulation by serum withdrawal.

Conclusions: Our results suggest that miR-22 acts to fine-tune the dynamics of PTEN/AKT/FoxO1 pathway.

Citation: Bar N, Dikstein R (2010) miR-22 Forms a Regulatory Loop in PTEN/AKT Pathway and Modulates Signaling Kinetics. PLoS ONE 5(5): e10859. doi:10.1371/
journal.pone.0010859

Editor: Henning Ulrich, University of São Paulo, Brazil

Received January 28, 2010; Accepted May 7, 2010; Published May 27, 2010

Copyright: � 2010 Bar, Dikstein. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the Wolfson Family Trust for MicroRNA Research at the Weizmann Institute and from the Israel Cancer
Research Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rivka.dikstein@weizmann.ac.il

Introduction

The tumor suppressor phosphatase and tensin homolog known

as PTEN is a lipid phosphatase involved in the regulation of the

cell cycle. Inactivating mutations of this gene or of its regulators

contribute to the development of certain cancers [1,2]. The main

substrates of PTEN are phosphoinositides, particularly phospha-

tidylinositol-3,4,5-triphosphate (PIP3) whose intracellular levels

are reduced following its dephosphorylation by PTEN to a

diphosphate product (PIP2), and consequently AKT kinase

activity and signaling are restrained. The FoxO family of

transcription factors is one of the AKT downstream direct

substrates. FoxO proteins are phosphorylated by AKT, and

translocated from the nucleus to the cytoplasm where they are

degraded via the ubiquitin–proteasome pathway [3]. When PTEN

is active and AKT activity is suppressed, FoxO proteins are able to

enter the nucleus and upregulate genes that promote cell cycle

arrest or apoptosis [3]. The PTEN mRNA has an unusually long

39UTR, about 3.3 kb, suggestive of tight post-transcriptional

control of PTEN expression. Within the PTEN 39UTR are several

conserved microRNA target sites and PTEN has been shown to be

repressed by miR-21, 214, 216a, 217, 17–92 and 26a [4,5,6,7,8].

MicroRNAs are small 19–24 bp long non-coding RNAs which

function primarily to down-regulate gene expression in all

metazoan eukaryotes. The microRNAs specifically interact with

target mRNAs through base pairing preventing their translation

(for recent review see [9,10] and sometimes promoting their

degradation [11]. A single microRNA can regulate a large number

of target mRNAs [12], and on the other hand, a single gene may

be regulated by more then one microRNA as is the case with

PTEN. Since the human genome encodes for several hundred

different microRNAs, they can be expected to regulate thousands

of genes [13]. MicroRNAs are encoded by specific genes or are

processed (via the enzyme Dicer) from a variety of different RNA

sources, including introns, 39 UTRs of mRNAs and long

noncoding RNAs [9,14]. Most microRNAs are transcribed by

RNA polymerase II (Pol II) [15,16], though several have been

shown to be transcribed by RNA polymerase III (Pol III) [17,18].

The most important requirement for microRNA base pairing

with an mRNA target in animal cells is a continuous and perfect

complementarity of microRNA nucleotides 2–8, known as the

seed region, to the 39 UTR of the target mRNA [19]. Several

computational programs have been generated to predict micro-

RNAs targets [20,21,22], most of them utilizing the complemen-

tarity between the microRNA seed and the 39UTR of the target

mRNA and conservation of the site between species. However, of

the large number of predicted targets for each microRNA a

significant fraction is false, indicating there are also other

parameters, yet to be discovered, that determine microRNA-

target association.

Some miRNAs are expressed at higher levels than their targets

(i.e. cell type specific or developmentally regulated miRNA), while

other miRNAs are co-expressed together with their target in the

same cell. Ubiquitously expressed miRNAs belong to the latter

class, and it was suggested that their function is to fine-tune target

expression at a post-transcriptional level [23,24]. MiR-22 is one of
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very few ubiquitously expressed microRNAs [25], and is therefore

likely to be involved in buffering cellular activities that are

common to all cells. In the present study we characterized miR-22

function and regulation. Our findings suggest that miR-22 controls

the signaling kinetics of PTEN/AKT/FoxO1 pathway and is by

itself target for regulation by this pathway.

Results

miR-22 is transcribed by RNA polymerase II and has a
strong TATA-less promoter

miR-22 is a widely expressed microRNA [25] whose regulation

and target genes have so far been poorly investigated. As a first step

in its characterization we set out to identify the miR-22 promoter.

We retrieved the pre-miR-22 sequence and through a Blast search

identified a 1.3 kb full length cDNA (DKFZp686O06159) contain-

ing the putative most 59-end. This cDNA does not seem to encode

for a protein. We then cloned, by genomic DNA PCR, a DNA

fragment bearing the predicted promoter from 21100 to +55,

upstream to a promoter-less luciferase reporter gene. The plasmid

was transfected into HEK293T cells and luciferase activity was

measured and compared to the activities of the promoter-less

parental plasmid or the SV40 early promoter that was used as a

positive control. The putative promoter of miR-22 displayed very

strong activity with a luciferase activity approximately 15 fold higher

than that of the SV40 promoter (Fig 1A). We next determined the

position of the transcription start site (TSS) of the mRNA produced

by the reporter gene using primer extension with a 32P-labeled

primer complementary to the luciferase gene. Fig. 1B shows that the

miR-22 promoter directs a major TSS located exactly at the

position of the most 59 end of the full length cDNA.

The miR-22 promoter lacks TATA box and Initiator core

promoter elements, but nevertheless directs a single major TSS

which is unusual in TATA-less promoters. We therefore tested

whether miR-22 is transcribed by RNA polymerase II (pol II). We

performed a nuclear run-on assay using the low concentrations

(20 mg/ml) of a-amanitin that inhibit pol II but not pol I and III.

Isolated nuclei from HEK293T cells were incubated with NTPs

which included the labeled 32P-UTP. Labeled RNAs were then

isolated and hybridized to membranes blotted with 45S rRNA (Pol

I), tRNAtyr (Pol III) and primary miR-22. The results show that

while 45S rRNA and tRNAtyr transcription was not significantly

affected by 20 mg/ml of a-amanitin, transcription of miR-22 was

clearly diminished (Fig. 1C). The involvement of Pol II in miR-22

transcription was verified by chromatin immunoprecipitation

assay (ChIP) with Pol II antibodies (Fig. S1).

We next determined which DNA elements in the promoter are

important for regulating miR-22 transcription. We constructed a

series of 59 deletions of the miR-22 promoter (Fig. 1D, right panel)

and analyzed their activity in HEK293T cells (Fig 1D, left panel).

No significant differences were observed between the whole

promoter, up to -1100, and 59 deletion up to position 2487

relative to the TSS. Deleting the region between 2487 to 2304

slightly decreased promoter activity whereas deleting the region

between 2304 to 275 substantially decreased promoter activity

indicating that an important regulatory element(s) lies in this

region. Further deletion of 10 bp between 275 to 265 caused

complete loss of transcriptional activity. Thus the region between

275 to 265 contains as an essential regulatory element. Analysis

of this element in several programs for transcription factor binding

sites revealed a lack of perfect match with the consensus of any

known transcription factor, though it bears significant resemblance

to the NRF-1 binding site consensus. However neither overex-

pression of NRF-1 nor expression of a dominant negative mutant

nor NRF-1 RNAi significantly affected miR-22 promoter activity

(Fig. S2), suggesting that a transcription factor other than NRF-1

activates the miR-22 promoter through this element.

miR-22 downregulates PTEN expression
To identify potential targets of miR-22 we constructed a miR-

22 expression plasmid and confirmed, by northern blot, that it

directs expression of mir-22 RNA (Fig. 2A). Using the TargetScan

algorithm [20] we selected four high scoring predicted target genes

PTEN, SIRT1, SP1 and p300 to examine whether miR-22 affects

their expression. The miR-22 expression plasmid was transfected

into HeLa cells and the selected proteins were determined by

western-blot. PTEN is downregulated by miR-22 expression in

HeLa cells (Fig. 2B left panel, top) but the levels of the other

proteins were not significantly changed (Fig. S3). Likewise, in

HEK293T and MCF-7 cells, expression of miR-22 reduced PTEN

protein levels. Quantification of several transfection experiments

in HeLa cells shows that PTEN downregulation is highly

significant (Fig. 2B right panel). As expected reduction of PTEN

levels by miR-22 enhanced the phosphorylated active form of

AKT (Fig. S4).

To determine whether endogenous PTEN is targeted for

regulation by endogenous mir-22 we constructed a plasmid

expressing miR-22 antagomir, a small RNA that can forms a

duplex with the endogenous miR-22 and neutralizes it. HeLa cells

were transfected with miR-22 antagomir or with a control vector

expressing a similar size non-relevant sequence. Western-blot

analysis showed a significant increase in PTEN protein level upon

inactivation of endogenous miR-22 (Fig. 2C), providing evidence

that PTEN is targeted for regulation by the endogenous miR-22.

miR-22 targets PTEN through a conserved site at the
39UTR

miR-22 was predicted to target PTEN through a single

conserved site at the 39UTR of PTEN mRNA. To examine this

possibility a fragment of the PTEN 39UTR, containing the

predicted target site, was cloned downstream to the luciferase gene

in the pGL3-SV40-promoter plasmid. As a control a single point

mutation was introduced in the seed of the target sequence (Fig. 3).

Co-transfection of miR-22 or parental (pCDNA3) expression

plasmids with the wild type and mutant reporter genes decreased

the luciferase activity of the reporter bearing the wild type but not

the mutated PTEN 39UTR. Likewise miR-22 expression did not

affect the parental reporter gene (Fig. 3). These results support the

idea that miR-22 exerts its effect on PTEN by interacting directly

with a target site on the 39UTR.

miR-22 expression influences PTEN/AKT signaling kinetics
To find the consequences of interference of PTEN expression

by miR-22 we measured AKT activity in response to growth factor

withdrawal and stimulation. To probe the endogenous AKT

activity in living cells we followed the sub-cellular localization of

FoxO1, an established direct target of this kinase [3]. Phosphor-

ylation of FoxO1 by AKT results in its accumulation in the

cytoplasm, while inactivation of AKT causes FoxO1 translocation

into the nucleus. NIH3T3 cells were co-transfected with FoxO1-

GFP together with either miR-22 expression plasmid or the

parental pCDNA3 and 48 hours after transfection FoxO1-GFP

localization was monitored by fluorescent microscopy. Under

conditions in which cells are continuously grown in the presence of

serum, FoxO1-GFP is localized in the cytoplasm of most cells both

in control and in miR-22 expressing cells (see Fig. 4C, time 0).

Therefore we determined the effect of miR-22 expression on the
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Figure 1. Identification of miR-22 promoter. A. A 1155 bp fragment of miR-22 predicted promoter from 21100 to +55 was cloned upstream to
the luciferase gene in the promoter-less pGL2 plasmid and transfected into HEK 293T together with RSV-renilla that served as internal control for
transfection efficiency. pGL2-basic and pGL2-SV40-promoter were also transfected and served as negative and positive controls respectively.
24 hours later the relative luciferase activities were determined. The results represent the mean +/2 SD of 7 independent transfection experiments.
B. Determination of miR-22 TSS. The luciferase reporter gene under the control of miR-22 promoter was transfected into HEK293T cells and 24 hours
after transfection RNA was extracted and analyzed by primer extension using a primer complementary to the 59-end of the luciferase gene. The
labeled miR-22 derived cDNA was run on a denaturing 8% urea-polyacrylamid gel alongside a sequencing reaction marked by A, G, C and T. C.
Analysis of sensitivity of endogenous miR-22 transcription to a-amanitin. Nuclei were isolated from HEK293T cells and subjected to a run-on assay in
the absence or presence of 20 mg/ml a-amanitin using 32P-labeled UTP. Labeled RNAs were isolated and then hybridized to membranes that were
dot-blotted with RNA pol I gene, 45s rRNA; RNA pol III gene tRNAY and miR-22 transcripts as indicated. D. Analysis of miR-22 promoter organization.
The miR-22 promoter was dissected from the 59 as shown schematically and luciferase activity of the different constructs was determined as
described in A. The results represent the mean +/2 SD of 4–6 independent transfection experiments.
doi:10.1371/journal.pone.0010859.g001
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Figure 2. PTEN is a direct target of miR-22. A. Northern blot analysis with miR-22 and U6 probes of small RNAs extracted from HeLa or HEK293T
cells, as indicated, transfected with miR-22 or parental (pCDNA3) expression plasmids. B. Left panel shows western blot analyses, with PTEN, tubulin
and GAPDH antibodies, of cell lystates prepared from HeLa, HEK293T and MCF-7 cells, as indicated, transfected with miR-22 expression plasmid or the
parental vector pCDNA3. Quantification, by densitometry, of 3 independent transfection experiments in HeLa cells is shown in the right panel in
which * indicates p,0.01. C. Representative western blot analysis with PTEN and GAPDH antibodies of cell lystates prepared from HeLa cells
transfected with miR-22 or control antagomir expression plasmids. Quantification of PTEN levels of 4 independent transfection experiments is shown
in the right panel in which * indicates p,0.05.
doi:10.1371/journal.pone.0010859.g002

miR-22 Fine-Tunes PTEN/AKT

PLoS ONE | www.plosone.org 4 May 2010 | Volume 5 | Issue 5 | e10859



dynamics of AKT signaling by following the changes in FoxO1

localization after serum withdrawal in live cells using Time-Lapse

microscopy. Images were taken every two minutes up to 30

minutes after starvation. Fig. 4A and B show that in control cells

FoxO1 starts accumulating in the nucleus within 10 minutes after

growth factor starvation and continues to accumulate during the

course of the experiment. Interestingly, miR-22 expression causes

a delay in the nuclear accumulation of FoxO1, consistent with

higher basal AKT activity as a consequence of PTEN down

regulation by miR-22. To verify this observation we scaled up the

analysis and used a standard fluorescent microscope that can

handle a larger number of cells. Images of randomly chosen 30-50

cells were taken at four different time points: before starvation

(time zero), 15 and 90 minutes after serum starvation, and 15

minutes after serum addition to the starved cells (re-feed).

Densitometric measurements of images from 3 independent

biological replicates (Fig. 4C) show that under continuous growth

with serum, there is no difference between control and miR-22

expressing cells (time 0). In miR-22 expressing cells, however,

there is significant attenuation of nuclear accumulation of FoxO1

at the early time point (15 min) after serum starvation, as we

observed with time-lapse microscopy. This effect is less pro-

nounced at 90 minutes. Replenishing the starved cells with growth

factors in order to induce AKT activity resulted in the rapid

nuclear exit of FoxO1 (re-feed columns), and this effect is

accelerated in cells expressing miR-22, which again is indicative

of higher levels of active endogenous AKT. To validate that the

translocation of FoxO1 from the nucleus to the cytoplasm is AKT

dependent we co-transfected into NIH3T3 cells miR-22 with a

dominant negative mutant of AKT. Inhibition of AKT activity

caused nuclear retention of FoxO1-GFP at all times and in the

absence or presence of either growth factors or miR-22 (Fig. S5).

miR-22 expression is modulated by PTEN/AKT/FoxO1
pathway

We next asked whether the PTEN/PI3K/AKT pathway itself

could influence miR-22 levels. HEK293T cells were transfected

with the miR-22 promoter luciferase reporter gene together with

an expression plasmid of a dominant negative mutant of AKT, an

inhibitor of AKT. The results revealed a significant decrease in

luciferease activity by dominant negative AKT mutant (Fig 5A)

suggesting that the AKT signaling pathway enhances miR-22

expression at the transcriptional level. To test this possibility

directly, we examine the effect of AKT inhibition on the

endogenous levels of miR-22 RNA. HeLa cells transfected with

a dominant negative mutant of AKT and 24–48 hours after

transfection the levels of miR-22 were analyzed by northern blot.

Fig. 5B shows substantially lower levels of endogenous miR-22 in

cells expressing the AKT inhibitor, confirming that AKT

enhances miR-22 expression.

miR-22 and PTEN share an important regulatory element
in their promoters

To understand why PTEN but not the other predicted targets

that we examined was affected by miR-22, we raised the possibility

that a true target may have additional features in common with

the microRNA, such as transcriptional control. To examine this

possibility we analyzed the sequence of the previously character-

ized PTEN promoter [26] and found that it has a sequence closely

similar to the essential 275 to 265 element of the miR-22

promoter. This sequence is also located proximal to the TSS (292

to 282) as in miR-22 (Fig. 6, upper panel) and it is absent from the

promoters of the false targets p300, SIRT1 and Sp1. To examine

whether this sequence is important for PTEN promoter activity,

Figure 3. miR-22 targets PTEN through a site at the 39UTR. A schematic representation of a reporter gene used to analyze the miR-22 target
site of PTEN 39UTR is shown in the upper panel. The sequences of the wild type and mutated target site are shown. The wild type and mutated
reporter plasmids were co-transfected into HEK293T cells together with miR-22 expression plasmid or the parental vector pCDNA3 and RSV-renilla
that served as internal control. The activity of each construct without miR-22 was set to 1. The results represent the average +/2 SD of four
independent transfection experiments in which the bar marked with * indicates p,0.01.
doi:10.1371/journal.pone.0010859.g003
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the PTEN proximal promoter from 2358 to +200 was cloned in

front of a luciferase reporter gene. Subsequently we constructed

two 59 deletion mutants, one up to position 296 which contains

the common sequence element and the second 13 bp shorter,

without it. These constructs were transfected into HEK293T cells

and luciferase activity was measured. As shown in Fig. 6 the 2385

to +200 displayed a significant promoter activity compared to the

promoter-less pGL2 basic construct. Most of PTEN promoter

activity is retained upon deletion to -96 position whereas a

significant reduction in activity is observed when the common

sequence element is deletedas in the 283 mutant. These results

indicate that the common sequence element is important for

PTEN promoter activity as it is for miR-22 promoter activity.

They also support the idea that genuine targets of microRNAs

share common regulatory characteristics with the microRNAs in

addition to the binding site on the target 39UTR.

Discussion

One of the most important signaling cascades that modulate cell

cycle progression and cell survival in many cell types is PTEN/

PI3K/AKT which is deregulated in several different kinds cancers

[1,2]. In the present study we have identified and characterized a

previously unknown constituent of this pathway, miR-22. miR-22

Figure 4. The effect of miR-22 expression on the sub-cellular localization of FoxO1. A. NIH3T3 cells were co-transfected with FoxO1-GFP
together with either miR-22 expression plasmid or the parental pCDNA3. 48 hours after transfection FoxO1-GFP from 10 fields of each transfection
was visualized by Time-Lapse microscopy before and after serum deprivation. Representative images from the indicated time points after serum
withdrawal are shown. B. Quantitative analysis of changes in FoxO1-GFP localization after serum starvation at 2 minutes intervals up to 30 minutes.
The measurement was carried out by densitometry of the fluorescent signal in the cytoplasm and the nucleus of each cell. The data is presented as
the ratio between nucleus and cytoplasm. C. Analysis of changes in FoxO1-GFP subcellular localization as in B using fluorescent microscope. Images
of 15–20 fields (30–50 cells) of each transfection were taken at four different time points: before starvation (time 0), 15 and 90 minutes after replacing
the cell medium to serum-free medium, and 15 minutes after addition of serum to the sarved cells (Re-Feed). The results are the sum of three
independent biological repeats. The asterisks indicate that the differences between control and miR-22 in 15, 90 minutes after starvation and reefed
points are statistically significant (p = 861025, 361022, and 261024 respectively).
doi:10.1371/journal.pone.0010859.g004

Figure 5. The PI3K/AKT pathway affects miR-22 expression. A. The luciferase reporter gene under the control of miR-22 promoter was
co-transfected into HEK293T cells together with either an empty expression plasmid (pCNDA3) or plasmid expressing a dominant negative mutant
of AKT (AKT-DN). 24 hours after transfection cells were harvested and the relative luciferase activity was determined. The results represent the
mean +/2 SD of three independent experiments. The asterisk indicates statistically significant difference (p,0.01). B. HeLa cells were transfected
with either dominant negative AKT or empty expression plasmid together with puromycin resistant gene plasmid. 24–48 hours after transfection
small RNAs were extracted and subjected to Northern blot with miR-22 and U6 probes as indicated. A representative Northern blot is shown in the
top panel and densitometric quantification of three independent transfection experiments is shown in the bottom panel. The asterisk indicates
statistically significant difference (p,0.001).
doi:10.1371/journal.pone.0010859.g005
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targets PTEN directly through a conserved site on the PTEN

39UTR. The PTEN/AKT pathway is functional in most cell types

and tissues and so is the expression of miR-22. Therefore miR-22

does not serve to eliminate PTEN expression, but rather, to fine-

tune its expression levels according to the physiological needs of

the cell. This idea is consistent with our finding that miR-22 acts to

modify the kinetics of the PTEN/AKT/FoxO1 signaling upon

changes in extracellular signals, but has little effect on this

signaling pathway under steady state conditions. Interestingly,

expression of miR-22 itself is affected by the PTEN/AKT

pathway, in a way that generates a feed-forward regulatory loop

(Fig. 7). In this regulatory circuit miR-22 suppresses PTEN

expression leading to enhancement of AKT activity, which in turn

upregulates miR-22 transcription (Fig. 7). Thus, in this regulatory

network, miR-22 acts to enhance AKT signaling (Fig. 7). Time-

resolved live cell imaging of AKT activity revealed that this circuit

serves to accelerate the signaling through this pathway.

Accumulating evidence reveals that a microRNA can regulate

multiple targets and one gene can be under the regulation of

several microRNAs [12]. Accordingly, both miR-22 and PTEN

were shown to be associated with other regulatory systems. PTEN

was recently found to be regulated by multiple miRs including

miR-21 miR-214, 216a, 217, 17–92 and 26a [4,5,6,7,8].

Considering the central role that PTEN has in cell cycle

progression and survival and its unusually long 39UTR PTEN

levels are probably influenced by additional microRNAs, some of

which would exert their effect in a cell type specific manner

compatible with the site of their expression. A recent study

reported that miR-22 directly suppresses the expression of the

estrogen receptor alpha (ERa) in breast cancer cells [27]. While

regulation of PTEN by miR-22 is likely to occur in many different

Figure 6. Identification of an important transcription regulatory element in PTEN promoter that is similar to the 275 to 265 motif
of miR-22 promoter. The upper panel shows sequence alignment between the 275 to 265 motif of miR-22 promoter and the 292 to 282 region
of PTEN promoter. Fragments of PTEN promoter with progressive 59 deletions that are schematically shown, were cloned upstream to a luciferase
gene in the promoter-less pGL2 basic and then transfected into HEK293T cells together with RSV-renilla that served as internal control for transfection
efficiency. 24 hours later the relative luciferase activities were determined. The results represent the mean +/2 SD of 7 independent transfection
experiments. The bars marked with asterisk indicate statistically significant difference p,0.001.
doi:10.1371/journal.pone.0010859.g006

Figure 7. A model showing PTEN/PI3K/AKT pathway with miR-
22 and the regulatory loop exerted by miR-22.
doi:10.1371/journal.pone.0010859.g007
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cell types, regulation of ERa will take place only in those tissues

that express the ERa receptor.

Prediction of microRNA targets is based upon the complemen-

tarity between the seed of the microRNA and a sequence in the

39UTR of the mRNA and its conservation among species [19,20].

However it appears that in spite of the presence of these features,

many of the predicted targets are refractory to microRNA

regulation. Of the four miR-22 target candidates we selected,

PTEN, p300, SIRT1 and Sp1, only PTEN was sensitive to miR-

22. To understand what additional features characterize a true

microRNA target we examined their transcription regulatory

parameters. Our findings revealed that in addition to the presence

of a miR-22 target site in the 39UTR of PTEN, miR-22 and

PTEN, but not the refractory predicted targets, share a common

transcription regulatory element in their promoters. Considering

the regulation of miR-22 by AKT and intriguing possibility is that

PTEN is also affected by AKT at the transcriptional level. Thus it

may be useful to look for common regulatory features between a

microRNA and its target to gain a better estimation of their

potential to interact.

In conclusion, we have revealed mutual regulation between the

tumor suppressor PTEN and the microRNA miR-22. PTEN was

identified as a direct target for negative regulation by miR-22, and

the PTEN downstream target AKT activates miR-22 transcrip-

tion. In the PTEN/AKT signaling pathway the major function of

miR-22 is to modulate pathway dynamics in response to

extracellular signals.

Materials and Methods

Plasmids construction
The promoters of miR-22 and PTEN were amplified by

genomic PCR and cloned into the promoter-less pGL2-basic

(Promega) via SmaI and HindIII sites. Dissections of miR-22 and

PTEN promoters were similarly constructed, using the same

reverse primer as for the parental construct. To construct the

reporter gene with the PTEN 39UTR, we used the pGL3-

promoter (Promega) in which luciferase is under the control of the

SV40 early promoter. First, a multiple cloning site was inserted

downstream to the luciferase gene at the XbaI site. Then a PTEN

39UTR fragment (from 2910 to 2960) was amplified from genomic

DNA and cloned downstream to the luciferase gene via SacII and

EcoRI sites. To obtain the PTEN 39UTR point mutation,

oligonucleotides bearing the designed sequence were inserted at

the same site. The miR-22 expression plasmid was constructed by

cloning into the pCDNA3 expression plasmid (Invitrogen) via

BamHI and EcoRI sites a DNA fragment encoding the pre-miR-

22 stem & loop that was amplified from genomic DNA by PCR.

Expression plasmids for miR-22 and control antagomirs were

constructed as previousely described [28] by inserting oligonucle-

otides complementary to miR-22, or a random sequence, into the

pSUPER plasmid. The probes for the run-on experiments were

first amplified from genomic DNA by PCR and then inserted into

pTZ57R/T (Fermentas). All the constructs were verified by

sequencing. The FoxO1 fused to GFP were generously provided

by Prof. Terry Unterman (University of Illinois, Chicago) and the

AKT-DN expression plasmid was provided by Rony Seger

(Weizmann Institute).

Transient transfection and primer extension assays
The cell lines used in this study were previously described

[29,30] and maintained in Dulbecco’s modified Eagle’s medium

(DMEM) (Gibco-BRL) supplemented with 10% fetal calf serum

(HyClone). Transfection into HEK293T cells was done as

described [31]. 24 h after transfection cells were harvested and

their luciferase and renilla activities were measured. For primer

extension assays total RNA was prepared 24 hours after

transfection using Tri-reagent (MRC inc.). Primer extension was

performed as described previously [29] using 20 mg of total RNA.

Results were visualized with a Phosphoimager (Fuji, BAS 2500).

For northern and western blotting and for the AKT kinetics

experiments, HeLa, MCF-7, and NIH3T3 cells were transfected

using ICAFectinH441 (Eurogentec) according to manufacturers

instructions. Positive transfectants were selected 24 hours after

transfection using puromycin for 24 more hours.

Nuclear run-on assay
For the run-on procedure DNA probes were amplified by PCR

from the corresponding plasmids. The DNA fragments were then

denatured with 0.25 M NaOH and 0.5 M NaCl for 5 minutes at

room temperature, and transferred to ice. 500 ng of each probe

was loaded onto a GeneScreen-Plus membrane (NEN) and

allowed to dry. The membrane was neutralized in 0.5 M NaCl

and 0.5 M Tris [pH 7.5] for 1 minute at room temperature, and

then in 2X SSC. The probes were then UV crosslinked to the

membrane. Nuclei were isolated from 150 mm plates of

HEK293T cells. Cells were washed with ice-cold phosphate-

buffered saline, harvested, resuspended in lysis buffer (10 mM

NaCl, 3 mM MgCl2, 10 mM Tris-Hcl [pH 7.4]) and incubated

for 30 minutes at 4uC. Cell membranes were then mechanically

broken using a 2 ml glass homogenizer, and nuclei were separated

from the cell debris by centrifugation. Nuclei were then

resuspended in 100 ml storage buffer (40% glycerol, 50 mM Tris

[pH 8.5], 5 mM MgCl2, 0.1 mM EDTA). For the run-on

transcription 50 ml nuclei were used for each reaction. The a-

amanitin (20 mg/ml) was added 5 minutes prior the reaction. The

nuclei were supplemented with 25 ml of 4X reaction mix (100 mM

HEPES [pH 7.5], 10 mM MgCl2, 10 mM DTT, 300 mM KCl,

20% glycerol), 12.5 ml of 8X tri-phosphate mix (14 ml 25 mM

ATP, 14 ml 25 mM GTP, 14 ml 25 mM CTP, 0.4 ml 1 mM UTP

and 83 ml ddH2O), 5 ml [32P] UTP (500 mCi), and ddH2O to a

final volume of 100 ml. After 20 minutes at room temperature 2 ml

of DNase I (Promega) were added, and the nuclei were incubated

for 10 minutes at 37uC. The reaction was then stopped by 100 mg

tRNA, 300 mg proteinase K and 300 ml of stop buffer (2% SDS,

7 M urea, 0.35 M NaCl, 1 mM EDTA, 10 mM Tris [pH 8.0]),

and incubated for 2 hours at 42uC. To precipitate RNA, 50 ml of

ice cold TCA was added, and the tubes were incubated for 20

minutes at 4uC, centrifuged and washed with ice cold absolute

ethanol. The RNA pellet was resuspended in 50 ml of TE

containing 0.5% SDS, and dissolved by incubating at 65uC for

30 minutes. The resultant radiolabeled RNA was added to the

membrane that was prehybridized in 2.5 ml of hybridization

buffer (50% formamide, 6X SSC, 10X Denhardt’s solution, 0.2%

SDS) for 6 hours at 42uC. The radiolabeled RNA was incubated

for 72 hours with the membrane at 42uC, and then washed once

with 6X SSC, 0.2% SDS, twice with 2X SSC, 0.2% SDS and

twice more with 0.2X SSC, 0.2% SDS. The membranes were

visualized with a Phosphoimager (Fuji, BAS 2500).

Small RNA Northern Blot
For northern blot assay, small RNAs were extracted from

HEK293T or HeLa cells by first preparing total RNA with Tri-

reagent (MRC inc.) according to the manufacturer’s instructions

and then precipitating out large RNA with 0.1% NaCl and 5%

PEG-8000 and centrifuging at 12000 rpm for 10 minutes at 4uC.

Small RNAs were precipitated out from the supernatant by

ethanol. Small RNA (5 mg) was loaded onto a 15% acrylamide gel,
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and run at 180V for 90 minutes, in 1X TBE. RNA was then

transferred from the gel to a GeneScreen-Plus membrane (NEN),

at 200 mA for 2 h, in 0.5X TBE. Next, the RNA was crosslinked

to the membrane with UV irradiation. Pre-hybridization was

carried out at 42uC for 2 h in hybridization buffer (5X SSC,

20 mM Na2HPO4 (pH 7.2), 7% SDS, and 2X Denhardt’s

solution), after which the 32P labeled probe was added.

Hybridization was carried out 16–24 hours at 42uC. The

membrane was then washed 3 times at 42uC in a washing solution

(3X SSC, 25 mM NaH2PO4 (pH 7.5), 5% SDS, and 10X

Denhardt’s solution). Hybridization products were visualized using

phosphoimager (Fuji, BAS 2500).

Western blot and antibodies
HeLa (tet off), HEK293T and MCF7 cells were harvested and

lysed in reporter lysis buffer (Promega). Protein concentrations

were determined by Bradford protein assay (Bio-Rad). Samples

were subjected to SDS-PAGE and proteins were transferred to

nitrocellulose membrane and subjected to standard western blot

procedure. Antibodies against PTEN, Sp1 and p300 were from

SantaCruz biotechnology and alpha-tubulin from Sigma. Proteins

were detected using the enhanced chemiluminescence kit (Pierce)

and bands quantified with Science Lab 2003 Image Gauge

(Fujifilm, Tokyo, Japan).

Microscopic analysis of GFP-FoxO1 sub-cellular
localization

NIH3T3 cells were co-transfected with FoxO1-GFP (kindly

provided by Prof. Terry Unterman) together with either miR-22

expression plasmid or the parental pCDNA3. After 24 hours, the

transfected cells were split to keep them at a low density and the

microscopic analyses were carried out 48 hours after transfection.

Time-Laps microscopy was performed using Olympus IX71

microscope (Delta-Vision - Applied Precision). The transfected

cells were grown in an 8-chamber Lab-Tek Chambered Cover-

glass (Nunc). 10 fields for each transfection in which GFP-FoxO1

could be observed in the cytoplasm were chosen for analysis before

and after serum deprivation. Images were taken every two minutes

for 30 minutes after starvation. For larger scale analysis, we took

images of the transfected cells that were seeded in a 6-well plate,

using Nikon Eclipse TiS microscope. We randomly took images of

15–20 fields (30–50 cells) at four different time points: before

starvation (time zero), 15 and 90 minutes after replacing the cell

medium with serum-free medium, and then15 minutes after

replacing the medium of starved cells with 10% FBS containing

medium (Re-Feed). Image analysis was carried out using Science-

Lab’s ImageGauge (Fujifilm) in the following manner: densitom-

etry of every cell expressing FoxO1-GFP was measured both in the

nucleus and in the cytoplasm in an identical sample measure area.

After reducing the background the nucleus/cytoplasm ratio was

calculated. Final analysis is the sum of three independent

experiments. Statistical analysis of the data was carried out by

two-way ANOVA using SPSS program.

Analysis of phosphorylated AKT
MCF-7 cells were co-transfected in a 6-well dish with miR-22

expression plasmid, and a puromycine resistance plasmid, using

ICAFectin, according to the manufacture instructions. Twenty-

four hours post transfection, transfected cells were selected with

puromycine (0.5 mg/ml) and 48 hours post transfection cells were

starved for 7 hours, followed by 5 minutes serum stimulation. The

cells were then put on ice, washed 3 times with ice-cold PBS and

harvested in 150 ml ice-cold RIPA with fresh protease inhibitor

cocktail (Sigma). The lysates were then mixed (vortex), incubated

on ice for 10 minutes, mixed again, and incubated for additional

10 minutes on ice, followed by 15 minutes centrifugation at 4uC, at

14,000 rpm. Supernatant was used for a western blot.

Supporting Information

Figure S1 Chromatin immunoprecipitation assay using anti-

bodies against RNA pol I, II and III. Shown are PCR

amplification of the promoter region of 5S rRNA, b-actin,

tRNAtyr, and endogenous miR-22 genes. rRNA, b-actin and

tRNAtyr are indicative of Pol I, Pol II and Pol III genes,

respectively.

Found at: doi:10.1371/journal.pone.0010859.s001 (0.06 MB

TIF)

Figure S2 Luciferase gene under the control of miR-22

promoter was transfected into HEK293T cell together with

expression plasmid of wild type or dominant negative mutant

NRF1 or NRF1 RNAi or empty expression plasmid (pSG5) as

indicated.

Found at: doi:10.1371/journal.pone.0010859.s002 (0.08 MB

TIF)

Figure S3 The upper panel shows a representative western blot

analyses with PTEN, SIRT1, SP1, p300, and tubulin antibodies,

of cell lystates prepared from HeLa transfected with miR-22

expression plasmid or the parental vector pCDNA3. Quantitative

analysis by densitometry of 3 experiments is shown in the lower

panel.

Found at: doi:10.1371/journal.pone.0010859.s003 (0.12 MB

TIF)

Figure S4 MCF-7 cells were transfected with miR-22 expression

plasmid or the parental vector pCDNA3 and 48 hours later the

cells were serum starved for 7 hours. Then serum was added for 5

minutes and cell lysates were prepared. The upper panel shows a

representative western blot analysis with the indicated antibodies

and the graph at the lower panel represents a densitometric

analysis of two independent transfection experiments.

Found at: doi:10.1371/journal.pone.0010859.s004 (0.09 MB

TIF)

Figure S5 The effect of miR-22 expression on the sub-cellular

localization of FoxO1 is AKT dependent. NIH3T3 cells were co-

transfected with FoxO1-GFP together with either miR-22

expression plasmid or the parental pCDNA3 and with or without

a dominant negative mutant of AKT (AKT-DN). 48 hours after

transfection the cells were subjected to serum starvation followed

by serum addition to the starved cells. Images were taken at four

different time points: before starvation (time 0), 15 and 90 minutes

after replacing the cell medium to serum-free medium, and 15

minutes after addition of serum to the starved cells (Re-Feed).

Found at: doi:10.1371/journal.pone.0010859.s005 (0.38 MB

TIF)
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