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Abstract

An increase in chromosome number, or polyploidization, is associated with a variety of biological changes including
breeding of cereal crops and flowers, terminal differentiation of specialized cells such as megakaryocytes, cellular stress and
oncogenic transformation. Yet it remains unclear how cells tolerate the major changes in gene expression, chromatin
organization and chromosome segregation that invariably accompany polyploidization. We show here that cancer cells can
initiate increases in chromosome number by inhibiting cell division through activation of glycoprotein1b alpha (GpIba), a
component of the c-Myc signaling pathway. We are able to recapitulate cytokinesis failure in primary cells by
overexpression of GpIba in a p53-deficient background. GpIba was found to localize to the cleavage furrow by microscopy
analysis and, when overexpressed, to interfere with assembly of the cellular cortical contraction apparatus and normal
division. These results indicate that cytokinesis failure and tetraploidy in cancer cells are directly linked to cellular
hyperproliferation via c-Myc induced overexpression of GpIba.
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Introduction

The transition from the restrained and controlled growth of

normal cells to the accelerated and dysregulated growth of cancer

cells requires multiple changes, including enhancement of the

signaling pathways controlling division and survival. But addition-

al changes not directly related to increased proliferation usually

accompany these cellular alterations. These include genetic

instability (GI), aneuploidy, and centrosome amplification, all of

which are associated with a loss of genomic integrity [1,2,3,4]. The

reason the two phenotypes of enhanced growth and GI so often

appear together is currently unknown. It is commonly believed

that GI imparts a ‘‘mutator’’ phenotype to the cancer cells,

increasing the genetic diversity necessary for the selection of

mutant clones with enhanced growth and survival [5]. But since

GI is strongly associated with senescence and apoptosis [6,7,8], it is

unclear how cells tolerate the deleterious effects of GI long enough

for these cellular evolutionary steps to occur. It is also unclear

whether the mechanisms that cause polyploidization are directly

related to the signals that cause enhanced growth or whether they

are an indirect consequence of elevated proliferation rates.

Two key, and related, genomic destabilizing events that are

believed to contribute to cancer are tetraploidization, the doubling

of the chromosome number, and centrosomal amplification, which

increases the number of microtubule organizing centers in the cell.

It has long been believed that tetraploidy is an important

intermediate in cellular transformation, as cancer cells typically

have increased chromosome numbers [1,9,10]. More recently,

tetraploidy has been directly linked to tumorigenesis in mice

[11,12], and centrosome amplification has been linked to tumor

growth in flies [13]. But in both of these model systems, tetraploidy

and centrosome amplification were artificially induced by

mechanisms not directly associated with carcinogenesis. The root

cause of tetraploidy and centrosome amplification in cancer cells

therefore remain mostly uncharacterized.

One of the classic oncoproteins that enhance growth and

proliferation of cancer cells is the transcription factor c-Myc.

Highly overexpressed in malignant cells, c-Myc modifies a variety

of processes including cell proliferation, differentiation, survival,

GI and metabolism [14]. Overexpression of c-Myc is sufficient for

acute transformation of immortalized rodent cell lines, allowing

them to become tumorigenic in immunocompromised mice. One

of the many targets of c-Myc transcriptional regulation is GpIba, a

subunit of the von Wilebrand factor receptor (vWFR) that is

responsible for the adhesion, aggregation and activation of

platelets upon binding to damaged epithelium [15,16]. Recent

data shows that GpIba has additional functions that are

independent of the blood-clotting pathway but are linked to c-
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Myc mediated transformation and induction of GI. These include

reducing the need for growth factors, inhibiting apoptosis, causing

DNA and nuclear damage, promoting tetraploidy and transform-

ing immortalized cells [12,17]. GpIba is also necessary to promote

tetraploidy by c-Myc activation and is sufficient to do this in the

absence of overt c-Myc deregulation [17].

To understand in more detail the role of GpIba in promoting

GI, we have identified the genomic-destabilizing events associated

with GpIba overexpression. We show here that GpIba localizes to

the cleavage furrow of dividing primary cells and that overex-

pression of GpIba interferes with the correct localization of key

divisional proteins at the cleavage furrow associated with failure of

cytokinesis or cell division. These observations provide the first

direct mechanistic link between stimulation of cell proliferation

and transformation, via the c-Myc signaling pathway, and the

genomic destabilizing events of polyploidization and centrosomal

amplification.

Results

GpIba overexpression caused failure of cytokinesis
GpIba is widely overexpressed in a variety of tumors and tumor

cell lines and GpIba overexpression gives rise to tetraploidy in

primary human foreskin fibroblasts (HFF; [12,17]. To determine if

GpIba overexpression was the cause of nuclear amplification in

cancer cells, GpIba was stably knocked down by a short hairpin

RNA in HeLa, OS osteosarcoma, and MCF7 breast cancer cell

lines (Figure 1A and Figure S1A and S1B). The frequency of

multinucleates (an example is shown in Figure S1C, a common

result of cytokinesis failure), was markedly (p,0.05) reduced in

HeLa and OS cell lines, and moderately (p,0.1) reduced in the

MCF7 cell line (Figure 1B and C). In addition, the frequency of

multipolar spindles (MPS, an example is shown in Figure S1D), a

hallmark of centrosome amplification, was also significantly (p,

0.05) reduced in HeLa and OS cells, and moderately (p,0.1)

reduced in MCF7 cells. Many other mitotic and cytokinesis defects

including anaphase bridges, lagging chromosomes and micronuclei,

demonstrated similar trends after GpIba knockdown in tested

cancer cells (Figure 1B and C), showing that overexpression of

GpIba is a significant cause of cytokinesis failure and mitotic defects

in malignant cells. Furthermore, these results were validated by

expressing a murine shRNA-resistant GpIba (mGpIba) in HeLa-

shGpIba cells and as expected, we observed increases in mitotic

and cytokinesis defects compared with control shGpIba cells (vector

alone) showing the specificity of the knockdown phenotype

(Figure 1B).

We next examined whether overexpression of GpIba was

sufficient to impair cytokinesis in noncancer primary cells. A series

of HFF cells stably immortalized with human telomerase (hTERT)

were used for this study, including HFF-vector (stably transfected

with empty vector), HFF-shp53 (p53 stably knocked down by a

short hairpin RNA), HFF+GpIba (stably overexpressing GpIba),

and HFF-shp53+GpIba (stably overexpressing GpIba with p53

knockdown) [12]. The frequency of binucleates in interphase cells

increased markedly when GpIba was overexpressed, but only in a

p53 knockdown background (Figure 1D), consistent with previous

findings [12]. To confirm that the binucleation was due to

cytokinesis failure, we observed the division of .300 cells by live-

cell differential interference contrast (DIC) microscopy. Cytokine-

sis failure was seen in approximately 2% of the vector-alone cells,

shp53 or GpIba overexpressing cells. However, failure of division

increased by .4-fold in HFF-shp53+GpIba cells (Figure 1E and

Movies S1 and S2). These results show that overexpression of

GpIba is sufficient to lead to cytokinesis failure in immortalized

primary cells lacking p53 and provide an explanation for the

increased multinucleation and ploidy of cancer cells.

GpIba colocalizes with F-actin at the cleavage furrow
during cytokinesis

To determine if GpIba plays a role in cell division, its localization

was evaluated in dividing HFF-hTERT cells by immunofluores-

cence. In late mitosis, endogenous GpIba concentrated at the

contractile ring in the midzone of the dividing cell, co-localizing

with F-actin, filamin A, and myosin heavy chain (MHC, Figure 2A).

This is notably different from the ER localization of GpIba
described previously in interphase cells where GpIba is distributed

diffusely throughout the cytoplasm and in association with the ER

([18] and Figure S2A). As a control, another membrane-associated

marker, CD44, did not concentrate at the cleavage furrow (Figure

S2B), showing the cleavage furrow enrichment is specific to a subset

of membrane-associated proteins. To examine the changing

dynamics of GpIba positioning, GFP was fused to the C-terminus

of GpIba and the fusion protein was transiently expressed in HeLa

cells, which tolerated the expression better than primary cells. As

observed with immunolocalization in primary cells, GpIba-GFP

concentrated at the cleavage furrow in mitotic HeLa cells (Figure 2B

and Movie 3), thus confirming that GpIba associated with

contractile structures of the cell during division. However, unlike

primary cells GpIba-GFP staining was only observed in a fraction

of the dividing HeLa cells (discussed further below). More diffuse

cytoplasmic staining was seen in interphase cells, consistent with the

previously described ER localization [12]. GpIba-GFP also

partially colocalized with F-actin fibers near the cell cortex of

interphase cells (Figure 2C) indicating an association with the actin

cytoskeletal in nondividing cells.

GpIba overexpression causes mislocalization of filamin A,
F-actin, MHC and RhoA from the contractile ring

As we documented real-time divisional failure in GpIba-

overexpressing cells (Figure 1E), we also observed defects of the

cortical structure of the cells consistent with abortive contraction.

One such defect was membrane blebbing seen by immunofluo-

rescence with antibodies to MHC or F-actin (Figure 3A, arrows).

Similar blebbing structures have been seen with failed cytokinesis

from other sources [19,20]. We also noted polar contraction,

defined as cortical contraction and F-actin and myosin accumu-

lation outside of the cleavage furrow during division (Figure 3A).

Both blebbing and polar contraction are abnormal features and

were only rarely observed in HFF-vector cells, but were found

,30% of the HFF-shp53+GpIba cells (Figure 3B). When these

aberrant divisional structures and processes formed, they typically

contained both F-actin and GpIba, as shown in Figure 3C for

blebbing in the top panel and polar contraction in the bottom

panel. Small molecule inhibition (ML-7) of the signaling protein

myosin light chain kinase blocked cytokinesis but did not lead to

blebbing or polar contraction confirming that these are symptoms

of contractile or abscission defects and are not found in all cases of

cytokinesis failure. These observations suggest that the actomyosin

contractile cytoskeletal organization and function in dividing cells

is defective following overexpression of GpIba.

To examine in more detail the molecular nature of the divisional

defect, the localization of a variety of divisional proteins were

examined in GpIba-overexpressing cells. Several key cytokinesis

proteins were missing in a subset of the dividing cells. Surprisingly,

GpIba itself was missing from the contractile rings in about 60% of

anaphase HFF-shp53+GpIba cells (Figure 4A). (Comparable

results were observed by live cell imaging of HeLa cells stably

GpIba and Cytokinesis Failure
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Figure 1. Knockdown of endogenous GpIba in cancer cells reduces the frequencies of mitotic and cytokinesis defects, while
overexpression of GpIba in immortalized noncancer cells increases the frequencies of binucleation and cytokinesis failure. (A)
Immunoblots of HeLa, MCF-7 and OS whole cell extracts from shRNA GpIba knockdown cultures and respective controls. (B) Frequencies of
mitotic and cytokinesis defects in HeLa cells were significantly decreased after GpIba knockdown and enforced overexpression of a shRNA-
resistant GpIba (mGpIba) restored most of the mitotic defects (n.100 cells per sample). (C) The percentages of OS and MCF7 cells demonstrating
mitotic and cytokinesis defects were reduced by GpIba knockdown (n.100 cells per sample). In both (B) and (C): Examined mitotic defects
include: lagging chromosomes (LC), multipolar spindles (MPS), anaphase bridges (AB), micronuclei (micron.) and multinucleation (.1 nuclei,
multin.). (D) HFF-hTERT cells with stable knockdown of p53 and/or overexpression of GpIba were stained with DAPI and the frequency of
binucleated cells were determined by fluorescent microscopy (n = 300–500 cells per sample). Note that cancer cells occasionally have more than
two nuclei and cells with two or more nuclei were categorized in Figure 1B and 1C as ‘‘multinucleated’’. HFF-hTERT cells very rarely had more than
two nuclei and cells with two nuclei were categorized in Figure 1D as ‘‘binucleated’’. (E) Frequency of cytokinesis failure in the same cell lines as in
D determined by DIC live-cell imaging. Divisional failure was markedly stimulated by overexpression of GpIba in a p53 deficient background. At
least 50 dividing cells were analyzed in each category in E. In B, C and D, data and error bars represent mean and standard deviation of at least
three different experiments.
doi:10.1371/journal.pone.0010819.g001

GpIba and Cytokinesis Failure

PLoS ONE | www.plosone.org 3 May 2010 | Volume 5 | Issue 5 | e10819



transfected with the GpIba-GFP described above.) Similarly,

filamin A, F-actin and MHC were also often absent from the

cleavage furrow of dividing HFF-shp53+GpIba cells, while the

interphase localizations of filamin A and F-actin were not affected

(Figure 4B, C, D and G). We believe that these cytokinesis protein

mislocalizations were related to the abnormal divisional structures

described above. Fully 80.8% of HFF-shp53+GpIba cells with

abnormal filamin A localization showed blebbing during division.

Filamin A deficiencies have been previously shown to cause

blebbing during cell locomotion [21]. The cytokinesis activator,

RhoA, was often asymmetrically localized in HFF-shp53+GpIba
cells, with stronger staining at one edge of the furrow (Figure 4E).

In contrast, the mitotic signaling kinase Aurora B was normally

positioned at the cleavage furrow in dividing HFF-shp53+GpIba
cells (Figure 4F), showing that the mislocalization was specific to a

subset of cytokinesis proteins.

The above studies showed that GpIba overexpression resulted

in the mislocalization of key divisional proteins from the cleavage

furrow of dividing primary cells. We next determined if the

localization of the same proteins was compromised in cancer cells.

The distribution of GpIba, F-actin and filamin A during

cytokinesis in four cancer cell lines including HeLa, liver

adenocarcinoma SK-HEP-1 and oral squamous cell carcinoma

derived UPCI:SCC40 and UPCI:SCC103 was examined by

immunofluorescence. All of the tested cancer cell lines showed

frequent mislocalization of these divisional markers, similar to

HFF-shp53+GpIba cells in Figure 4, and we observed a

correlation between the frequency of binucleated/multinucleated

cells and the frequency of GpIba, F-actin and filamin A

mislocalization (Figure 5A). These observations show that the

mislocalization of cytokinesis proteins seen with GpIba-overex-

pression in primary cells can also be seen in malignant cells and is

associated with failure of division. To determine if a reduction of

GpIba was able to reverse the marker mislocalization in cancer

cells, we compared localization of filmain A and F-actin in HeLa

cells before and after shRNA knockdown of GpIba (Figure S3). In

both cases a small decrease was observed, but this was significant

only for Filamin A (p = 0.016). We interpret these results to

indicate that GpIba overexpression does play a role in cytokinesis

failure and divisional protein mislocalization in cancer cells, but

that additional unknown factors may be acting to interfer with

cytokinesis protein localization.

Signal peptide and filamin A binding domains of GpIba
are indispensible for GpIba-overexpression mediated
cytokinesis failure

We further explored which domains of GpIba were important

for inhibition of cytokinesis. One region of interest was the filamin

A binding domain to test the significance of interactions of GpIba
with this actin modifying protein. A second region of interest was

the signal peptide domain to determine if transit through the

secretory pathway was required for overexpressed GpIba to

inhibit cytokinesis. Cellular fractionation was used to verify the

mutant lacking the signal peptide was unable to localize to the ER

(Figure S4). When overexpressed, these mutants were much less

effective at increasing the binucleation frequency observed in

DAPI-stained HFF-hTERT cells (Figure 5B), or the frequency of

cytokinesis failure viewed by live-cell DIC microscopy (Figure 5C).

These results indicated that interference with cytokinesis required

that the overexpressed GpIba be capable of entering the ER

secretory pathway and binding to filamin A, thus further

supporting the conclusion that GpIba overexpression inhibits

cytokinesis by interfering with the cortical F-actin filament

network. These findings are consistent with previous observations

showing that GpIba-induced GI was abrogated by loss of either

the filamin A-binding domain or signal peptide of GpIba [17].

GpIba overexpression is responsible for transformation-
related features of cancer cells

It is conventionally believed that tetraploidy resulting from

cytokinesis failure is an intermediate step towards tumorigenesis

[11,12]. As our data have demonstrated that GpIba overexpres-

sion led to cytokinesis failure and tetraploidization, we next

investigated whether GpIba overexpression was required for the

elevated growth rates and tumorigenic properties of cancer cells.

When endogenous GpIba in tumor cells was knocked down, we

observed markedly reduced clonogenicity in soft agar compared

with controls, even when high serum concentrations were

maintained or the periods of culture were extended to compensate

for possible reduced rates of proliferation (Figure 6A and data not

shown). Moreover, the colonies that did arise from shRNA cells

Figure 2. GpIba co-localizes with F-actin, filamin A and MHC. (A)
Co-localization between GpIba and F-actin, MHC and filamin A at the
cleavage furrow was observed in HFF-vector cells by double
immunofluorescence. DAPI staining was used to confirm that the cells
were in telophase. The merge combines anti-GpIba in green and the
indicated second primary antibody in red. (B) GpIba localization during
mitosis via live cell imaging using HeLa cells transiently transfected with
GpIba-GFP. Time stamp is hrs:mins shown from the start of imaging.
These stills are from Movie S3. (C) GpIba-GFP in interphase cells partially
co-localized with F-actin at the cell cortex. HeLa cells were transiently
transfected with GpIba-GFP, fixed and analyzed by confocal microsco-
py. F-actin was visualized with rhodamine-phalloidin (Cytoskeleton).
doi:10.1371/journal.pone.0010819.g002
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were invariably of much smaller overall size (Figure 6B). These

results were validated by expression of a shRNA resistant murine

mGpIba which restored enhanced growth showing the specificity

of the shRNA knockdown (Figure S5). We therefore conclude that

anchorage-independent growth of the tested cancer cells lines was

profoundly influenced by endogenous GpIba levels.

Furthermore, when we tested each shRNA cell line and its

control counterpart by inoculating immunocompromised nu/nu

mice with equivalent numbers of cells, we found that in all three

cases, endogenous GpIba knockdown resulted in a significant

impairment of tumor growth (Figure 6C). Collectively, we

conclude that GpIba overexpression is responsible for hyperpro-

liferation and tumorigenesis of the tested cancer cells.

Discussion

This study makes two advances towards understanding GI in

tumor cells. The first is to establish a mechanism for cytokinesis

failure in cancer cells and the second is to link cytokinesis failure

mechanistically with enhanced growth and proliferation via c-

Myc.

Increased GpIba expression, a common feature of tumor cells

[18], was shown to contribute to cytokinesis failure in the tested

cancer cell lines. Furthermore, we were able to establish a working

model for how tetraploidy originates in cancer cells by

overexpression of GpIba and p53 inhibition in immortalized

primary cells. In these cells, cytokinesis failure was accompanied

by the appearance of abnormal contractile structures and

mislocalization of essential divisional proteins, including F-actin,

filamin A and RhoA. Similar mislocalization of F-actin, filamin A

and GpIba could be seen in tumor-derived cells and in each case

was correlated with the appearance of multinucleation, a feature of

cytokinesis failure. These results show for the first time that the

genomic destabilizing event of cytokinesis failure in cancer cells

can be defined at the molecular level and reproduced with similar

phenotypes in primary cells.

The phenotypes from GpIba overexpression in primary cells

were markedly more severe in the absence of p53. It has been

observed previously that loss of this genomic checkpoint protein

facilitates c-Myc induced tetraploidy [22] and promotes survival

of the cells following genomic damage from GpIba overexpres-

sion [12]. Similarly, the loss of p53 may be required here to

bypass cellular checkpoints that otherwise inhibit abnormal

cytokinesis in primary cells, although this explanation alone is

insufficient to explain the protein mislocalization we see from p53

knockdown. Additionally, while a reduction of GpIba led to some

normalization of cytokinesis protein localization in cancer cells,

GpIba, F-actin and filamin A remained mislocalized in many

HeLa cells after knockdown of GpIba demonstrating that other

factors also interfere with cytokinesis protein positioning in these

cells.

Inhibition of cytokinesis by GpIba overexpression requires

filamin A binding and we have shown that filamin A localizes to

the mammalian cleavage furrow in a GpIba-dependent manner.

Previously, filamin A was found in chick embryonic cells at the

cleavage furrow [23]. Filamin A is known to bind to GpIba as part

of the vWFR signaling pathway [24,25], and we propose that

GpIba-filamin A interactions are also important for cell division.

Filamin A homodimerizes at a flexible hinge and crosslinks

polymerized actin into a 3-dimensional gel, promoting F-actin

networks rather than the anti-parallel arrays associated with

contractile fibers in skeletal sarcomeres [21,26]. It may therefore

seem surprising that filamin A function would be important for

contractile mechanisms in cytokinesis. However, the contractile

forces at the cleavage furrow have also been proposed to result

from disordered actin arrays [27,28], and we propose that filamin

A crosslinking of F-actin may be an important part of that process.

Filamin A binds RhoA [29] that was also mislocalized in GpIba-

Figure 3. Abnormal cortical contraction observed in cells overexpressing GpIba. (A) The localization of MHC and F-actin was visualized in HFF-
shp53+GpIba cells by immunofluorescence. The abnormal divisional morphologies of blebbing and polar contraction were observed and are marked by
arrows. (B) Quantification of the frequency of the different categories of abnormal morphologies from (A). (C) Blebbing (top panel, arrow) and polar
contraction (bottom panel) structures in HFF-shp53+GpIba cells during cytokinesis contained both actin and GpIba, as seen by double immunofluorescence.
doi:10.1371/journal.pone.0010819.g003
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overexpressing cells. It is controversial whether RhoA activity is

essential for formation of the cleavage furrow [19,30], but it is

important to activate formin leading to actin polymerization

during division [31] and is thought to be required for cortical

contraction [32]. Deficiency in RhoA also leads to blebbing as we

observe in GpIba-overexpressing cells [19]. Thus, GpIba-induced

interference with filamin A and RhoA positioning/function may

explain the actomyosin and contractile deficiencies we observe in

GpIba-overexpressing cells.

The observation that a source of cytokinesis failure in cancer

cells is a target of the c-Myc pathway that stimulates growth and

division, could help explain the linkage between oncogenic

transformation and tetraploidy. Since both pathways are activated

concurrently, by the same molecular changes, it is logical that they

would be found together in the same cells. Furthermore, this may

help explain how the cell tolerates the mitotic disruption of

centrosome and chromosome amplification. We propose that a

tight phenotypic linkage between the cause of cytokinesis failure

and stimulated cell growth and proliferation offsets the intrinsic

cost of abnormal division and polyploidy on cell survival. This may

allow the cells to thrive despite the selective disadvantage of GI. In

this model, we interpret cytokinesis failure and tetraploidy to be

linked to enhanced cellular proliferation, not as a direct

consequence of proliferation, but because both processes are

induced by c-Myc activation and GpIba overexpression.

We have demonstrated a role for GpIba in cytokinesis and the

increases in ploidy common in cancer cells. Previously, GpIba was

known for its role as a platelet- and megakaryocyte-specific cell

surface receptor [15,16]. Its presence on other cell lineages, where

there is little or no expression of the other vWFR components,

raises interesting questions regarding the origin and functionality

of this subunit. It is possible that the original function of GpIba
was related to cytokinesis, and only later did it evolve into other

specialized roles in platelets and megakaryocytes. It is also possible

that some of its known functions in platelets and megakaryocytes

could be related to a role in cytokinesis. During maturation

megakaryocytes undergo endomitosis, several rounds of mitosis

without cell division [33]. Recent evidence shows that endomitosis

in megakaryocytes involves a failure of the contractile ring [34].

Both endomitosis and aborted division in cancer cells may utilize

similar pathways involving GpIba, although further investigations

will be required to test this hypothesis.

Materials and Methods

Cell lines and cell culture
HFF-vector, HFF-GpIba, HFF-shp53, HFF-shp53+GpIba cells

were generated as described [12]. HFF-shp53+Dsig-GpIba and

HFF-shp53+Dfil-GpIba cells were generated using the same

method described in reference 12, with the plasmids constructed

Figure 4. GpIba-overexpression causes mislocalization of some cytokinesis-related proteins. (A–E). Left panels: Immunofluorescence
revealed that GpIba, filamin A, F-actin, and MHC were frequently absent and RhoA asymmetrically localized at the cleavage furrow in HFF-
shp53+GpIba cells during cytokinesis. Right panels: The means and standard deviations of the protein mislocalization (n.100 cells per sample). (F)
Aurora B localization was not affected by GpIba overexpression or p53 deletion (n = 100 cells per sample). (G) Interphase localizations of F-actin and
filamin A were not affected by GpIba overexpression. For panels A–E, the p value between HFF-vector and the HFF-shp53+GpIba cells are each ,0.05
by an unpaired two-tailed Student’s t-test.
doi:10.1371/journal.pone.0010819.g004
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in reference 18. All HFF cells were maintained in DMEM medium

(Sigma) supplemented with 2 mM L-Glutamine (Sigma) and 10%

fetal bovine serum (FBS; Sigma). HeLa cells (ATCC) were

maintained in DMEM medium supplemented with 10% FBS.

UPCI:SCC40 and UPCI:SCC103 cell lines are gifts from Dr.

Susanne M. Gollin (University of Pittsburgh). Both of the two

UPCI:SCC cell lines and liver adenocarcinoma cell line SK-HEP-

1 (ATCC) were maintained in MEM (Sigma) supplemented with

10% FBS, 2 mM L-Glutamine and 1% non-essential amino acids

(Invitrogen). All cells were cultured at 37uC with 5% CO2.

GpIba shRNA knockdown
Retroviral vectors (pHUSH) encoding human GpIba shRNA

29-mers and a puromycin-selectable cassette (Cat. Numbers

TR12692) were obtained from Origene, Inc. (Rockville, MD)

and 100 units/ml Penicillin G + 100 mg/ml Streptomycin as

previous described [35]. Retroviral transfections were performed

in Phoenix-A cells as previously described using Superfect

(Qiagen, Chatsworth, CA; [36]. Phoenix A supernatants were

then harvested daily beginning 48 hr after transfection with

retroviral vectors, filtered by passage through 0.45 mM filters

(Millipore, Bedford, NY) and applied to cancer cell line

monolayers for 24 hr in the presence of 8 mg/ml Polybrene

(Sigma-Aldrich, St. Louis, MO). After 2–3 applications, cells were

cultured in fresh, virus-free medium for 48 hr followed by selection

in puromycin-containing medium (1 mg/ml; Sigma-Aldrich).

Puromycin-resistant colonies were pooled for all subsequent

studies and were intermittently maintained in puromycin-contain-

ing medium.

Plasmid and DNA transfections
26105 cells were seeded on 22622 mm glass coverslips (VWR)

in 6-well plates and incubated with pre-warmed OPTI-MEM

(Invitrogen) medium. After six hours, cells were transfected with

2 mg of plasmid using 6 ml of the FuGENE6 transfection reagent

(Roche Diagnostics) following the manufacture’s protocol. Fresh

medium was added 12 hours later. Cells were examined 24–

48 hours after transfection.

Immunofluorescence
Cells on coverslips were fixed in 4% paraformaldehyde at room

temperature and washed in PBS. 0.1% Triton X-100 was used to

permeabilize the cells and 1.5% BSA/PBS was used as blocking

solution. Various primary antibodies were used including rAb-

Figure 5. GpIba overexpression is correlated with multinucleation in tumor cells and requires the filamin A-binding domain and
signal peptide to efficiently induce cytokinesis failure. (A) Correlation between GpIba, filamin A, and F-actin mislocalization during cytokinesis
and percentage of binucleation in different cancer cell lines compared with a control HFF-vector cell line. Protein localization was determined by
immunofluorescence and the frequency of binucleates by DAPI staining. All of the data are averages of at least three independent experiments, with
at least 100 mitotic cells or 500 interphase cells counted in each category. (B) The frequency of binucleation in HFF-shp53 cells overexpressing GpIba
mutants with deletions of the filamin A binding domain (shp53+Dfil-GpIba) or the ER signal sequence (shp53+Dsig-GpIba) is less than cells
overexpressing the full length protein (shp53+GpIba; p,0.01) and similar to HFF-shp53 controls (p.0.3). Means and standard deviation of three
experiments with ,500 cells counted per experiment are shown. (C) The frequency of cytokinesis failure seen by DIC microscopy in HFF-shp53 cells
overexpressing GpIba mutants with deletions of the filamin A binding domain or the ER signal sequence is less than cells overexpressing the full
length protein and similar to HFF-shp53 controls (n = 50–100 cells imaged for each cell line).
doi:10.1371/journal.pone.0010819.g005
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MHC (Sigma, 1:500), mAb-actin (Cytoskeleton, 1:100), mAb-

filamin (a gift from Dr. Nakamura, Translational Medicine

Division, Brigham and Women’s Hospital, Boston, MA, 1:500),

ratAb-Gp1ba (Emfret, 1:100), mAb-RhoA (Santa Cruz Biotech-

nology, 1:100), and mAb-CD44 (BD Pharmingen, 1:1000). All

primary antibodies were diluted in the blocking solution and

incubated for 30 minutes at room temperature. Fluorescent

labeled goat anti-rabbit or anti-mouse or anti-rat IgG (Invitrogen,

1:500) were diluted in the blocking solution as secondary

antibodies. After PBS wash, cells were incubated with the desired

secondary antibody for 30 minutes at room temperature followed

by staining with 4,6-diamidino-2-phenylindole (DAPI) at 1 mg/ml

(Sigma) for 5 minutes. The coverslips were mounted and examined

by Olympus BX60 epifluorescence microscope with 1006 oil

immersion objectives. Hamamatsu Argus-20 CCD camera was

used to capture the images. Confocal microscopy was performed

using Nikon Eclipse E800 (Nikon) with BioRad Radiance 2000

system.

Live microscopy analysis
26105 cells were seeded on 35 mm glass-bottom Petri dishes

(MatTek Corporation) and subject to live cell imaging either after

transfection with desired DNA plasmids as described above or

without any treatment. Cells were videoed while being maintained

at 37uC with a moisturized-warm air microscope chamber (Life

Imaging Services, Reinach, Switzerland). DIC microscopy and

epifluorescence microscopy were performed on Nikon Eclipse

TE2000-U inverted microscope with Coolsnap HQ digital camera

(Roper Scientific Photometrics). Images were taken and analyzed

using MetaMorph software (Molecular Devices).

Immunoblotting
Cellular fractionation proteins were loaded onto 10% SDS-

PAGE gels and separated by electrophoresis and transfer onto

PVDF membranes (Biorad, Hercules, CA). Antibodies against

CD44 (BD, San Jose, CA), calnexin (Stressgen, Ann Arbor, MI),

actin (cytoskeleton, Denver, CO), GAPDH (Cell signaling,

Danvers, MA), and GFP (Abcam, Cambridge, MA) or GP1Ba
(Emfret Analytics & CO.) were all diluted in 5% milk/TBST and

used as primary antibodies. Membranes were incubated with the

primary antibody overnight at 4uC. After 15 minute TBST wash,

membranes were incubated with anti-mouse or anti-rabbit IgG-

HRP-linked secondary antibodies (Amersham, GE Healthcare,

UK) diluted in 5% milk/TBST for 1 hour at room temperature.

Results were visualized using enhanced chemiluminescent kit

(Pierce, Rockford, IL).

In vivo tumorigenesis studies
All studies were reviewed and approved by The University of

Pittsburgh’s Institutional Animal Use and Care Committee. 6–

8 wk old nu/nu mice were purchased from Harland Laboratories

(Indianapolis, IN). They were housed under sterile, germ-free

conditions with 12 hr day-night cycles and were allowed access to

feed and water ad libitum. Animals were inoculated subcutaneously

Figure 6. Loss of transformed phenotypes by shGpIba cell lines. (A) Reduced clonogenic growth of shRNA cells Equivalent numbers of
shRNA and control cells were plated in soft agar as previously described [12,21]. After 12–14 days of growth, the total number of macroscopically
visible colonies was evaluated in triplicate cultures. The values shown depict the average number of clones +/21 S.E. (B) Photomicrographs of
representative colonies from each of the cell types. (C) Reduced tumorigenicity of shGpIba cell lines. Groups of nude mice (3–4 animals/group) were
inoculated subcutaneously with ca. 107 of the indicated cell types and then monitored weekly for evidence of tumor formation. Note the significant
growth impairment of tumors originating from shGpIba-expressing tumor cell lines.
doi:10.1371/journal.pone.0010819.g006
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in the flank with 107 tumor cells that had been trypsinized,

washed, and immediately resuspended in PBS. They were

monitored at least twice weekly and tumor volumes were

calculated as previously described [12].

Real time qRT-PCR-RNA
Extraction was performed as previously described followed by

treatment with TurboDNAse as recommended by the supplier

(Ambion, Austin TX)[37]. qRT-PCR was performed using a

QuantiTect SYBR Green RT-PCR kit according to the directions

of the supplier (Qiagen) and as previously described. Primers for

the detection of human GpIba were identified using the Primer3

program (www.frodo.wi.mit.edu/). They consisted of the sequenc-

es between nt 781 (forward) and 91 (reverse) of the transcript

(GenBank Accession no. NM_000173) and were synthesized by

IDT (Coralville, IA). Cycling was performed on triplicate samples

on a Roche LightCycler 2.0 apparatus (Roche Diagnostics,

Indianapolis, IN) and values were adjusted to those obtained for

GAPDH qRT-PCR reactions performed in parallel.

Supporting Information

Figure S1 Knockdown of GpIba in cancer cell lines HeLa, OS,

MCF7 and representative images of binucleation and multipolar

spindles, two types of mitotic defects in cancer cell lines. (A)

Immunofluorescence analysis of each cell line (HeLa, OS, MCF7)

showing reduced expression of GpIba in shRNA lines versus

control lines. As a control, cells were also stained with calnexin

(green) and with DAPI (blue) as previously described [21]. (B) qRT-

PCR analyses of each cell line showing levels of GpIba transcripts

after adjusting to GAPDH levels. Each point represents the average

of triplicate samples +/21 S.E. (C) Representative samples of DAPI

of chromatin and phalloidin staining of F-actin used to count the

frequency of binucleates/multinucleates are shown. Mononucleate

(mononuc.) and binucleate (binuc.) examples are indicated. (D)

Representative immunofluorescence images with microtubule and

NuMA centrosomal staining to determine spindle polarity are

shown. Bipolar and multipolar (MPS) examples are indicated.

Found at: doi:10.1371/journal.pone.0010819.s001 (2.40 MB TIF)

Figure S2 Control experiments for GpIba localization in dividing

cells. (A) GpIba localizes to the cleavage furrow separate from the ER

marker calnexin, as shown by immunofluorescence. (B) HFF-hTERT

cells were examined by fluorescence microscopy after staining with

antibodies to CD44 and GpIba. GpIba, but not CD44, localizes to

the cleavage furrow showing that only specific membrane-associated

proteins are concentrated in the divisional plane of the cell.

Found at: doi:10.1371/journal.pone.0010819.s002 (0.99 MB TIF)

Figure S3 Changes in filamin A, and F-actin localization after

GpIba knockdown in HeLa cells. The frequency of protein

mislocalization following stable shGpIba transfection in HeLa cells

was determined by immunofluorescence. A modest, but statisti-

cally significant, restoration of filamin A localization was observed

indicating that GpIba overexpression contributes to mislocaliza-

tion in these cancer cells. But other unknown factors are

apparently also controlling cytokinesis protein mislocalization in

malignant cells. Standard error about the means is shown.

Found at: doi:10.1371/journal.pone.0010819.s003 (0.07 MB TIF)

Figure S4 GpIba mutants lacking signal peptide is truly

defective in localizing to ER. Top two panels: Western blotting

shows successful cellular fractionation to separate ER proteins and

non-ER proteins. Calnexin: an ER protein marker. Middle two

panels: wild-type GpIba was found in both ER and non-ER

fractions, while signal peptide-deleted GpIba was only found in

non-ER fraction. Bottom panel: loading control beta-tubulin.

Found at: doi:10.1371/journal.pone.0010819.s004 (0.13 MB TIF)

Figure S5 Restoration of GpIba expression rescues the

phenotype of shRNA tumor cell lines. Two shGpIba cell lines

were transfected with a murine GpIba expression vector or the

empty parental vector. (A) Stably transfected clones were pooled

and subjected to immunoblotting to verify the re-expression of

GpIba. (B) Each of the four cell lines from (A) was seeded at

104 cells/well in 6 well plates. The following day, the medium was

replaced with fresh medium containing 1% FBS. Total viable

counts were then determined on triplicate well at the indicated

times afterwards. (C) 46103 cells of each line were plated in soft

agar and allowed to grow as anchorage-independent colonies for

14 days at which time the average no. of colonies/well was

determined on triplicate samples. (D) Typical appearance of soft

agar colonies after 14 days.

Found at: doi:10.1371/journal.pone.0010819.s005 (0.37 MB TIF)

Movie S1 An example of cytokinesis failure. DIC live-cell

imaging microscopy was used to visualize the cell division. Note: a

binucleated (tetraploid) cell was generated after cytokinesis failure.

Found at: doi:10.1371/journal.pone.0010819.s006 (1.48 MB

MOV)

Movie S2 An example of successful cytokinesis.

Found at: doi:10.1371/journal.pone.0010819.s007 (1.61 MB

MOV)

Movie S3 The localization of GpIba in cell division. GpIba was

enriched at the cell cortex, then at the division site and finally it

was enriched at the cleavage furrow and persisted through the

completion of cytokinesis. The cell division was recorded with a

fluorescence live-cell imaging microscope using HeLa cells

transfected with GpIba-GFP.

Found at: doi:10.1371/journal.pone.0010819.s008 (8.28 MB

MOV)
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